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Abstract

While progress has been made in the field of portrait reenact-
ment, the problem of how to produce high-fidelity and robust
videos remains. Recent studies normally find it challenging to
handle rarely seen target poses due to the limitation of source
data. This paper proposes the Video Portrait via Non-local
Quantization Modeling (VPNQ) framework, which produces
pose- and disturbance-robust reenactable video portraits. Our
key insight is to learn position-invariant quantized local patch
representations, then build a mapping between simple driv-
ing signals and local textures with non-local spatial-temporal
modeling. Specifically, instead of learning a universal quan-
tized codebook, we identify that a personalized one can be
trained to preserve desired position-invariant local details.
Then, a simple representation of projected landmarks can be
used as sufficient driving signals to avoid 3D rendering. In the
following, we employ a carefully designed Spatio-Temporal
Transformer to predict reasonable and temporally consistent
quantized tokens from the driving signal. The predicted codes
can be decoded back to robust and high-quality videos. Com-
prehensive experiments have been conducted to validate the
effectiveness of our approach.

Introduction
Synthesizing and driving video portraits aims to animate the
target portrait with similar movements to the driving video,
which enables applications in video editing, filmmaking, vi-
sual dubbing and digital human creation. Though several
studies pursue vivid talking heads from only one or a few
samples (Zakharov et al. 2019; Siarohin et al. 2019; Za-
kharov et al. 2020; Wang, Mallya, and Liu 2021; Zhou et al.
2019; Wang et al. 2022; Ji et al. 2022; Doukas, Zafeiriou,
and Sharmanska 2020; Zhou et al. 2021), they tend to cre-
ate visible distortions and identity drift, which makes their
results less realistic and not applicable in most real-world
applications. On the other hand, researchers seek person-
specific modeling (Suwajanakorn, Seitz, and Kemelmacher-
Shlizerman 2017; Kim et al. 2018; Ji et al. 2021; Kim et al.
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2019; Gafni et al. 2021; Guo et al. 2021) for driving photo-
realistic video portraits. The problem is mostly formulated
as synthesizing textures according to the geometry or seman-
tic guidance provided by the input driving signals.

Previous works can be divided into two categories: 1)
GAN-based methods where the geometry guidance is ei-
ther rendered 3D faces or landmarks. A certain studies (Kim
et al. 2018, 2019; Lahiri et al. 2021; Thies et al. 2020; Li
et al. 2021) leverage rendered 3D faces (Blanz and Vetter
1999) and Generative Adversarial Networks. Their facial
parts are rendered to be realistic, but the torso and interior
teeth depend completely on generative models. Differently,
Live Speech Portraits (LSP) (Lu, Chai, and Cao 2021) ver-
ifies that landmarks projected on 2D space can be directly
mapped to talking portraits with GANs, but their results
are unstable. 2) Volume render-based methods. Recently,
NeRF (Mildenhall et al. 2020) and other volume rendering
approaches (Gafni et al. 2021; Guo et al. 2021; Zheng et al.
2022; Grassal et al. 2022) have shown success in producing
portrait avatars. However, these methods require tedious pre-
processing and are extremely time-consuming when build-
ing a single subject.

Moreover, the robustness of previous methods on in-the-
wild monocular videos, which are the most common data
sources, is not thoroughly considered. GAN-based methods
build a direct mapping between the driving signals and tar-
gets. Their synthesized texture is strongly coupled with ge-
ometry guidance, which inevitably results in undesirable ar-
tifacts when processing unseen driving signals (e.g., novel
poses, different scales, and distorted signals). Meanwhile,
NeRF-based methods are also sensitive to input driving sig-
nals, where a slight subject movement or inaccurate camera
pose estimation may lead to the degradation of the genera-
tion quality. Therefore, how to synthesize robust and photo-
realistic portrait videos remains a challenge.

To cope with these issues, we present a novel frame-
work named Video Portrait via Non-local Quantization
Modeling (VPNQ), which achieves robust and high-fidelity
video portrait reenactment even under challenging scenar-
ios. The task is to drive a target portrait with an arbi-
trary portrait video. Our key insight is to learn position-
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invariant quantized representations and build a mapping be-
tween simple driving signals and local textures with non-
local spatial-temporal modeling. Our method is inspired
by the recent success of the vector-quantized generative
model (Van Den Oord, Vinyals et al. 2017; Esser, Rom-
bach, and Ommer 2021). We identify two intrinsic properties
that make quantized representations suitable for synthesiz-
ing video portraits: 1) The learned codebook can be regarded
as a position-invariant texture dictionary, enabling the dis-
entanglement between specific geometry locations and tex-
tures. 2) The quantized generative model always encodes the
input signal into a set of discrete quantized codes from the
codebook, even if the input signal is slightly modified or has
rarely been seen.

Specifically, different from previous methods that learn
a universal quantized representation on a large scale of
data (Esser, Rombach, and Ommer 2021; Chang et al. 2022;
Gu et al. 2022), we find that such learned representation
cannot recover person-specific details. Thus, we propose to
learn a personalized quantized representation with an au-
toencoder from the target portrait only so that the learned
codebook stores position-invariant and personalized delicate
textural details. Given the locality of the textures stored in
each patch, they will be less sensitive to the slight scale
changes of the input information. As a result, we adopt the
simplest setting as LSP to use the projected 2D landmarks as
geometry guidance, which avoids the time-consuming neu-
ral rendering or volume rendering procedure.

The next question is how to map the driving signals to
the decoupled personalized quantized textures. Given the
discrete codebook learned above, the generative task can
be reformulated into a classification (i.e., code prediction)
problem on spatial locations. However, CNNs that perform
locally are not suitable for building the non-local correla-
tion between quantized patches. Moreover, the temporal in-
consistency problem has been witnessed (Hong et al. 2022;
Zhou et al. 2022) in VQGAN for video generation.

To address the issues discussed above, we take advantage
of Vision Transformers (ViT) (Dosovitskiy et al. 2021; Bao,
Dong, and Wei 2021) and propose a Spatio-Temporal Code
Transformer to operate on consecutive frames. Concretely,
the Transformer directly processes all encoded features from
a short video clip and predicts the corresponding codes. As
the self-attention mechanism is naturally suitable for non-
local spatial and temporal information modeling, the Trans-
former complements the reorganization of quantized local
patches for high-fidelity video portraits.

Our contributions are summarized below: 1) We pro-
pose Video Portrait via Non-local Quantization Model-
ing (VPNQ), a novel framework that synthesizes robust and
high-quality video portraits even from unseen and corrupted
driving signals. 2) We propose using personalized represen-
tation quantization by modeling local textural patches for
a specific target. Such practice decouples driving signals
and specific textures in portrait reenactment. 3) We propose
Spatio-Temporal Code Transformer by extending the previ-
ous image modeling into video modeling to predict reliable
and temporally consistent codes for high-fidelity videos.

Related Works
Face Reenactment. By modeling the motion as latent rep-
resentations, recent studies (Siarohin et al. 2019; Zakharov
et al. 2019; Wang, Mallya, and Liu 2021; Wang et al. 2022)
tend to generate video portraits based on only one or few
source frames in a warping-based paradigm. However, these
methods usually suffer from identity distortion and low gen-
eration quality.

In order to achieve stable and photo-realistic video por-
traits, the early works (Kim et al. 2018, 2019) focus on de-
veloping personalized models which rely on the 3DMM face
model (Blanz and Vetter 1999) for human head rendering
and a 2D generative model for the torso and background
synthesis. While LSP (Lu, Chai, and Cao 2021) proposes to
use 2D facial landmarks projected from 3D geometry as the
driving guidance. However, the generated results are quite
sensitive to the input landmarks. The latest studies (Gafni
et al. 2021; Guo et al. 2021; Zheng et al. 2022; Grassal
et al. 2022) take volume rendering into consideration. Ner-
face (Gafni et al. 2021) builds a talking head system by
combining a dynamic radiance field with a low-dimensional
morphable model. Similarly, NHA (Grassal et al. 2022)
also presents a hybrid representation, which includes a mor-
phable model and two feed-forward networks for vertex off-
set and expression texture prediction.

Differently, our VPNQ avoids the time-consuming vol-
ume rendering as well as tedious preprocessing and develops
a robust face reenactment framework by using the simplest
2d landmarks driving strategy.
Quantization-based Image Modeling. Due to the success
of natural language processing, increasing attention has been
paid to image modeling based on Transformer networks,
among which quantized image modeling (e.g., VQVAE (Van
Den Oord, Vinyals et al. 2017) and VQGAN (Esser, Rom-
bach, and Ommer 2021)) has shown great potential in syn-
thesizing high-resolution images with rich content.

Typically, these quantized generative models include an
autoencoder architecture and a learnable codebook. The
core of these approaches is to replace the discrete repre-
sentations from the encoder with the code from the learned
codebook (a.k.a, the quantization process) before decod-
ing. The existing approaches (Esser, Rombach, and Om-
mer 2021; Chang et al. 2022; Gu et al. 2022; Esser et al.
2021) usually learn a universal codebook via training on
large-scale datasets. VQGAN (Esser, Rombach, and Om-
mer 2021) and ImageBART (Esser et al. 2021) leverage a
transformer to synthesize images in an auto-regressive man-
ner while MaskGIT (Chang et al. 2022) proposes to model
an image from multiple directions instead of the sequential
prediction as in VQGAN. VQFR (Gu et al. 2022) designs a
parallel decoder to replace the commonly used transformer
for more realistic details recovery.

Unlike these methods designed for single image synthe-
sis, our task aims to produce high-quality and temporal-
consistent video portraits. Thus, we propose to learn a per-
sonalized codebook from a single portrait. In addition, to
adapt to real scenarios, our VPNQ employs Spatio-temporal
video modeling from the raw driving signals instead of the
aforementioned image-modeling strategies.
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Figure 1: Overview of our VPNQ framework. (a) To achieve personalized quantized texture dictionary, we first learn a codebook
together with an autoencoder network via self-reconstruction. (b) We propose a Spatio-Temporal Code Transformer based on
the learned codebook and decoder for reasonable spatial composition and temporally consistent code prediction. (c) Our VPNQ
can robustly recover high-fidelity video for specific portraits even under challenging scenarios (e.g., varying scale and unseen
pose). Please zoom in for more details.

Method

The overview of our proposed VPNQ is shown in Fig. 1
As mentioned before, in order to model a portrait with
personalized quantized texture, we first build a local tex-
ture dictionary by learning a context-rich codebook and a
corresponding autoencoder network. Based on the learned
codebook along with the decoder, we then design a Spatio-
Temporal Transformer module for predicting reasonable and
temporally-consistent code from the input geometry infor-
mation (e.g., 2D landmarks). In this section, we will intro-
duce the training procedures in these two stages detailedly.
Training and Inference Formulation. Despite the recent
studies building their video portrait system based on neural-
or volume-rendering, we instead choose the simplest 2D
landmarks as geometry guidance in order to avoid a time-
consuming training process and complex pre-processing.
The training procedure is performed via self-reconstruction
learning as illustrated in Fig. 1 (a). Given a video of the tar-
get portrait V = {I1, . . . , IT }, we first employ the 3D para-
metric model DECA (Feng et al. 2021) to extract the driving
landmarks V l = {I l1, . . . , I lT }. While in the inference stage,
for a video from the driving portrait, we first use DECA to
regress its morphable parameters (i.e., shape, pose and ex-
pression) and replace its shape parameter with that of the
target portrait to generate the driving landmarks accordingly.

Codebook Learning
Here we briefly review the image modeling procedure in
VQGAN (Esser, Rombach, and Ommer 2021), which aims
to represent images with compact discrete codes from a
learnable codebook.

Specifically, we employ two convolutional networks with
non-local attentions (Vaswani et al. 2017) as the Encoder En

and the Decoder De in the quantized autoencoder network.
For an arbitrary image I ∈ RH×W×3, En first encodes it
into a feature map Ẑ ∈ Rh×w×d, and then we quantize each
of its spatial vectors Ẑ(m,n) by replacing it with a token
a(m,n) corresponding to the index of its nearest neighbour
in the learnable codebook C = {ci ∈ Rd}N−1

i=0 , which is
defined as:

a(m,n) = argmin
i

∥Ẑ(m,n) − ci∥2, (1)

where N is the codebook’s size. Thus I can be
represented with a set of discrete tokens A =
{a(1,1), . . . , a(h,w)}, a(m,n) ∈ {0, 1, . . . , N − 1}. Fi-
nally, these tokens are de-quantized back to the feature map
Z = {ca(1,1)

, . . . , ca(m,n)
} through querying the codebook.

By using the decoder De, the reconstructed image can be
described as Î = De(Z).
Training Objectives. We follow VQGAN (Esser, Rombach,
and Ommer 2021) to leverage the L1 loss LL1, percep-
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tual loss (Wang et al. 2018) Lper and the adversarial loss
Labv (Isola et al. 2017; Wang et al. 2018) as our recon-
struction supervisory. In addition, since the quantization op-
eration is non-differentiable, the gradient copy operation in
VQVAE (Oord, Li, and Vinyals 2018) is also adopted, based
on the following differential loss function:

Lquant = ∥sg[Ẑ]− Z∥2 + ∥sg[Z]− Ẑ∥2. (2)

Here the second term is the commitment loss and sg[] de-
notes the “stop gradient” operation. The total training objec-
tives for the codebook learning stage are denoted as:

Lcb = LL1 + Lper + Lquant + λLabv. (3)

More training details on tokenization can be found in (Esser,
Rombach, and Ommer 2021).

Spatio-Temporal Code Transformer
We continue to discuss building a more practical framework
for mapping the geometry information based on the learned
codebook and the pre-trained decoder De in the driving sig-
nal to the decoupled local texture information. A straight-
forward baseline is that we can train another Encoder El

n
with similar architecture as En to encode the input land-
marks I l into a feature map Ẑl ∈ Rh×w×d via teacher-
student learning protocol, where the feature map of the cor-
responding real image Ẑ encoded by the learned En can be
used as direct supervision. However, after performing sim-
ple experiments accordingly, we observe that this baseline
method fails to recover reasonable texture, especially when
processing rarely seen poses. A possible explanation is that
although the nearest-neighbour (NN) matching mechanism
in the quantization operation may find out the nearest code
for each feature vector at its local spatial position, this set of
codes may not be an optimal combination for the entire face
reenactment. Therefore, an alternative for this NN matching
mechanism is required to alleviate this problem.

Inspired by the recent success achieved by natural lan-
guage processing (Devlin et al. 2018) and transformer-based
image modeling (Bao, Dong, and Wei 2021; Esser, Rom-
bach, and Ommer 2021), we notice that the self-attention
mechanism in the Transformer, which enforces non-local in-
teractions among all positions on an image, is intuitively a
more suitable choice for portrait modeling. Thus, we start by
incorporating a Transformer module to predict more reason-
able tokens for each patch instead of using the NN matching
mechanism.
Spatial-part Design. Particularly, we employ a ViT-
based (Dosovitskiy et al. 2021) module right behind the En-
coder El

n. In vision Transformers, the input image is first
split into P × P image patches, then reshaped into a se-
quence of tokens as the input to the Transformer. While, in
our task, the size of encoded feature map Ẑ

l
from Encoder

El
n is h × w × d. To adapt the ViT module to the previous

architecture, we set P×P×h×w = H×W , which denotes
that each spatial vector Ẑl

(m,n) in the feature map Ẑ
l

roughly
matches a P × P image patch. In this paper, we set P = 16
by default according to the original ViT (Dosovitskiy et al.
2021).

Specifically, for an input feature map Ẑ
l
, we first unfold

it into h × w vectors and then reform them into a flattened
feature F before feeding it into the Transformer module:

F = [Ẑl
(1,1); . . . ; Ẑ

l
(h,w)], Ẑ

l
(m,n) ∈ Rd (4)

We set the layer number of ViT as 4 by default, and the pro-
cedure of j-th multi-head self-attention layer of the Trans-
former module is performed as:

Fj+1 = (WjVj) + Fj ,Wj = QjK
⊤
j /

√
dj , (5)

where Qj , Kj and Vj are the projected outputs of Fj from
three separated linear layers, and dj denotes the dimen-
sion of each head. Finally, we use another MLP network to
predict the token sequence A and query the corresponding
codes from the learned codebook C according to A. After
regrouping the queried codes into the quantized feature map
Zl, we can reconstruct a high-quality image by feeding it
into the pre-trained decoder De:

Î = De(Z
l) (6)

Temporal Training Strategy. Though the transformer mod-
ule can predict reasonable tokens for each single image, we
notice another issue during the exploration: the synthesized
videos suffer from the temporal-inconsistency with unsatis-
factory jittering on the textures.

Based on this observation, we propose a temporal strat-
egy that involves multiple consecutive frames during train-
ing to enhance the transformer module for better tempo-
ral modeling. Specifically, for a driving video clip V l =
{I l0, I l1, . . . , I lT−1}, we first produce a set of feature maps

{Ẑ
l

0, Ẑ
l

1, . . . , Ẑ
l

T−1} by using El
n and further flatten them

into:
F̂ = [Fl

0,F
l
1, . . . ,F

l
T−1]

⊤. (7)

Here the flattened temporal feature F̂ ∈ Rh·w·T×d contains
both spatial and temporal information in the whole driving
sequence leading to a much larger perceptive field and thus
contributes to far more temporally consistent code predic-
tion than the single frame modeling.
Training Objectives. Since both the codebook C and the
decoder De are already fixed, our goal is to precisely
and consistently predict the token sequence for the clip
Â = {â0(1,1), . . . , â

0
(h,w), . . . , â

T−1
(1,1), . . . , â

T−1
(h,w)}, where we

can define the training objective through the softmax cross-
entropy loss:

Lcode =
∑

ât
(m,n)

∈A

−at(m,n) log(softmax(ât(m,n))). (8)

Note that at(m,n) is the ground-truth code index obtained
from the corresponding real image through quantization.
Particularly, to achieve robust training and faster conver-
gence, we naturally use En as the teacher network for El

n
by adding an additional L1 loss Lfeat between their encoded

feature maps Ẑ
l

and Ẑ. Therefore, the total loss function
for the Spatio-temporal transformer training is formulated
as follows:

Lstf = Lcode + λfeatLfeat. (9)
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Figure 2: Qualitative results on the HDTF dataset. We compare our VPNQ with the recent state-of-the-art methods including
Facev2v (Wang, Mallya, and Liu 2021), LIA (Wang et al. 2022), NHA (Grassal et al. 2022) and LSP (Lu, Chai, and Cao 2021)
under cross-reenactment setting. Please zoom in for better visualization.

λfeat is set as 0.5 by default, as we expect the transformer
module to release its expressive modeling power without too
many constraints from the convolutional Encoder.

Experiments
Experiment Settings
Dataset and Pre-processing. We evaluate our methods
on eight video sequences including five videos from the
HDTF (Zhang et al. 2021) dataset, one video from AD-
Nerf (Guo et al. 2021) dataset, one video from LSP (Lu,
Chai, and Cao 2021) dataset and one video from Ner-
face (Gafni et al. 2021) dataset. Specifically, we extract each
video at 60 frames per second (FPS) and crop the portrait
out of the original video with the size of 512 × 512, so that
the face can be kept at the center.
Implementation Details. All experiments are implemented
on PyTorch using Adam optimizer with an initial learning
rate of 5e-4 and batch size of 4. Note that, as we adopt a tem-
poral training strategy, the 4 images in a batch are consec-
utive frames collected from the same video clip. The train-
ing procedure is performed in a self-reenactment manner for

both two stages. For both VQGAN (Esser, Rombach, and
Ommer 2021) and ViT (Dosovitskiy et al. 2021), we follow
them to use their standard blocks.
Comparison Methods. We compare our VPNQ with
four person-specific and two person-agnostic methods. The
person-specific methods are composed of a 2D genera-
tive model method LSP (Lu, Chai, and Cao 2021) and
three-volume rendering-based methods including Neural
Head Avatar (NHA) (Grassal et al. 2022), AD-Nerf (Guo
et al. 2021) and Nerface (Gafni et al. 2021). Regarding
person-agnostic methods, we choose two latest state-of-the-
art methods, Facev2v (Wang, Mallya, and Liu 2021) and
LIA (Wang et al. 2022) as our counterparts.

Quantitative Evaluation
Comparison Setting. In order to quantitatively evaluate our
method, we perform self-reenactment experiments on four
datasets (denoted as Testset A, B C and Nerface dataset),
where we randomly select 1000 frames from the test set of
each subject as the driving video. Since the person-agnostic
and volume rendering-based methods require larger corpus
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Testset A Testset B Testset C

Methods PSNR ↑ SSIM ↑ LPIPS ↓ F-LMD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ F-LMD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ F-LMD ↓
Ground Truth N/A 1.00 0 0 N/A 1.00 0 0 N/A 1.00 0 0

Facev2v 30.16 0.70 0.16 2.52 29.58 0.67 0.14 2.47 30.99 0.78 0.09 2.45
LIA 28.79 0.71 0.22 2.51 29.41 0.66 0.18 2.82 30.22 0.74 0.13 3.03
NHA 30.49 0.67 0.28 2.22 29.79 0.68 0.17 2.14 30.84 0.72 0.24 2.23
AD-Nerf 30.30 0.67 0.18 3.60 29.45 0.64 0.20 3.49 30.41 0.67 0.15 2.84
LSP 31.26 0.76 0.08 2.04 30.39 0.70 0.10 2.22 31.44 0.79 0.07 2.04
VPNQ 31.89 0.77 0.07 2.07 30.75 0.71 0.09 2.20 32.36 0.81 0.06 2.07

Table 1: The quantitative results of on Testset A, B and C. We compare our VPNQ against recent SOTA methods (Wang,
Mallya, and Liu 2021; Wang et al. 2022; Grassal et al. 2022; Guo et al. 2021; Lu, Chai, and Cao 2021) under self-reenactment
setting in terms of four metrics. For LPIPS and F-LMD the lower the better, and the higher the better for other metrics.

Nerface Dataset

Methods PSNR ↑ SSIM ↑ LPIPS ↓ F-LMD ↓
Ground Truth N/A 1.000 0 0

DVP 29.10 0.74 0.32 4.42
Nerface 29.58 0.77 0.26 3.75

VPNQ 33.17 0.85 0.07 2.20

Table 2: The quantitative results on Nerface dataset.

training data, we crop the facial parts from generated images
with the same region and then resize them to the same size
for a fair comparison. Notably, in terms of person-agnostic
methods Facev2v and LIA, we finetuned their released best
models on each subject instead of directly using them.
Evaluation Metrics. We evaluate our method based on gen-
eration and synchronization quality. For generation quality,
we follow Nerface (Gafni et al. 2021) to leverage standard
metrics PSNR, SSIM, and LPIPS to measure the differences
between the generated images and the ground-truth images.
In terms of the synchronization quality, we use the landmark
distance on the whole face (F-LMD) to measure the differ-
ences in head pose and facial expression.
Evaluation Results. The quantitative results on HDTF and
Nerface datasets are summarized in Tab 1 and 2. According
to the results in Tab 1, our VPNQ outperforms all the coun-
terparts in terms of all the metrics on generation quality (i.e.,
PSNR, SSIM and LPIPS). On the other hand, our F-LMD
is slightly higher than LSP’s, but much lower than those
of person-agnostic methods. The results indicate that our
VPNQ synthesizes high-fidelity images and achieves satis-
factory synchronization.

For the results in Tab. 2, our VPNQ similarly outperforms
its counterparts in all the metrics. Note that although Ner-
face and DVP (Kim et al. 2018) enable pose and expres-
sion manipulation, their generated results are not of satisfac-
tory quality, including blurry in the dynamic region, which
also degrades the results in the synchronization evaluation.
Please also refer to Fig. 3 for visual results.

Qualitative Evaluation
We also provide qualitative evaluations and a subjective user
study to demonstrate the differences between different meth-

DVP Nerface VPNQ GT

Figure 3: Qualitative results on the Nerface dataset. We pro-
vide close-up views of the areas of the mouth and eyes. Both
DVP and Nerface create blurry artifacts, while our VPNQ
generates clear boundaries.

ods better. Our qualitative evaluations are conducted un-
der the cross-reenactment setting. Since AD-Nerf requires
a template video from the same portrait as the pose input,
we do not involve it in our comparison.
Evaluation Results. We show the key frames from two
video clips in Fig. 2. The person-agnostic methods Facev2v
and LIA achieve driving results with very similar move-
ments to the driving video. However, even if we use the
finetuned model for image synthesis, these two methods
still suffer from the blurry mouth region (Please zoom in
for more details). NHA and LSP either fail to recover es-
sential textures (e.g., earrings) or create blurry and incor-
rect textures at some local regions (e.g., face boundary, and
even collar) when processing unseen poses. In addition,
since LSP is built upon convolutional generative models, the
strong entanglement between texture and geometry also re-
sults in severe identity distortion. Our VPNQ can generate
higher-quality images with more details and achieve satis-
factory synchronization even under unseen scenarios.
User Study. We further conduct a user study where 15 par-
ticipants are invited to evaluate our cross-reenactment re-
sults generated by our VPNQ and other comparison meth-
ods. We adopt the Mean Opinion Scores rating protocol,
which requires the participants to rate the generated video
portraits from three aspects: 1) Generation Quality; 2) Video
Realness; 3) Synchronization. The rating is designed on a
range of 1 (worst) to 5 (best).

The results are reported in Tab 3. Our VPNQ outperforms
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Methods Generation Quality Video Realness Synchronization
Facev2v 3.73 4.66 4.53
LIA 3.46 4.53 4.46
NHA 3.33 3.20 3.80
LSP 4.00 3.93 4.06
VPNQ (Ours) 4.73 4.80 4.26

Table 3: User study results based on Mean Opinion Scores.
The rating is from 1 to 5; the higher the better.

Testset C

Methods PSNR ↑ SSIM ↑ LPIPS ↓ F-LMD ↓
Ground Truth N/A 1.000 0 0

Baseline 32.03 0.78 0.07 2.29
Baseline + Attention 31.88 0.76 0.07 2.40
Baseline + Spatial 32.40 0.82 0.06 2.15

Full model 32.36 0.81 0.06 2.07

Table 4: The quantitative results of ablation study.

all its counterparts in terms of generation quality and video
realness thanks to the personalized quantized texture dic-
tionary and the Spatio-temporal video modeling framework.
While for synchronization, Facev2v and LIA have achieved
slightly better scores than our method due to the natural
movement under challenging cases. Overall, the users pre-
fer our results in more aspects.

Ablation Study
We take Testset C as an example to perform ablation studies
on three variants, which are formed by removing or replac-
ing the modules we propose. Specifically, we first remove
the whole transformer block and build a baseline with only
convolutional networks (denoted as “Baseline”) as men-
tioned in Sec 3.2. Then, to evaluate the effectiveness of our
Spatio-temporal transformer, we construct another variant
without adopting the temporal training strategy (denoted as
“Baseline + Spatial”) One may also concern if the non-local
modeling can be achieved by simply inserting several self-
attention layers into the variant “Baseline”. Thus we design
another variant denoted as “Baseline + Attention”.

The quantitative results under the self-reenactment setting
are reported in Tab 4. Since all the variants are trained with
the local texture codebook, there is no obvious gap between
their generation quality metrics. While for the synchroniza-
tion metric F-LMD, the variants without the Transformer
module achieve worse results.

We also provide qualitative results under the cross-
reenactment setting in Fig. 4. We observe that both “Base-
line” and “Baseline + Attention” fail to generate reasonable
or clear boundaries for ear, face, and head parts(see the yel-
low arrows), which indicates that simply increasing the self-
attention layers cannot work well in face reenactment. By
adding spatial and Spatio-temporal transformer modules, the
baseline model can progressively enable spatial composi-
tion only and Spatio-temporal modeling capability so that
our full model can synthesize high-fidelity videos with the
temporally-consistent face shape.

Baseline +
Attention

Full
Model

Baseline +
Spatial

Driving
Video

Baseline

Figure 4: Qualitative results of ablation study on Testset C.
Only our full model can synthesize reasonable face bound-
aries under very large poses.

Robustness Analysis. To further evaluate the robustness of
our VPNQ, we take LSP, which also relies on landmark driv-
ing, as our counterpart to conduct an additional algorithm
analysis. Specifically, we provide qualitative evaluation un-
der two challenging cases: varying scale and unseen pose.
These are commonly seen distortions during the fitting of
3D models and landmarks. Here we change the scale of the
driving landmarks by a ratio of 1.20 and then find a driving
video with rarely seen poses. The comparison results are il-
lustrated in Fig. 1(c), and we can observe that our VPNQ ro-
bustly generates reasonable and high-fidelity video portraits,
demonstrating our robustness superiority.

Conclusion and Discussion

Conclusion. This paper presents the Video Portrait via Non-
local Quantization Modeling (VPNQ) framework, which
synthesizes robust and high-fidelity face reenactment results
for specific portraits. We show that our VPNQ has sev-
eral benefits: 1) The quantized personalized texture dictio-
nary learned via self-reconstruction can provide more photo-
realistic local textural information for the target portrait.
2)Based on the decoupled local texture dictionary and input
geometry information, we can generate more robust results
even under unseen cases using a non-local modeling mech-
anism. 3)By extending the image modeling into video mod-
eling, we manage to synthesize temporally-consistent video
via our Spatio-Temporal code Transformer.
Ethical Statement. Our method focuses on synthesizing
video portraits developed for digital entertainment. How-
ever, incorrect usage of our method for malicious intentions
may negatively impact social media. The Deepfake detec-
tion community has achieved impressive progress in devel-
oping robust detection algorithms to alleviate this issue. We
also would like to make our efforts by sharing our generated
video portraits to improve the detection algorithms to handle
more complex scenarios.

2570



References
Bao, H.; Dong, L.; and Wei, F. 2021. Beit: Bert pre-training
of image transformers. arXiv preprint arXiv:2106.08254.
Blanz, V.; and Vetter, T. 1999. A morphable model for
the synthesis of 3D faces. In Proceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, 187–194.
Chang, H.; Zhang, H.; Jiang, L.; Liu, C.; and Freeman, W. T.
2022. MaskGIT: Masked Generative Image Transformer.
arXiv preprint arXiv:2202.04200.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2021. An image is worth 16x16
words: Transformers for image recognition at scale. ICLR.
Doukas, M. C.; Zafeiriou, S.; and Sharmanska, V. 2020.
HeadGAN: Video-and-Audio-Driven Talking Head Synthe-
sis. arXiv preprint arXiv:2012.08261.
Esser, P.; Rombach, R.; Blattmann, A.; and Ommer, B. 2021.
Imagebart: Bidirectional context with multinomial diffusion
for autoregressive image synthesis. Advances in Neural In-
formation Processing Systems, 34.
Esser, P.; Rombach, R.; and Ommer, B. 2021. Taming trans-
formers for high-resolution image synthesis. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 12873–12883.
Feng, Y.; Feng, H.; Black, M. J.; and Bolkart, T. 2021.
Learning an Animatable Detailed 3D Face Model from In-
The-Wild Images. volume 40.
Gafni, G.; Thies, J.; Zollhofer, M.; and Nießner, M. 2021.
Dynamic neural radiance fields for monocular 4d facial
avatar reconstruction. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 8649–
8658.
Grassal, P.-W.; Prinzler, M.; Leistner, T.; Rother, C.;
Nießner, M.; and Thies, J. 2022. Neural head avatars from
monocular RGB videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
18653–18664.
Gu, Y.; Wang, X.; Xie, L.; Dong, C.; Li, G.; Shan, Y.;
and Cheng, M.-M. 2022. VQFR: Blind Face Restoration
with Vector-Quantized Dictionary and Parallel Decoder. In
ECCV.
Guo, Y.; Chen, K.; Liang, S.; Liu, Y.; Bao, H.; and Zhang, J.
2021. AD-NeRF: Audio Driven Neural Radiance Fields for
Talking Head Synthesis. In IEEE/CVF International Con-
ference on Computer Vision (ICCV).
Hong, W.; Ding, M.; Zheng, W.; Liu, X.; and Tang, J. 2022.
CogVideo: Large-scale Pretraining for Text-to-Video Gen-
eration via Transformers. arXiv preprint arXiv:2205.15868.
Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017.
Image-to-Image Translation with Conditional Adversarial
Networks. CVPR.

Ji, X.; Zhou, H.; Wang, K.; Wu, Q.; Wu, W.; Xu, F.; and Cao,
X. 2022. Eamm: One-shot emotional talking face via audio-
based emotion-aware motion model. In ACM SIGGRAPH
2022 Conference Proceedings, 1–10.
Ji, X.; Zhou, H.; Wang, K.; Wu, W.; Loy, C. C.; Cao, X.;
and Xu, F. 2021. Audio-driven emotional video portraits.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 14080–14089.
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