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Abstract

In this work, we investigate contrastive learning on perturbed
point clouds and find that the contrasting process may widen
the domain gap caused by random perturbations, making
the pre-trained network fail to generalize on testing data.
To this end, we propose the Equivariant COntrastive frame-
work which closes the domain gap before contrasting, fur-
ther introduces the equivariance property, and enables pre-
training networks under more perturbation types to obtain
meaningful features. Specifically, to close the domain gap, a
pre-trained VAE is adopted to convert perturbed point clouds
into less perturbed point embedding of similar domains and
separated perturbation embedding. The contrastive pairs can
then be generated by mixing the point embedding with differ-
ent perturbation embedding. Moreover, to pursue the equiv-
ariance property, a Vector Quantizer is adopted during VAE
training, discretizing the perturbation embedding into one-hot
tokens which indicate the perturbation labels. By correctly
predicting the perturbation labels from the perturbed point
cloud, the property of equivariance can be encouraged in the
learned features. Experiments on synthesized and real-world
perturbed datasets show that ECO-3D outperforms most ex-
isting pre-training strategies under various downstream tasks,
achieving SOTA performance for lots of perturbations.

Introduction
Contrastive learning has been widely accepted as a self-
supervised technique to learn representations in a label-free
manner and achieved promising results in image domain
(Wu et al. 2018; Van den Oord, Li, and Vinyals 2018; Tian,
Krishnan, and Isola 2020; He et al. 2020; Chen et al. 2020b).
Recently, the 2D contrastive paradigm has been successfully
applied in 3D domain (Xie et al. 2020; Sanghi 2020; Al-
liegro et al. 2021; Yu et al. 2021; Afham et al. 2022), learn-
ing meaningful representations of point clouds. These meth-
ods usually perform augmented transformations on each
point cloud to generate the positive pairs and regard differ-
ent point clouds as negative pairs. Despite learning useful
features under the pre-aligned clean datasets such as Mod-
elNet40 (Wu et al. 2015) and ShapeNet (Yi et al. 2016), we
find that existing contrastive frameworks may fail to extract
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generalized features under point clouds having random per-
turbations such as noise, occlusion, etc. Since the perturba-
tions normally exist in real-world 3D scans and require huge
human effort to eliminate, enabling contrastive learning on
perturbed data has significant practical meanings.

To investigate the contrastive learning on perturbed point
clouds, we pre-train PointNet (Qi et al. 2017) following the
most employed contrastive framework (Chen et al. 2020b)
on both clean and perturbed ModelNet40 (Wu et al. 2015).
The pre-trained encoders are then fine-tuned to perform the
classification task and compared with the baseline which
is trained in fully-supervised settings. The experimental re-
sults are illustrated in Fig. 1 (a). For the clean dataset, fine-
tuning the pre-trained networks generally converges to bet-
ter classification accuracy than the fully-supervised base-
line. However, the results on the perturbed dataset are com-
pletely different. Fine-tuning performance is worse than
fully-supervised training. The performance decrease is ob-
served under more than one perturbation. It seems that the
contrastive framework not only fails to facilitate useful fea-
ture extraction from the perturbed point clouds but learns
harmful features, causing lower accuracy than the baseline.

To find out why contrastive learning fails on the perturbed
point clouds, we visualize the features of training and testing
data learned via the supervised and contrastive framework.
As in Fig. 1(b), under the supervised framework, the features
of testing and training data are more dispersedly distributed
under the ② perturbed dataset than the ① clean dataset. This
can be easily explained since the random perturbations lead
to the testing data having perturbations unseen in the train-
ing data, thus increasing the training and testing domain gap.
More surprisingly, we observe that such a domain gap is fur-
ther enlarged under the contrastive framework③. We think it
may be because the contrastive enhanced features can hardly
generalize to testing data due to the domain gap thus lead-
ing to even worse domain gaps. Therefore, we try to enable
contrastive learning on the perturbed point clouds by first
closing the domain gap. A simple method is to manually
delete the perturbations. However, this requires huge efforts
and can hardly be generalized to different perturbations.

In this work, we design a novel Variational AutoEncoder
(VAE) architecture to close the domain gap in the embed-
ded space. The proposed VAE is composed of a hierarchical
encoder to progressively map the perturbed data into low
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(a) PointNet Results under Different Perturbations 

Figure 1: (a) Results of training PointNet (Qi et al. 2017) under one original (Wu et al. 2015) and two perturbed datasets
(Taghanaki et al. 2020) with different training strategies. (b) t-SNE (Van der Maaten and Hinton 2008) visualizations on the
encoded features of trained PointNet: ① Supervised training on the original dataset ② Supervised training on the noise dataset
③ Contrastive pre-training and fine-tuning on the noise dataset. ④ ECO-3D pre-training and fine-tuning on the noise dataset.

and high-level embedding and a decoder to let these embed-
ding respectively contain information of less perturbed point
clouds and correspondingly separated perturbations, via dis-
tinct reconstruction. Specifically, for the less perturbed point
embedding, we expect its decoded point clouds to have
fewer perturbations. In contrast, decoding on the combi-
nation of point and perturbation embedding precisely re-
constructs the perturbed shapes. The distinct reconstruction
strategy obtains less perturbed point embedding distributed
in a similar domain. Then, existing contrastive frameworks
can be employed based on these embeddings. To transform
the embedding for generating contrastive pairs, we sim-
ply mix up the less perturbed point embedding with dif-
ferent perturbation embedding. Compared with hand-craft
pre-processing, our method automatically narrows down the
domain gap and is compatible with different perturbation
types. The feature visualization of the less perturbed point
embedding generated by VAE is shown in Fig. 1 (b) ④,
where the training and testing data points are less dispersed,
corresponding to narrowed domain gap.

Based on the new contrastive framework, we attempt to
pursue the equivariance property to further improve the pre-
training results under various perturbations. Essentially, our
contrastive paradigm encourages the learned features to be
invariant to the perturbations. Yet, the invariance property
is a trivial instance of a broader class called equivariance.
Formally, given a point cloud X ∈ RN×3 and a set of
transformations TA : RN×3 → RN×3, a neural network
ϕ : RN×3 → F is called equivariant if for each A there ex-
ists an equivariant transformation SA : F → F so that:
SA[ϕ(X)] = ϕ(TA[X]). Therefore, the equivariance can
be intuitively understood as the property that representa-
tions transform according to the way the inputs transform
and invariance is a special case of equivariance when SA

is an identity mapping. Equivariant features naturally reflect
the input transformations. Recently, (Dangovski et al. 2021)
encourage the equivariance simply by predicting the input

transformations from the learned features, which improves
image pre-training. However, in point cloud pre-training,
similar equivariant properties have less been investigated.

In sight of this, we generalize the equivariant framework
established in (Dangovski et al. 2021) to our contrastive
learning paradigm. To achieve that, a Vector Quantizer (Van
Den Oord et al. 2017) is introduced in VAE, which dis-
cretizes the perturbation embedding into one-hot perturba-
tion labels. By predicting the perturbation token labels from
the learned representations, the equivariance properties are
encouraged. Besides, a learnable weight is used to balance
the invariance and the equivariance during pre-training.

Our final 3D pre-training framework named Equivariant
COntrastive Learning (ECO-3D) achieves promising per-
formance for various kinds of perturbations. We test ECO-
3D on several point networks under both synthesized and
real-world perturbations. Experiments show that ECO-3D
achieves better pre-training performance under most pertur-
bation types than existing pre-training strategies, obtaining
SOTA performance for various downstream tasks. Ablations
confirm the effectiveness of the designs in our framework.
Our contributions can be summarized as:
• For the first time, we observe the degeneration of point

cloud contrastive learning under perturbations and pro-
pose ECO-3D pre-training which successfully learns
generalized features from perturbed point clouds and al-
leviates the degeneration under various perturbations.

• In ECO-3D, we invent a hierarchical VAE to close the
perturbation domain gap based on which a novel con-
trastive framework is designed to overcome degenera-
tion. A Vector Quantizer is further equipped to help pur-
sue feature equivariance. We also propose a learnable
weight to adaptively adjust the equivariance scale.

• Experiments suggest that ECO-3D outperforms most ex-
isting self-supervised pre-training frameworks on synthe-
sized and real-world perturbed datasets, achieving SOTA
performance under various downstream tasks.
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Related Work
3D Variational AutoEncoders. Variational AutoEn-

coders (VAEs) (Kingma and Welling 2013; Higgins et al.
2017) are major deep generative models for learning the
content distribution of various kinds of data including im-
ages (Bepler et al. 2019; Liu, Breuel, and Kautz 2017), texts
(Hu et al. 2017; Yang et al. 2017) and sound (Tjandra et al.
2019; Eloff et al. 2019). Recently, VAE has shown remark-
able performance in representing 3D point clouds. For ex-
ample, (Achlioptas et al. 2018; Han et al. 2019) encodes the
input into continuous latent variables for precise shape re-
construction and generation. (Eckart et al. 2021; Yu et al.
2021) models the discrete distribution of inputs to tokenize
the point clouds into discrete geometric partitions, serving
for their designed pretext tasks. These 3D VAEs mainly
learn one distribution for the input point clouds.

Our work differs from these researches in that we try to si-
multaneously model two complementary distributions from
perturbed point clouds, i.e. the less perturbed point distri-
bution and the perturbation distribution. To achieve that, we
develop a hierarchical VAE to extract the embedding of dif-
ferent levels and learn the two independent distributions via
distinct reconstructions. Moreover, a Vector Quantizer (Van
Den Oord et al. 2017; Razavi et al. 2019) is adopted for
discretizing the perturbation embedding into tokens which
serve as the perturbation labels for the equivariant learning.

Self-Supervised Pre-Training on 3D Point Clouds.
Self-Supervised pre-training is a type of unsupervised learn-
ing where the supervision signals can be generated from the
data itself (Jing and Tian 2020). In images, multiple pretext
tasks have been designed for generating supervision signals
including jigsaw puzzles (Noroozi and Favaro 2016), con-
trastive learning (Van den Oord, Li, and Vinyals 2018; Tian,
Krishnan, and Isola 2020; He et al. 2020; Chen et al. 2020b),
masked encoding (Chen et al. 2020a; He et al. 2021), etc.
Recently, self-supervised pre-training has been successfully
applied in 3D point clouds via carefully-designed 3D pretext
tasks, such as the orientation estimation (Poursaeed et al.
2020), 3D jigsaw (Sauder et al. 2019), occlusion comple-
tion (Wang et al. 2021), local-global reasoning (Rao, Lu,
and Zhou 2020; Sharma and Kaul 2020; Thabet, Alwassel,
and Ghanem 2020). Meanwhile, pretext tasks originally de-
signed in images also be transferred into point clouds such
as contrastive learning (Alliegro et al. 2021; Sanghi 2020;
Afham et al. 2022) and masked modeling (Yu et al. 2021).

However, these pre-training methods are commonly per-
formed under the ideal 3D dataset without perturbations,
which can be less practical for the 3D data collected from
realistic scenarios. For the first time, we investigate the pre-
training under perturbed point clouds. Our framework builds
on the most employed pretext task, contrastive learning, and
further introduces VAE to close the domain gaps in per-
turbed point clouds. We also design a novel pretext task that
encourages equivariance property in contrastive learning.

Invariance vs. Equivariance. The contrastive loss (Sohn
2016; Wu et al. 2018) essentially enables the learned fea-
tures to be invariant to the augmented transformations. By
doing so, the learned features are insensitive to the trans-
formations and focus more on other useful features (Xiao

et al. 2020). However, many recent studies (Dangovski et al.
2021; Metzger et al. 2020; Gidaris, Singh, and Komodakis
2018; Doersch, Gupta, and Efros 2015; Gidaris et al. 2019)
in image domain have shown that making the learned fea-
tures sensitive to some augmentations by predicting them
generates better representations. In sight of this, (Dangovski
et al. 2021) propose to pursue the sensitivity by extending
the invariance property of existing contrastive learning to
its broader class i.e., equivariance. They encourage the non-
trivial equivariance in the learned features by predicting the
transformation categories from the augmented images.

Inspired by their success, we introduce the non-trivial
equivariance in our contrastive learning framework on per-
turbed point clouds. Different from (Dangovski et al. 2021),
our work more conveniently pursues the equivariance under
various perturbations by predicting the perturbation labels
which are automatically generated from the Vector Quan-
tizer in VAE. Moreover, a learnable weight is introduced for
balancing the invariance and equivariance properties.

Method
This section introduces detailed instructions on developing
the ECO-3D framework, which is mainly composed of two
parts. The first part (Sect. ) pre-trains a VAE to extract
less perturbed point embedding and perturbation embedding
from perturbed point clouds. The perturbation embedding
will be discretized via the Vector Quantizer into one-hot to-
kens, serving as the perturbation labels. Based on the ex-
tracted embedding and labels, in the second part (Sect. -),
both the pretext tasks of contrastive and equivariant learning
are designed for pre-training the target networks.

VAE for Extracting Embedding and Tokens
The designed VAE for extracting embedding and tokens
from perturbed point clouds consists of three modules: a hi-
erarchical encoder to progressively learn the less perturbed
point embedding and the perturbation embedding, a vector
quantizer to discretize the continuous embeddings into one-
hot tokens, and a decoder to regularize the encoder via dis-
tinct reconstruction. Detailed structures are shown in Fig. 2.

Hierarchical Encoder. The encoder includes a low-level
branch to learn the point embedding and a high-level branch
to extract the perturbation embedding. Since the learned em-
bedding will be further quantized into discrete tokens, we
follow (Yu et al. 2021) to encode in a discrete manner. Con-
cretely, given an N -point clouds P ∈ RN×3, we firstly di-
vide them into G discrete patches as p = {pi}Gi=1. Then, the
output embedding of the low and high-level encoders are
f = {fi}Gi=1, fi ∈ RC1 and f = {fi}Gi=1, fi ∈ RC2 .

Vector Quantization. The quantization module learns the
distribution Qq(z|f) of discrete latent variables z from em-
bedding f . It is mainly composed of two parts: a prob-
abilistic modeling network learning the latent distribution
from embedding f and a quantizer discretizing the variables
z sampled from the latent distribution. We adopt DGCNN
(Wang et al. 2019) for probabilistic modeling and follow
(Ramesh et al. 2021) to discrete the sampled latent vari-
ables via jointly optimizing a codebook e. The quantizer
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Figure 2: Illustration of ECO-3D framework. (a) The pre-trained VAE consists of a hierarchical encoder to extract the point and
perturbation embedding {fi, fi} from the perturbed inputs P , a vector quantizer converts the embedding into discrete tokens
{zi, zi}, and a decoder respectively reconstruct the original and down-sampled point clouds from restored embedding {f ′

i , f
′
i}.

(b) In the ECO-3D pre-training, the target network learns the point cloud representations {o′i,m′
i} respectively from original

and mixed embedding combinations {oi,mi}. These representations are used for contrastive and equivariant pretext tasks.

discretizes both the low and high-level embedding in par-
allel, respectively generating the corresponding tokens z =
{zi}Gi=1, zi ∈ RM1 and z = {zi}Gi=1, zi ∈ RM2 .

Distinct Reconstruction. Finally, the decoder outputs the
distribution Pθ(p|z) of input shapes from the latent vari-
ables z via two steps: restores the continuous embedding
via f ′ = z · e and then decodes the input distribution based
on f ′ via reconstruction. We adopt FoldingNet (Yang et al.
2018) for the reconstruction process. Since the embeddings
from different branches are expected to contain different in-
formation i.e. the low-level branch contains less perturbed
point information and the high-level branch contains pertur-
bation information, we propose the distinct reconstruction.

Specifically, we constraint the decoder to reconstruct the
down-sampled coarse shapes of perturbed point clouds from
the low-level embedding f ′ and reconstruct the fine shape of
the perturbed point cloud from the combination of the low-
level and high-level embedding f ′ = Concat(f ′,f ′). We
use the down-sampled point clouds as the reconstruction tar-
get for the less perturbed point embedding, which avoids the
effort of obtaining the clean point clouds. Note that, for the
rotation perturbation that can not be eliminated via down-
sampling, we align the rotated inputs with the reconstructed
shapes to eliminate the rotation.

Optimization Objective. Following the objective derived
in VAE (Kingma and Welling 2013), we maximize the evi-
dence lower bound (ELB) of the log-likelihood as:

L(θ,ϕ;p) =Ez∼Qϕ(z|p) [logPθ(p|z)]
−DKL [Qϕ(z|p)||Pθ(z)] ,

(1)

where ϕ, θ are parameters respectively from the encoder Q
and the decoder P . Similar to (Yu et al. 2021), the first term

Figure 3: Visualizations of the distinct reconstructions on
objects (piano, chair) via pre-trained VAE. The sparse re-
construction removes the perturbed points. Meanwhile, the
dense reconstruction precisely restores the perturbed shapes.

refers to the reconstruction error between the input and the
decoded point clouds. The second term regularizes the dis-
tribution of latent variables to be close to a pre-defined prior
by the KL-Divergence. Differently, in our framework, the
reconstruction error is modified to meet the distinct recon-
struction. We employ ℓ1 Chamfer Distance for calculating
the reconstruction error between different point clouds. For
the regularization of KL-Divergence, we follow (Ramesh
et al. 2021) to initialize the prior Pθ(z) via the uniform cat-
egorical distribution over the M codebook vectors.

In Fig. 3, we visualize the distinct reconstructions from
our pre-trained VAE. As expected, the perturbations are sig-
nificantly reduced in the reconstructed sparse shapes. The
pre-training setting of VAE and more visualization results
are provided in our Supp. Material.
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Contrastive Learning by Mixing Embedding
The pre-trained VAE converts the randomly perturbed point
clouds into less perturbed point embedding and correspond-
ingly separated perturbation embedding. We propose to mix
the information in the point and perturbation embedding to
generate positive/negative pairs for contrast. We use batch
notations to describe the mixing process.

Embedding Mix Up. Given perturbed N -point clouds
p ∈ RB×N×3 of batch size B , the pre-trained encoder con-
verts them into the point embedding {fi}Bi=1, fi ∈ RGC1

and perturbation embedding {fi}Bi=1, fi ∈ RGC2 . The con-
trastive pairs can be generated by mixing up the original
combination of point and perturbation embedding. Formally,
the original combinations {oi}Bi=1 and the mixed combina-
tions {mi}Bi=1 are generated as:

oi = Concat(fi, fi); mi = Concat(Shuffle[ f ]i, fi).
(2)

Both the original and mixed point cloud embedding com-
binations will be input into the point cloud network learn-
ing the original and augmented representations {o′i}Bi=1 and
{m′

i}Bi=1 for the contrastive pre-training.
Contrastive Loss. NT-Xent (Chen et al. 2020b) is used to

contrast learned representations at an instance level:

Lcon = −
B∑
i=1

log
exp(sim(g(o′i), g(m

′
i))/τ)∑B

k=1 1[k ̸=i]exp(sim(g(o′i), g(m
′
k))/τ)

,

(3)
where 1[k ̸=i] is an indicator function evaluating to 1 iff k ̸= i
and τ denotes a temperature parameter. g(·) refers to the
non-linear projector (Chen et al. 2020b) used to improve the
representation quality of the layer before it. Eq. (3) encour-
ages the learned representations from the same point embed-
ding to be invariant under different perturbation embedding.

Equivariant Learning by Predicting Tokens
We follow (Dangovski et al. 2021) to encourage the equiv-
ariance property by predicting the perturbation categories
from the learned representations. Instead of manually label-
ing the perturbation, our quantizer proposed in Sect. conve-
niently generates the perturbation labels z. We use the nota-
tion in Sect. to describe the equivariant learning task.

Predicting Tokens. Given the representations of i-th
point cloud m′

i and o′i which contain original and shuf-
fled perturbation embedding, we encourage the equivariance
property by correctly predicting the token of the perturba-
tion embedding from the representations. Concretely, a non-
linear network h(·) is adopted to transform the representa-
tion into categorical logits. The equivariant loss can then be
denoted by the CrossEntropy (CE) between the predicted
logits and ground truth perturbation tokens zi as:

Lequ =

B∑
i=1

CE(h(o′i), zi) +
B∑
i=1

CE(h(m′
i), Shuffle[ z ]i).

(4)
Note that, the token z in the second term is shuffled as the f
shuffled in Eq. (2) to match the order.

Learnable Weight. For each perturbation, (Dangovski
et al. 2021) conducts a pre-test to investigate the influence
of encouraging invariance or equivariance on the pre-trained
features. Based on the pre-test results, a fixed weight is used
to control the influence during pre-training. Unlike (Dan-
govski et al. 2021), we propose using a learnable weight ρ to
automatically balance the invariance and equivariance dur-
ing the pre-training. The pre-trained loss function can then
be defined as ρLcon + (1 − ρ)Lequ. The learnable weight
reduces the effort of pre-tests. The learned weight directly
implies the ideal trade-off between Equivariance and Invari-
ance properties. The effectiveness of the learnable weight
can be demonstrated in Tab. 4, where the learned ρ for dif-
ferent perturbations are also illustrated.

Experiments
Experiment Setup

Datasets. We experiment on three 3D point cloud
datasets with the synthesized or real-world perturbations,
including RobustPointSet(Taghanaki et al. 2020), ScanObe-
jectNN (Uy et al. 2019), and ShapNetC, to verify the ECO-
3D framework. Specifically, RobustPointSet (Taghanaki
et al. 2020) is generated by performing six synthesized per-
turbations on the original ModelNet40 (Wu et al. 2015). We
select five perturbations (Noise, Rotation, Occlusion, Trans-
late, and Missing Parts) for experiments. ScanObejectNN
(Uy et al. 2019) contains 3D scans with five real-world
perturbations. We adopt three perturbations with increas-
ing difficulty (OBJ-BG, PB-T25-R, PB-T50-RS). The de-
tailed meaning of each perturbation is provided in our Supp.
Material. In addition to the classification task, we generate
ShapeNetPart-C based on ShapeNetPart (Yi et al. 2016) for
testing our method on the part segmentation task. Three syn-
thesized corruptions (Sun et al. 2022) (Shear, Cutout, Back-
ground Noise) are adopted. We adopt the overall accuracy
(OA) and mean intersection-over-union (mIoU) to evaluate
the classification and segmentation, respectively.

Pre-Trained Architectures. We test ECO-3D under two
representative networks, PointNet (Qi et al. 2017) and
DGCNN (Wang et al. 2019).

Training Overview. ECO-3D consists of three main
training steps. First, the proposed VAE is trained under the
perturbed dataset to produce tokens. Then, the selected net-
works are pre-trained via VAE tokens under the same per-
turbed dataset. Finally, the pre-trained networks are lever-
aged under various downstream tasks. Detailed implemen-
tations of these steps can be found in our Supp. Material.

Compared Approaches. We respectively compare ECO-
3D with the fully-supervised baseline, 3D contrastive learn-
ing (Sanghi 2020) and other 3D self-supervised pre-training
methods including 3D Jigsaw (Sauder et al. 2019) which
predicts the original order of shuffled voxels and OcCo
(Wang et al. 2021) which learns to complete occlusions.

Fine-Tune Performance
To compare the learned representations of different pre-
training approaches, we fine-tune the pre-trained networks
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RobustPointSet PointNet (Qi et al. 2017) DGCNN (Wang et al. 2019)
Baseline Contrast Jigsaw OcCo Ours Baseline Contrast Jigsaw OcCo Ours

Noise 85.69 82.12 83.56 86.57 87.01 88.01 87.15 88.16 88.24 88.98
Rotation 69.52 60.54 63.24 74.12 77.05 78.11 76.11 81.35 82.01 83.59
Occlusion 83.47 78.69 80.15 85.45 85.10 87.21 86.04 87.35 89.87 89.08
Translation 88.74 86.64 87.01 89.25 89.69 90.50 89.89 90.01 90.84 91.06
MissingPart 85.12 82.01 84.39 86.10 86.35 88.33 87.95 88.56 89.01 89.81
ScanObjectNN PointNet (Qi et al. 2017) DGCNN (Wang et al. 2019)

Baseline Contrast Jigsaw OcCo Ours Baseline Contrast Jigsaw OcCo Ours
OBJ-BG 66.54 63.15 66.58 67.98 69.94 82.63 81.82 82.58 84.36 85.21
PB-T25-R 59.31 57.45 59.35 61.20 62.75 79.16 78.05 80.35 80.98 82.30
PB-T50-RS 69.28 68.57 69.38 70.35 72.35 80.89 78.94 81.00 82.56 85.94

Table 1: Fine-tuning results (OA, %) of two architectures under the RobustPointSet and the real-world ScanObjectNN.

ShapeNetPart-C PointNet (Qi et al. 2017) DGCNN (Wang et al. 2019)
Baseline Contrast Jigsaw OcCo Ours Baseline Contrast Jigsaw OcCo Ours

Shear 65.08 64.25 68.15 71.32 74.44 78.70 77.25 81.36 81.68 83.34
Cutout 64.12 62.99 65.35 66.14 68.67 72.69 71.07 77.19 78.10 80.64
BG Noise 60.21 59.08 62.24 63.18 64.65 77.18 76.24 81.01 81.15 82.67

Table 2: Fine-tuning results (mIoU, %) of two architectures under the perturbed ShapeNetPart-C.

under the perturbed datasets same as pre-training to perform
the classification and segmentation task.

Shape Classification. Two perturbed point cloud datasets
RobustPointSet and ScanObjectNN are used. The compari-
son results of two architectures under different training ap-
proaches are illustrated in Tab. 1. ECO-3D successfully im-
proves the performance of existing contrastive learning on
perturbed point clouds and outperforms the fully-supervised
baseline for both datasets. Our method is slightly inferior to
OcCo under occlusion perturbation since OcCo enables the
network to see more occlusion types.

Part Segmentation. The part segmentation tasks are con-
ducted under ShapeNetPart-C. The comparison results are
illustrated in Tab. 2. Similar to the classification tasks, ECO-
3D achieves the best mIoU for all three perturbations.

Transfer Performance
We show the ECO-3D learns more generalized features dur-
ing pre-training by conducting the transfer learning task.
Specifically, we pre-trained the networks under the Ro-
bustPointSet with three synthesized perturbations (Rotation,
Noise, Missing Part) and fine-tune the pre-trained networks
on the ScanObjectNN. The fine-tuned results are compared
with other training approaches in Tab. 3. As can be seen,
ECO-3D achieves SOTA transfer learning performance on
all three real-world perturbations. Moreover, it highly im-
proves the fully-supervised baseline.

We further verify the transferability of self-supervised
features by pre-training networks under noise point clouds
and then fine-tuning them under clean data. Fine-tuning
the noise pre-trained PointNet and DGCNN get 91.0% and
93.2% under the clean ModelNet, surpassing their super-
vised baselines 89.2% and 92.2%. It suggests that ECO-3D
extracts clean shape features from perturbations.

Ablation Study
We conduct ablation studies to verify designs in ECO-3D.
Experiments are conducted under the PointNet architecture.

VAE Designs. We ablate the designs used in the encoder,
quantizer and decoder. The experiments are mainly con-
ducted under rotation perturbations. We compare different
designs with respect to the pre-training loss of VAE (loss1),
the point network (loss2) and the final performance (acc.) in
Tab. 4. Our design achieves better performance.

ECO-3D Pretext. To show that it is the pretext tasks in-
stead of the VAE embedding that help to improve the results,
we gradually remove the pretext task during pre-training.
For the None version, the network will be directly fine-tuned
with embedding input. The results are compared in Tab. 5.
Each pretext task improves the final performance.

Balanced Weight. In Tab. 6, we report the results un-
der balanced weight and show the learned weight after pre-
training. Compared with results in Tab. 5, the balanced
weight benefits the pre-training results.

Computation Cost. It takes about 1.5h to train VAE
for preparing the tokens. In contrast, Jigsaw and OcCo use
about 1.3h and 2h to prepare the jigsaw label and occlu-
sion data. The GPU mem. and total time of pre-training
are: Jigsaw (1420M,3.33h), OcCo (1344M,2.83h), ECO-3D
(1899M,1.78h). ECO-3D reaches the pre-training conver-
gence faster. The results are recorded using a single 2080Ti.

Loss Visualization
To verify that the network effectively optimizes the pretext
objective, we visualize the evolution of the two proposed
losses during the pre-training. As illustrated in Fig. 4, both
the Lcon and Lequ are effectively optimized under differ-
ent perturbations. Moreover, DGCNN converges to a lower

2631



ScanObjectNN PointNet (Qi et al. 2017) DGCNN (Wang et al. 2019)
Baseline Contrast Jigsaw OcCo Ours Baseline Contrast Jigsaw OcCo Ours

OBJ-BG 66.54 62.08 65.14 67.10 68.41 82.63 80.45 82.46 82.96 84.22
PB-T25-R 59.31 57.10 59.03 60.21 61.28 79.16 77.58 80.10 80.53 81.03
PB-T50-RS 69.28 67.12 69.01 69.15 71.10 80.89 77.12 79.92 80.81 84.18

Table 3: Transfer results (OA, %) of two architectures pre-trained under RobustPointSet and fine-tune under ScanObjectNN.

Figure 4: Evolution of the contrastive and equivariant losses for pre-training two networks under different perturbations.

Robust Loss1 Loss2 OA
PointSet Lrec Lkl Lcon Lequ (%)
Encoder Architecture
w/o Hierar. 0.088 0.857 3.787 1.587 74.15
w Hierar. 0.040 0.009 2.550 0.562 77.05
Quantizer Number
One 0.039 0.215 2.535 0.687 76.95
Two 0.040 0.009 2.550 0.562 77.05
Reconstruction Strategy
Original 0.021 0.001 3.216 1.762 74.19
Distinct 0.040 0.009 2.550 0.562 77.05

Table 4: Verification on the designs of VAE.

loss value compared with PointNet. This may suggest that
the ECO-3D pretext tasks can be better optimized under
more advanced architectures, obtaining discriminative pre-
training features to improve downstream tasks.

Conclusion
We investigate contrastive learning under perturbed point
clouds and find the domain gap caused by perturbations will
result in the degraded performance of existing contrastive
frameworks. To this end, we propose ECO-3D framework
which closes the domain gap via a pre-trained VAE be-
fore contrasting and introduces the equivariance property
during contrasting. Extensive experiments show that ECO-
3D significantly outperforms existing self-supervised pre-

RobustPointSet ECO-3D Pretext
None Lcon Lequ Both

Noise 84.38 86.05 86.18 86.96
Rotation 69.75 76.14 71.05 77.01
Occlusion 83.01 83.18 84.97 85.01

Table 5: Verification on the ECO-3D pretext tasks.

RobustPointSet Weighted: ρLcon + (1− ρ)Lequ

Noise 87.01 (ρ = 0.415)
Rotation 77.05 (ρ = 0.895)
Occlusion 85.10 (ρ = 0.244)

Table 6: Verification on the balanced weight.

training frameworks for various downstream tasks. Specif-
ically, ECO-3D achieves SOTA performance on five synthe-
sized and three real-world perturbation types under classi-
fication. For segmentation, ECO-3D reaches the best per-
formance on three synthesized perturbations. More impor-
tantly, the pre-trained features have a better generalization
for transfer learning between synthesized and real-world
perturbations. In addition to outperforming existing pre-
training approaches, our method also significantly beats the
fully-supervised baseline, which provides a new technique
route for improving model performance under perturbations.
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