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Abstract

The last decades are marked by massive and diverse image
data, which shows increasingly high resolution and quality.
However, some images we obtained may be corrupted, affect-
ing the perception and the application of downstream tasks. A
generic method for generating a high-quality image from the
degraded one is in demand. In this paper, we present a novel
GAN inversion framework that utilizes the powerful genera-
tive ability of StyleGAN-XL for this problem. To ease the in-
version challenge with StyleGAN-XL, Clustering & Regular-
ize Inversion (CRI) is proposed. Specifically, the latent space
is firstly divided into finer-grained sub-spaces by clustering.
Instead of initializing the inversion with the average latent
vector, we approximate a centroid latent vector from the clus-
ters, which generates an image close to the input image. Then,
an offset with a regularization term is introduced to keep
the inverted latent vector within a certain range. We validate
our CRI scheme on multiple restoration tasks (i.e., inpaint-
ing, colorization, and super-resolution) of complex natural
images, and show preferable quantitative and qualitative re-
sults. We further demonstrate our technique is robust in terms
of data and different GAN models. To our best knowledge,
we are the first to adopt StyleGAN-XL for generating high-
quality natural images from diverse degraded inputs. Code is
available at https://github.com/Bo0000000000/CRI.

Introduction

With the mushroom development of imaging devices, im-
ages are now characterized by increasingly high resolution
and diverse scenes. However, the quality of images on the In-
ternet is uneven. For example, we may get images with low-
resolution, images with missing parts, or gray-scale images.
Therefore we hope to generate high-quality images directly
from the degraded raw natural images.

One feasible approach is to leverage the generative ability
of generative adversarial networks (GAN) and conduct GAN
inversion. The main idea is to “invert” the corrupted image
back to the latent space of the pre-trained GAN and then
reconstruct a restored image from the optimal latent (Xia
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et al. 2022). For a given degraded function D(-) and de-
graded image [ , the latent vector w,. is iterated through
back-propagation by minimizing the reconstruction loss of
I and the degraded synthesis image D(¢synthesis(Wre))s
where @syninesis 15 the synthesis layers of GAN. For ex-
ample, PTI (Roich et al. 2021) inverts high-quality face im-
ages to the latent space and uses the result for image at-
tributes manipulation. Nevertheless, PTI cannot be general-
ized to degraded input images from natural scenes. On the
other hand, DGP (Pan et al. 2021) provides compelling re-
sults to generate missing semantics, e.g., color, patch, res-
olution, for various images. But the scheme is limited to
vanilla GAN models (i.e., BigGAN (Brock, Donahue, and
Simonyan 2019)) which only generate results with relatively
low resolution (e.g., 1282, 2562).

In this paper, we present an effective framework to gen-
erate high-resolution natural images from degraded inputs.
We utilize the powerful capability of StyleGAN-XL (Sauer,
Schwarz, and Geiger 2022), the state-of-the-art model for
large-scale image synthesis, to generate high-quality im-
ages from degraded images. However, simply applying ex-
isting inversion methods (Pan et al. 2021; Roich et al. 2021;
Menon et al. 2020) on StyleGAN-XL pre-trained on Ima-
geNet (Krizhevsky, Sutskever, and Hinton 2012) obtains un-
satisfactory results and faces two challenges:

(1) The latent space of StyleGAN-XL pre-trained on Im-
ageNet is much larger and more complex compared to other
popular GAN models like BigGAN and StyleGAN (Karras,
Laine, and Aila 2019). Due to the diversity of data, the scale
of the generator increases. For instance, for face images (i.e.,
FFHQ (Karras, Laine, and Aila 2019)) StyleGAN2 (Karras
et al. 2020) at resolution 10242 only uses 18 latent vectors,
while StyleGAN-XL trained on ImageNet at resolution 5122
needs 37 latent vectors since the data domain is more com-
plicated. In the meantime, StyleGAN-XL employs an in-
termediate latent space compared to BigGAN which is the
essence of its flexible editability but also adds to the inver-
sion difficulty. For such a complex latent space, finding a
good initialization of latent vector is quite important.

(2) The visual quality of the result is not explicitly im-
posed by the existing inversion methods. For example, im-
ages I,. and I; generated by w,. and w; in Figure 1(a) re-
sult in the same degraded images (D(I,..) and D(I;)). Min-
imizing the traditional pixel or feature loss as existing meth-
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Figure 1: Comparison of existing GAN inversion methods and our proposed CRI in the latent space (e.g., VYV and W+ space).
(a) Existing inversion methods (e.g., PTI) begin the optimization from an average latent vector w4 of the class, and minimize
the reconstruction loss. Due to the ill-posedness of image restoration, the resulted image ¢ synthesis(Wre) is similar to the target
image @ synthesis(we) but is visually unpleasant as it falls into the distribution margin. (b) Our CRI starts the optimization
by finding the “nearest” centroid as the starting latent vector. w{*", ws", w5, wi®™ are candidate centroid and w{®" is the

selected centroid. By bounding the scope of latent vectors with the regularized offset, the perceptual quality is guaranteed.

ods (Roich et al. 2021) can achieve low distortion (indicated knowledge, we are the first to adopt StyleGAN-XL to
by metrics such as LPIPS (Zhang et al. 2018)) but neglect generate high-quality images from degraded inputs.

the perception (indicated by metrics such as NIQE (Mit- » We propose a simple yet effective GAN inversion method
tal, Soundararajan, and Bovik 2012) and FID (Heusel et al. to address the challenge of inversion with StyleGAN-XL.
2017)). Consequently, some latent vectors may fall into the The key idea is to find a better starting latent vector and
distribution margins of the WV latent space of StyleGAN-XL introduce a constraint on the image quality for optimiza-
(i.e., blue regions in Figure 1), bringing poor and unpleas- tion, summarized as Clustering & Regularize.

ant results. Hence, a constraint specially designed from the
perception perspective is in need.

To tackle the aforementioned challenges, we proposed
Clustering & Regularize Inversion (CRI). We show diverse
datasets such as ImageNet exhibit multi-modal characteris-
tics, as shown in Figure 1(b). For instance, images of the

* We conduct extensive experiments on restoration tasks
with different datasets and GAN models. The experi-
mental results demonstrate the superiority of our method
against other inversion methods.

teddy bear class in ImageNet may contain one to many Related Works
bears (i.e., w™, w5, ws*™) or even a person holding a Style-based Generator
teddy bear (i.e., wi®™). Therefore, instead of starting the op- The Style-based generator is first proposed by (Karras,
timization from an average latent vector like most existing Laine, and Aila 2019). A mapping module is introduced to
methods, we choose a “nearest” centroid by clustering. The map the random values (denoted by z € Z) to an interme-
large and complex latent space is first clustered into ﬁn.er- diate latent space named W space. By feeding latent vec-
grained sub-spaces. The latent vector wi™" (i.e., centroid) tors w € W to each synthesis layer, StyleGAN can control
which generates the “nearest” image is selected as the start- the attributes of the generated image. It quickly surpassed
ing point for inversion. Meanwhile, inspired by the inherent previous image generative models (Brock, Donahue, and Si-
distortion-perception trade-off in the latent space of Style- monyan 2019; Karras et al. 2017), showing superior per-
GAN (Tov et al. 2021), we improve the perceptual quality ceptual quality and variety. StyleGAN2 (Karras et al. 2020)
of results by constraining the scope of latent vectors. Specif- introduced path length regularization and weight demodu-
ically, an offset term woff with a regularization term is in- lation, which further improves the image quality. Recently,
troduced. During the optimization, we keep the wi" frozen StyleGAN3 (Karras et al. 2021) addressed the aliasing prob-
and iterate w°// instead of optimizing the whole latent vec- lem and proposed a new architecture that boosts the genera-
tor wj™ +w°//. By doing so, we explicitly bound the latent tor to be fully equivariant to translation and rotation.
vectors to the high perception areas in the latent space. In
short, our main contributions can be summarized as: GAN Inversion

* We fully explore the potential of GAN inversion for de- GAN inversion aims at mapping a given image back into

graded natural images in diverse scenes. To our best the latent space of a pre-trained GAN model, which can be
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viewed as the inverse problem of image synthesis. It was
first introduced by (Zhu et al. 2016). Generally, inversion
methods can be divided into optimization-based (Creswell
and Bharath 2018; Abdal, Qin, and Wonka 2020; Roich et al.
2021) and learning-based (Richardson et al. 2021; Dinh et al.
2022; Tov et al. 2021; Dong et al. 2021). The optimization-
based approaches directly update the latent vector by mini-
mizing the reconstruction loss. Learning-based methods em-
ploy an encoder to learn the mapping from the given im-
age to its corresponding latent. Recently, (Dong et al. 2021)
studies the invertibility of an arbitrary pre-trained DNN us-
ing learning-based inversion. However, despite the gain in
inference speed, the reconstruction quality of learning-based
methods is often worse than that of optimization-based ap-
proaches. Also, the encoder cannot be adapted to out-of-
domain data. Our proposed CRI is based on optimization
as we find that the relatively easy optimization-based ap-
proaches still do not work well for complex scenes.

Due to the many desirable properties of StyleGANS, re-
cent works focus on conducting inversion with StyleGANSs.
For StyleGANS, inversion is usually conducted in the W
space. It has been shown that the extended YW+ where differ-
ent latent vectors are fed into each of the generator’s layers
is much more expressive and enables better image preserva-
tion (Abdal, Qin, and Wonka 2019). As shown in (Tov et al.
2021), there exist trade-offs between distortion, perceptual
quality, and editability within the W+ space. Recently,
PTI (Roich et al. 2021) proposed pivotal tuning to mitigate
the distortion-editability trade-off for out-of-distribution im-
ages. In comparison, we consider GAN inversion as a tool
for exploiting the GAN priors for restoration tasks. Finding
a “sweet spot” in the distortion-perception trade-off rather
than the distortion-editability trade-off is the primary pur-
pose and challenge of our work.

Deep Priors in Image Restoration

Image restoration is the task of recovering a clean im-
age given its degraded version. Due to the powerful abil-
ity to generate photo-realistic images, many works exploit
pre-trained GANSs as priors to improve the quality (Geo-
nung Kim 2022; Wei et al. 2022; Bartz et al. 2020). Leverag-
ing a pre-trained StyleGAN is very common in face restora-
tion (Menon et al. 2020; Yang et al. 2021). As one represen-
tative work, PULSE (Menon et al. 2020) propose to solve
face image super-resolution task with inversion on Style-
GAN2. As for more complex real-world images, attempts
are still limited to vanilla GANs (e.g., BigGAN). DGP (Pan
et al. 2021) presents a relaxed formulation for mining the
priors in BigGAN. The generator is jointly finetuned with
the latent vectors. (Wu et al. 2021) ‘retrieves’ color informa-
tion encapsulated in BigGAN via an encoder and then incor-
porates these features with feature modulations. In this pa-
per, we explore the potential of StyleGAN-XL for degraded
images from natural complex scenes, achieving better results
than existing GAN inversion methods.

Method
Suppose the given input image I is obtained via I; = D(I)
where 1 is the original high-quality image, D(-) is the degra-
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dation function. Our aim is to generate high-quality images.
By utilizing StyleGAN-XL, the problem can be translated as
finding a latent vector w that satisfies:

w = argmin L(D(¢synthesis(w)), 1a), (1)

w
where @synthesis(-) is the synthesis network of the pre-
trained generator, L(-) is a distance metric in the image or
feature space.

Although various attempt has been made (Menon et al.
2020; Pan et al. 2021) to seek generative priors, generating
high-resolution natural images remains challenging. Since
the latent space is much more complex for StyleGAN-XL
pre-trained on ImageNet, it is essential to provide additional
help for the optimization process. We proposed a Cluster-
ing & Regularize strategy to break through this problem.
Clustering offers a better initial starting point for the opti-
mization, while Regularize constrains the scope of w during
optimization. In this section, we will first give details about
this strategy and then describe the overall pipeline.

Start from a Centroid

One main challenge for restoring natural images with
StyleGAN-XL lies in the complexity of the latent space.
The latent vectors for StyleGAN-ImageNet present a multi-
modal characteristic. Simply starting from an average latent
vector becomes sub-optimal. Thus, we begin the optimiza-
tion by finding a proper centroid as shown in Figure 1(b).

For a given class, we first randomly sample M latent
vectors {wj}l‘/i1 using the pre-trained mapping module
@ Mapping Of StyleGAN-XL.:

{wj}jzvi1 = ¢J\4apping({zj}jM=17 c), 2

where {z;}}2, ~ N(0,1) and c is a one-hot vector of the
given class. {w; } j]\il are clustered into N clusters, obtaining
N centroids {w$e"} ¥, corresponding to N center images:

{I5" ity = bsynthesis ({wf" }ily)- @)

Given degraded input image I;, we measure the distance
between Iy and {If*"}Y | in the feature space of a pre-
trained model (e.g. VGG (Simonyan and Zisserman 2014)).
The corresponding wi°™ of the “nearest” center image is se-
lected as the starting point for the subsequent optimization.

Regularized Offset

Due to the ill-posedness of image restoration, we may find
multiple latent vectors that satisfy Eq. 1. However, some
of the generated images may be beyond the manifold of
natural images. Applying the traditional loss on I; and
D(¢synthesis(w)) does not explicitly guarantee the percep-
tion for inversion. We propose to improve the perceptual
quality of the result images by constraining the scope of the
latent vectors during optimization. Instead of optimizing w
directly, we introduce an offset term w°// and keep the cen-
troid wi®™ frozen. The output image is defined as:

“4)

Isyn = ¢synthesz‘s (w;en + woff).



Then we add a regularization term for w7’ f

reg = [Ju ||

&)

This regularization term limits the range of the output latent
w = wi" +w°/7 to a certain extent so that the output image
does not exceed the natural manifold. By doing so, the latent
is allowed to be gradually rectified towards the target while
remaining high perceptual quality.

Loss Function

The overall pipeline of CRI can be divided into two stages:
the optimization stage and the finetune stage. As noted in
DGP (Pan et al. 2021), a fixed generator is perhaps a crucial
limitation for faithfully reconstructing unseen and complex
images. However, we found that finetuning the generator to-
gether with the latent vector at the same time like DGP is
sub-optimal for more sophisticated GANs. For StyleGANs
with disentangled latent vectors, dividing optimization and
finetune into two stages helps reduce the inversion difficulty.

In the first stage, only the w®// is optimized and the
weights of the generator are frozen. The overall loss for the
optimization stage can be defined as:

Lop = Lrprps(La, D(Isyn)) + M La(La, D(Isyn)) + Aal|w®/7||a,
(6)
where D(-) is the degradation function, A; and A are hyper-
parameters. As the noise input is removed in StyleGAN3, we
do not optimize this term. However, the noise vector can be
considered to improve the visual details.
We use the pivotal tuning technique (Roich et al. 2021) in
the second stage, where the pivotal latent w = we" 4 w°f
is frozen. The generator is finetuned with the following loss:

Lt = Lrprps({a, D(Isyn)) + AraLla(la, D(Isyn)) + ArLr,
(N
where A\ro and A are hyperparameters, L is the locality
regularization term defined as:

Lr = Lipips(zr, x1) + Mo Lo(2,, 1), (8)

where A\, is a hyperparameter, z,, = Gsynthesis(Wr; ) is
generated with the original weights of the generator and
TE = Psynthesis(Wr; 0%) is generated using the currently
tuned ones, w,. is the interpolated code between a random la-
tent vector and the pivotal latent vector. Pseudocode of CRI

is summarized in Algorithm 1.

Experiments

In this section, we present comprehensive experiments to
evaluate our method. We experiment with image inpaint-
ing, image colorization and super-resolution. We start by
comparing with current inversion methods on StyleGAN-
XL (Sauer, Schwarz, and Geiger 2022) pre-trained on Im-
ageNet (Krizhevsky, Sutskever, and Hinton 2012). We also
compare the generating results of our method on StyleGAN-
XL and DGP on BigGAN. For face images, we conduct ex-
periments with StyleGAN2 (Karras et al. 2020) pre-trained
on FFHQ (Karras, Laine, and Aila 2019), which shows the
generalizability of our method. Then, we extend our method
to out-of-domain images. Finally, we conduct an ablation
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Algorithm 1 Pseudocode of CRI

# G: pre—trained GAN; Id: degraded input image
# ci: the class index of the input image
# loss_fn.w, loss_fn_g: Equation 6, 7

# Clustering centroids

z_samples = randn(M, G.z_dim)

c_samples = one_hot(M, ci, G.c_dim)
w_samples = G.mapping(z_samples, c_samples)
km = KMeans(cluster_n). fit (w_samples)
centroids = km. cluster_centers_

# Estimating a centroid

center_images = G. synthesis ( centroids )
center_features = VGG(center_images)
target_features = VGG(Id)

dis = L2( target_features , center_features )
w_st = centroids [ dis .argmin(0)]

# Optimizing regularized offset
w_offset = zeros(w_st.shape)

w_offset . requires_grad_ (True)

w_st. requires_grad_ (False)

image = G. synthesis (w_st+w_offset)
loss = loss_fn_w (degrade(image), 1d)
loss .backward()

# Finetune Generator

w_offset . requires_grad_ (False)

G. requires_grad_ (True)

image = G. synthesis (w_st+w_offset)
loss = loss_fn_g (degrade(image), Id)
loss .backward()

study to justify the effectiveness of our inversion method.
All the methods are inverted to W+ space except PTI-
colorization as we found V space generates better results.

Restoration on ImageNet

We first compare our method with other GAN inversion
methods (Menon et al. 2020; Pan et al. 2021; Roich et al.
2021) on ImageNet. We use StyleGAN-XL (Sauer, Schwarz,
and Geiger 2022) as it is state-of-the-art on large-scale im-
age synthesis. The resolution of the generated images is
5122, We invert 1000 images from the validation set of Ima-
geNet, each from different classes, to quantitatively evaluate
the methods. The scale factor of the SR task is set to 4.

Qualitative Results Figure 2 presents a qualitative com-
parison against other GAN-inversion methods (Menon et al.
2020; Pan et al. 2021; Roich et al. 2021) on ImageNet
dataset. Our method achieves superior results for all tasks,
i.e. image inpainting, image colorization and image super-
resolution. Due to the lack of finetuning stage, PULSE fails
to generalize to complex real-world images. It can only pro-
duce the general shape, but could not fill in the missing in-
formation. At the same time, since the latent vector and the
generator are simultaneously optimized and finetuned, it is
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Figure 2: Image Restoration with images from the ImageNet valid set. StyleGAN-XL pre-trained on ImageNet is used. Our
method achieves more natural transitions, more realistic colors and sharper details. Zoom in for better visualization.

Task Measure  DGP PTI Ours
Inoginti LPIPS | 02612 0.1219 0.1164
npainting FID| 16624 5462 44.73
Colorization LPIPS+ 03105 0.1994  0.1914

FID| 7832 4751 45.90
SR LPIPS | 02726 02429 0.2390
NIQE | 8.4044 5.5659 5.3065

Table 1: Quantitative comparison against DGP and PTI
on image inpainting, image colorization and image super-
resolution. We use StyleGAN-XL pre-trained on ImageNet,
and invert images from the ImageNet valid set.

difficult for DGP to find a faithful output. Finetuning with
incorrect latent vectors disrupts the generative capacity of
the pre-trained generator which result in poor visual quality.
Compared to PTI, our method is capable of recovering real-
istic fine details (e.g. smoother contours for inpainting, truer
colors for colorization and sharper details for SR).

Quantitative Results Following (Wu et al. 2021; Zeng
et al. 2021), we use LPIPS (Zhang et al. 2018), FID (Heusel
et al. 2017) for image inpainting and image colorization.
Following (Pan et al. 2021), LPIPS and NIQE (Mittal,
Soundararajan, and Bovik 2012) are used for SR. Also, we
find these metrics are close to visual perception. As shown
in Table 1, the quantitative results align with our qualitative
results as we achieve the best score for all metrics.
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Task Measure  DGP Ours
Inpainti LPIPS | 0.1316 0.1211
npamnting FID| 116.12 80.20
Colorization LPIPS | 0.2256 0.1842
FID | 189.42  92.48
SR LPIPS | 0.2226 0.2224
NIQE| 9.2102 5.5686

Table 2: Quantitative comparison between DGP with Big-
GAN pre-trained on ImageNet and CRI with StyleGAN-XL
pre-trained on ImageNet.

Comparison with DGP-BigGAN We compare the results
of DGP with BigGAN-ImageNet and the results of our
methods. Quantitative and Qualitative results are shown in
Table 2 and Figure 3. Since BigGAN only supports the res-
olution of 2562, we resize the output of DGP+BigGAN to
5122 for comparison. For SR, the input of both DGP and
CRI are set to 1282. Our CRI+StyleGAN-XL outperforms
DGP+BigGAN on image inpainting, colorization and SR.

Restoration on Face

To illustrate our method is not limited by the GAN model or
data, we conduct experiments on StyleGAN2 (Karras et al.
2020) pre-trained on FFHQ (Karras, Laine, and Aila 2019).
The resolution of the generated images is 10242. We invert
500 images from CelebA-HQ (Karras et al. 2017). The scale
factor of SR is set to 16.
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Figure 3: Qualitative comparison between DGP with Big-
GAN pre-trained on ImageNet and CRI with StyleGAN-XL
pre-trained on ImageNet. Zoom in for better visualization.

P

(a) BSD100

(b) DIV2K

Figure 4: Evaluation of CRI on out-of-domain datasets, in-
cluding (a) image from BSD100, (b) image from DIV2K.

Quantitative Results For face restoration, we employ
LPIPS and FID as evaluation metrics shown in Table 3. The
FID score is calculated between the inverted 500 images and
the CelebA-HQ dataset (30000 images in total). Our method
obtains the lowest LPIPS and FID for all tasks, indicating
that our results are perceptually close to the ground truth
and have a close distance to the real face distribution.

Qualitative Results Qualitative results of each task are
shown in Figure 6. Our method outperforms other methods
in terms of image quality and identity preservation. PULSE
and DGP can produce results of good visual quality, but the
similarity is relatively low. For instance, DGP-SR fails to
preserve the hairstyle. Images generated by PTI are similar
to the input in terms of known information. For example,
the background of the image in the inpainting task and the
structure in the colorization task are quite authentic. How-
ever, the overall view of the generated images is not natural
since the inverted latent vectors beyond the manifold of nat-
ural images. Compared to PTI, our results are more natural
and generate sharper details.

2721

Task Measure DGP  PULSE PTI Ours
Inoaintin LPIPS | 0.1311 0.1387 0.1293 0.1279
painting FID| 6832 5920 5348  48.00
Colorization LPIPS+ 01621 0.1924  0.1990  0.1505
FID| 7424 11606 5601  46.54
SR LPIPS | 0.1481 0.1385 0./317 0.1297
FID| 6856 6001 60.76 58.88

Table 3: Quantitative comparison against PULSE, DGP and
PTI on image inpainting, image colorization and image
super-resolution. We use StyleGANV2 pre-trained on FFHQ,
and invert images from the CelebA-HQ.

| PIPS =e=FID

013 74
0.125 72
70

0.12
68
0.115 66
0.11 64

1 5 10 15

Figure 5: Comparison of numbers of the cluster.

Robustness on Out-of-domain Images

We also experiments with images from BSD100 (Martin
et al. 2001) dataset and DIV2K (Agustsson and Timofte
2017) dataset. Deit-M (Touvron et al. 2021) is used as a clas-
sifier to provide the class information (i.e., ¢ in Eq. 2) for the
input. As shown in Figure 4, our CRI can reconstruct the
missing part of out-of-domain images.

Ablation Study

Effect of Centroids We show the effectiveness of the clus-
tering centroids by adopting different cluster numbers. To
exclude the effect of the random sampling of {z;}}Z,, we
cluster the same {z;}7, into N = {1,5,10, 15} clusters
respectively using KMeans. The results of colorization are
presented in Figure 5. The performance becomes progres-
sively better as the number of centroids increases. However,
the clustering time also becomes longer. Considering the
performance and the clustering time trade-off, we choose
N = 10 as the default.

Effect of Regularized Offset To validate the effectiveness
of our regularized offset, we conduct an ablation study on
face colorization with StyleGAN?2. 60 images from CelebA-
HQ are used. We first remove the regularization term and
then replace the Lo regularization with L;. As shown in
Table 4, using Lo regularized offset is beneficial for both
LPIPS and the ID Similarity compared to L; regularization.
Optimizing without a regularization term (w/o Reg) fails to
generate authentic colors (see Figure 7) but achieves high
ID similarity, which also demonstrates the inherent trade-
off between distortion and perception. In the meanwhile, our



Figure 6: Image Restoration with images from the CelebA-HQ dataset. StyleGAN2 pre-trained on FFHQ is used for all methods.
Our method guaranteed similarity while generating high quality face images. Zoom in for better visualization.

Input Ours

Figure 7: Qualitative results of different regularization strat-
egy. w/o Reg: no regularization term, L1: regularize with L1
norm, Ours: regularize with L2 norm.

proposed CRI can achieve a “sweet spot” in the distortion-
perception trade-off by introducing the regularized offset.

Implementation Details

For StyleGAN-XL with ImageNet, we use 1000 iterations
for the optimization stage and use 350 iterations for the fine-
tune stage as in (Sauer, Schwarz, and Geiger 2022). For
StyleGAN2 with FFHQ, we use 500 iterations for the first
stage and 20 iterations for the second stage as inversion with
a face is simpler. For more detailed implementations, please
refer to the supplementary materials.
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Metric w/o Reg Ly Ours
LPIPS| 0.1996  0.1694 0.1560
ID Similarity?  0.7251  0.1955 0.5756

Table 4: Comparison of different regularization strategy. w/o
Reg: no regularization term, L1: regularize with L1 norm,
Ours: regularize with L2 norm.

Conclusion

We have presented a general framework for generating high-
resolution images from degraded images in diverse natural
scenes. This is achieved by leveraging the generative power
of StyleGAN-XL. Furthermore, we propose a simple yet ef-
fective technique, term as Clustering & Regularize, to ease
the inversion difficulty of StyleGAN-XL pre-trained on mas-
sive natural images. Clustering is introduced to solve the
difficulty caused by the large and complex latent space of
StyleGAN-XL. It divides the latent space into sub-spaces
and provides the inversion with a better initialization. While
Regularize is derived from the perceptual aspect. By intro-
ducing an offset term and constraining it with regularization
we can bind inversion for better visual quality. CRI allows
us to achieve good perception and can effectively provide the
results with rich image semantics. Extensive experiments on
image restoration tasks illustrate the effectiveness of CRI.
By designing the degradation function D(-), we believe our
framework can be applied to other degradations, e.g., noise
and blur, which will be left for future work.
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