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Abstract

Panoptic Narrative Grounding (PNG) is an emerging cross-
modal grounding task, which locates the target regions of
an image corresponding to the text description. Existing ap-
proaches for PNG are mainly based on a two-stage paradigm,
which is computationally expensive. In this paper, we propose
a one-stage network for real-time PNG, termed End-to-End
Panoptic Narrative Grounding network (EPNG), which di-
rectly generates masks for referents. Specifically, we propose
two innovative designs, i.e., Locality-Perceptive Attention
(LPA) and a bidirectional Semantic Alignment Loss (SAL),
to properly handle the many-to-many relationship between
textual expressions and visual objects. LPA embeds the local
spatial priors into attention modeling, i.e., a pixel may belong
to multiple masks at different scales, thereby improving seg-
mentation. To help understand the complex semantic relation-
ships, SAL proposes a bidirectional contrastive objective to
regularize the semantic consistency inter modalities. Exten-
sive experiments on the PNG benchmark dataset demonstrate
the effectiveness and efficiency of our method. Compared to
the single-stage baseline, our method achieves a significant
improvement of up to 9.4% accuracy. More importantly, our
EPNG is 10 times faster than the two-stage model. Mean-
while, the generalization ability of EPNG is also validated by
zero-shot experiments on other grounding tasks. The source
codes and trained models for all our experiments are publicly
available at https://github.com/Mr-Neko/EPNG.git.

Introduction
Panoptic Narrative Grounding (González et al. 2021) is a
new challenging task that locates the target instances of an
image corresponding to the text description via binary pixel
masks. Its main challenges not only lie in the joint under-
standing of multi-modal information but also in many-to-
many language-vision alignment, i.e., grounding all related
instances or amorphous regions mentioned in the text de-
scription. This property also makes it different from a sim-
ilar grounding task called Referring Expression Segmenta-
tion (RES) (Hu, Rohrbach, and Darrell 2016; Yu et al. 2018;
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Figure 1: Comparison of pipeline and inference speed be-
tween the proposed EPNG and two-stage PNG. (a) EPNG
jointly processes visual and text information to generate re-
ferred masks in a one-stage fashion, while PNG relies on
mask proposals. (b) Our single-stage EPNG is 10x faster
than the two-stage approach, enabling real-time deployment.

Ye et al. 2019; Shi et al. 2018), which segments only one
instance per expression.

Gonzalez et al. (González et al. 2021) first explore this
task and propose a preliminary solution in a two-stage fash-
ion, as illustrated in Fig. 1 (a). First, the pre-trained panoptic
segmentation models like PFPN (Kirillov et al. 2019a) are
used to provide a set of candidate masks of the given image.
Secondly, these masks are further transformed into convo-
lution features and then ranked by cross-modal matching.
Overall, with the help of panoramic segmentation models,
this two-stage solution defines PNG as a mask-text match-
ing problem, greatly reducing the difficulty of prediction.

However, this solution still suffers from two limitations.
On the one hand, such a two-stage approach requires of-
fline feature extraction, storage, and alignment, which is
inevitably time-consuming. This limitation poses a huge
obstacle to real-time applications, e.g., text-to-image re-
trieval, and video matting. On the other hand, the pre-trained
panoramic segmentation model requires massive mask an-
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notations, which place a greater burden on the already ex-
pensive expenditure of PNG. More importantly, the perfor-
mance of these panoptic segmentation models also limits the
upper bound of PNG models.

To solve the above problems, a natural way is to design an
efficient single-stage network for end-to-end training from
scratch. However, this solution also encounters two chal-
lenges that are critical for PNG. First, in PNG, each pixel can
be subordinated to different masks, which is greatly differ-
ent from panoptic segmentation (Kirillov et al. 2019a). This
property makes the model need to capture visual seman-
tics from macro- to micro-views. However, existing meth-
ods only focus on global modeling and overlook local in-
formation, resulting in limited performance. Second, PNG
involves more complicated relationships than other ground-
ing or segmentation tasks (Liu, Wang, and Yang 2017; Luo
and Shakhnarovich 2017; Yu et al. 2017). In each example,
multiple nouns of an expression may correspond to the same
mask, or one noun may refer to multiple masks. This case
further increases the difficulty of vision-language alignment.

In this paper, we propose a novel End-to-End Panoptic
Narrative Grounding network (EPNG) for real-time panop-
tic narrative grounding, as shown in Fig. 1. Specifically,
EPNG adopts a visual encoder to extract the features of the
given image, based on which a decoder is deployed to pre-
dict masks for different noun phrases.

To enhance local semantic modeling, we introduce
Locality-Perceptive Attention (LPA) to enhance grid fea-
tures via neighborhood interactions based on their spatial
priors. In LPA, different attention heads are allowed to per-
ceive visual information in different receptive fields, thus
achieving multi-scale modeling. To ensure the semantic con-
sistency of many-to-many relationships in PNG, we design
a new bidirectional Semantic Alignment Loss (SAL), which
uses one modality as an anchor to eliminate the deviation
of similar semantic tokens of the other modality. With these
innovative designs, EPNG is superior in cross-modal reason-
ing while keeping real-time inference.

Conclusively, the contributions of our work are as below:

• We propose a real-time End-to-End Panoptic Narrative
Grounding network (EPNG), which greatly reduces com-
putation overhead via unifying cross-modal alignment
and mask prediction in one forward structure.

• We propose two novel designs, namely Locality-
Perceptive Attention (LPA) and bidirectional Semantic
Alignment Loss (SAL). LPA enhances visual features
at different scales to understand complex cross-modal
relationships. SAL regularizes the semantic consistency
problem by performing contrastive learning between pix-
els and noun phrases.

• On the benchmark dataset, EPNG is on par with or even
better than existing two-stage methods, while its infer-
ence is 10 times faster. In addition, it requires no addi-
tional mask annotations for pre-training.

Related Work
Panoptic Segmentation
Panoptic segmentation aims to entirely understand scenes
containing things and stuff. Following the benchmark pro-
posed by (Kirillov et al. 2019b), the earlier methods
treated it as the combination of things masks and stuff
masks (de Geus, Meletis, and Dubbelman 2018), e.g.,
PFPN (Kirillov et al. 2019a), Panoptic-DeepLab (Cheng
et al. 2020a), and UPSNet (Xiong et al. 2019). Recently,
things and stuff are expected to be treated uniformly (Car-
ion et al. 2020; Wang et al. 2021; Cheng, Schwing, and Kir-
illov 2021). To eliminate the difference between things and
stuff, part of those like PFCN (Li et al. 2021), K-Net (Zhang
et al. 2021), and Panoptic SegFormer (Li et al. 2022) try to
use the kernel to represent things and stuff uniformly and
generate masks by the convolution on feature maps, which
obtain significant performance. Benefiting from those meth-
ods, our model utilizes word features as reliable kernels to
get corresponding masks through the convolution on multi-
modal features.

Referring Expression Segmentation
Recently, multi-modal applications have received a lot of at-
tention and made significant progress (Ji et al. 2022b, 2021;
Ma et al. 2022b,a; Zhou et al. 2019). Among them, as a
prevalent task in multi-modal communities, Referring Ex-
pression Segmentation (RES) (Hu, Rohrbach, and Darrell
2016; Yu et al. 2018; Ye et al. 2019; Shi et al. 2018) is to seg-
ment a referent based on the understanding of a related short
phrase. In sequential order, previous models (Li et al. 2018;
Liu et al. 2017; Margffoy-Tuay et al. 2018) obtain a set of
proposals by a general method of segmentation and pick up
a better one that is described by the given short phrase. With
the strength of leveraging visual information, however, the
upper bound of those methods is seriously restricted by the
performance of the segmentation models. After that, a batch
of methods is developed for refining segmentation masks
by a single-stage network (Ye et al. 2019; Liu et al. 2019;
Zhou et al. 2021), which brings higher rates of false positive
segmentation. In summary, RES is an incomplete task with
the neglect of stuff and many-to-many relationships between
natural language and images. Additionally, whether things
and stuff or the many-to-many relationships should be con-
sidered in Panoptic Narrative Grounding.

Panoptic Narrative Grounding
The existing method (González et al. 2021) handles it with
a two-stage paradigm, which first obtains a lot of candi-
date panoptic masks by a pre-trained panoptic segmenta-
tion model. With those candidates, a scoring module is used
to assign plural masks to referred phrases. This paradigm
achieves impressive performance, nevertheless, the expen-
sive computation cost and space cost on the stage of seg-
ment becomes the barrier to real-time. Because of the rea-
sons above, we propose an End-to-End Panoptic Narrative
Grounding network (EPNG) to generate the corresponding
mask directly from the noun phrases.
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Figure 2: The framework of the proposed EPNG. The solid lines denote the pipeline of EPNG, while the dotted lines represent
the loss computation during training. During the pipeline, a Multi-modal Encoding module is used to extract the features.
Then a Multi-modal Communicator fuses multi-modal features with a Cross Attention module and the proposed LPA. Finally,
traditional segmentation loss and the proposed SAL are set to improve the quality of segmentation and align the multi-modal
information.

End-to-End Panoptic Narrative Grounding
Network

In this section, we give a detailed description of our EPNG,
of which the framework is illustrated in Fig. 2. The input
images and descriptions are first processed by the visual and
text encoders, respectively. A multi-modal fusion module is
further deployed for image-text interaction, based on which
a dense prediction head is used to predict masks.

Problem Definition
Unlike the existing two-stage PNG, the proposed one-stage
PNG is free of mask proposals, which generates the mask
directly based on the expressions and images. We formulate
it as a cross-modal dense prediction task.

Specifically, given an image I and the corresponding text
T, the goal of PNG is to find the nouns N = {nℓ}Lℓ=0 that
each pixel i belongs to, where nℓ is the ℓ-th noun and L de-
notes the number of the noun phrases. Then the probability
of the obtained mask M ∈ {0, 1} is formulated as:

p (M) =
∏
i∈I

L∏
ℓ=0

p (i|I,T, nℓ) . (1)

Multi-modal Encoding
Visual Encoder Given an image I ∈ RH×W×3, we first
adopt a visual backbone (Lin et al. 2017) to extract the

multi-scale visual features, e.g., Fv1 ∈ RH
8 ×W

8 ×C1 , Fv2 ∈
RH

16×
W
16×C2 , and Fv3 ∈ RH

32×
W
32×C3 . Then we obtain the

final visual feature Fv ∈ RH
16×

W
16×C by:

Fv = concat [Down (Fv1) ;Fv2;Up (Fv3)] . (2)
where Up (·) denotes 2× upsampling, Down (·) denotes 2×
downsampling and concat [·] denotes feature concatenation.

Text Encoder Given a sentence T, we follow (González
et al. 2021) to adopt a pre-trained BERT (Kenton and
Toutanova 2019) to extract the word embeddings FT =

{vt}|T |
t=0, where vt denotes the embedding of t-th word. After

that, we filter out the noun phrases according to the annota-
tions given by (González et al. 2021) and then obtain the
phrase features by average-pooling the word embeddings in
each phrase. These features are then projected by a linear
layer, making their feature dimension consistent with the vi-
sual features. As a result, the phrase embedding is denoted
as FN = {fnℓ

}Lnℓ=0 ∈ RL×C , where nℓ represents the ℓ-th
noun phrases, and L is the number of phrases.

Multi-modal Communicator
Based on the visual feature Fv and the textual feature FN,
Multi-Modal Communicator is designed for cross-modal in-
teraction and fusion. It consists of S serial identical layer,
and each layer is composed of two modules called Locality-
Perceptive Attention (LPA) and Cross Attention (CA).
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Locality-Perceptive Attention Similar to self-
attention (Vaswani et al. 2017), LPA aims to improve
the input features via modeling their inter-relationships.
As argued in (Cheng et al. 2020b), local information is
important for the visual segmentation tasks. Then EPNG,
going a step further, presents multi-scale local modeling.
Each pixel in an image may belong to different masks at the
same time. For example, a pixel in cloth may also belong
to a person. However, the standard self-attention treats all
tokens in the feature map equally. To this end, we reinforce
the role of neighborhood information of each pixel when in
attention modeling, following (Wu, Wu, and Huang 2021;
Ji et al. 2022a).

Specifically, in the features Fi, the 2D spatial coordinates
of the m-th and n-th vectors are denoted as (xm, ym) and
(xn, yn), where the superscript i indicates that the feature
map is the output of the layer i. Then we calculate the Eu-
clidean Distance between these two coordinates:

Dm,n =
√
(xm − xn)2 + (ym − yn)2, (3)

where D ∈ R(H×W )×(H×W ), and we truncate the values
in D with an upper bound 2 to explicitly inject the local
receptive information. Afterward, for an attention head j in
LPA, we transform distance matrix into a coefficient matrix
Rj ∈ R(H×W )×(H×W ), obtained by:

Rj = WjD. (4)
The obtained matrix Rj is used to re-weight the attention,
which is given by:

Aj = Softmax
(
(FiWj

Q)(F
iWj

K)T
√
dk

⊗Rj

)
, (5)

where the projections Wj
Q ∈ Rd× d

h and Wj
K ∈ Rd× d

h are
weight matrices, and dk is a scaling factor. The subscript j
represents the j-th head, and the number of heads h is set
to 8. ⊗ represents an element-wise product. In this way, we
naturally embed local information into attention modeling.

Next, we sum the features using the attention weights to
obtain the results for head j, and aggregate all the results:

Headj = Aj(FiWj
V ), (6)

LPA(Fi,Fi,Fi) = concat(Head1, · · · ,Headh)WO, (7)

where Wj
V ∈ Rd× d

h , and WO ∈ Rd×d are projection ma-
trices.

Fi′ = LN
(
LPA

(
Fi,Fi,Fi

)
+ Fi

)
, (8)

where LN (·) means the layer normalization (Ba, Kiros, and
Hinton 2016), and shortcut connection (He et al. 2016) is
applied after the LPA module.
The difference between LPA and Multi-Head Attention
(MHA). As shown in Eq. 5, the definition of LPA is based
on Multi-head Attention (Vaswani et al. 2017), but it still has
an obvious difference in principle. MHA treats all tokens in
the feature map equally and excels at capturing long-range
dependencies. However, local information is inevitably ig-
nored in this process. We introduce the local prior of each
grid, which is obtained from the distance matrix to attention
modeling. Note that, these local priors can be dynamically
adjusted by the coefficient matrix Rj in Eq. 4.

Cross-modal Attention Following (Yu et al. 2019), we
use Cross-modal Attention for modality interactions:

Fi+1 = FFN
(

LN
(

MHA
(
Fi′ ,FN,FN

)
+ Fi′

))
, (9)

where FFN (·) denotes feed-forward network, and FN is the
noun features.

Dense Prediction
Given the fused feature after multi-modal communicator,
F ∈ RH

16×
W
16×C , we upsample it to a tensor shape of

H
4 × W

4 ×C. Afterward, we apply each noun phrase feature
as a kernel to convolve F. The final masks M are obtained
by:

M = Up (Sigmoid (FN ∗ F)) , (10)
where ∗ represents convolution operation, and Sigmoid
transforms the results to (0, 1). After upsampling, we set a
threshold to force M ∈ {0, 1}.

Training loss Since panoptic narrative grounding is a seg-
mentation task, we try different seg. losses in existing tasks,
including BCE loss and Dice loss (Milletari, Navab, and Ah-
madi 2016). For BCE loss, the loss function is formulated as

LBCE =
∑
ŷi∈M

−(yi · log (ŷi)+(1− yi) · log (1− ŷi)) ,

(11)
where ŷi is the prediction of the i-th pixel and yi is the
ground-truth. Dice loss is defined by

LDice = 1− 2|M
⋂

G|
|M |+ |G|

, (12)

where M is the generated mask and G is the ground truth,
the value of which all belongs to {0, 1}. Considering these
loss functions are designed for single-modal tasks (He et al.
2017), we propose a new loss called bidirectional Semantic
Alignment Loss (SAL) for regularizing the semantic consis-
tency between modalities.

Bidirectional Semantic Alignment Loss As mentioned
above, PNG has complex many-to-many relationships, i.e.,
a mask may belong to several noun phrases or vice versa.
However, the above segmentation loss only considers the
one-to-one interaction between the phrases and mask, while
ignoring the semantic connection between them. Inspired
by (Kamath et al. 2021), we design a SAL to guarantee se-
mantic consistency, which encourages the multi-modal fea-
tures with the same semantics to be similar.

Specifically, we first adopt noun phrases as anchors to im-
prove the semantic consistency within visual features. For
i-th noun phrase Fi

N ∈ RC and the ground-truth Gi ∈
{0, 1}H×W , the collection of pixels with the class of “1”
is considered as the positive set, while the one of “0” is
gathered as the negative set. By increasing the similarity
within the positive set, multi-modal information is forced to
be aligned. Considering all nouns together, the loss is intro-
duced as follows:

lv =
1

L

L∑
i=0

1

|G+|
∑

j∈G+

−log

(
exp

(
Fi

n · Fj/τ
)∑

k∈G exp (Fi
n · Fk/τ)

)
, (13)
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Method Average Recall Inference Time Params Training Data
All Thing Stuff Single Plural All Stage-1 Stage-2 All All

PNG 55.4 56.2 54.3 56.2 48.8 107ms 21.0M 240.3M 261.3M 2.1M
Baseline (ours) 40.3 34.5 50.5 42.3 31.4 9.5ms - - 76.5M 0.8M
EPNG (ours) 49.7 45.6 55.5 50.2 45.1 11ms - - 76.5M 0.8M
EPNG∗ (ours) 58.0 54.8 62.4 58.6 52.1 11ms - - 76.5M 2.1M

Table 1: Comparison of the EPNG and the previous two-stage method PNG (González et al. 2021). Baseline means the same
design as EPNG except for LPA and SAL. EPNG∗ is trained with the same data as PNG.

Communicator Average Recall
All Thing Stuff Single Plural

w/o PE 42.8 36.5 52.1 44.2 32.5
PE 46.7 43.0 52.9 47.6 42.4
SPE 46.1 41.8 52.2 46.6 42.2
DPE 45.9 41.5 52.0 46.5 40.3
RPE 45.3 42.1 52.2 46.9 41.5
LPA 49.7 45.6 55.5 50.2 45.1

Table 2: Ablation study of the LPA module, where “w/o PE”
denotes no position embedding, and“PE” (Vaswani et al.
2017), “SPE” (Liu et al. 2021), “DPE” (Zhu et al. 2020),
and “RPE” (Dosovitskiy et al. 2020) mean different relative
position embedding from other methods.

Loss Average Recall
All Thing Stuff Single Plural

BCE + Dice 43.7 38.5 49.6 43.7 37.6
BCE + Dice + SAL 49.7 45.6 55.5 50.2 45.1

Table 3: Ablation study of the SAL.

where G+ is the positive set, denotes the class of “1” in the
ground truth, and G is the ground-truth. τ is a temperature
coefficient.

Next, We adopt pixel features as anchors to improve the
semantic consistency within noun features. Similarly, the
loss is introduced as follows:

lt=
1

|G|

|G|∑
i=0

1

|T+|
∑

j∈T+

−log

(
exp

(
Fi ·Fj

n/τ
)∑

k∈T exp (Fi ·Fk
n/τ)

)
, (14)

where T+ is the positive gather of the noun set, and T is
the whole set, where ”1” denotes the pixel belonging to this
noun phrase. We combine Eq. 13 and Eq. 14 as the SAL loss
function.

During the training, we use the summation of Dice loss,
BCE loss, and SAL:

L = λ1LBCE + λ2LDice + λ3LSAL, (15)

where λ1, λ2 and λ3 are the hyper-parameters.

Experiment
Datasets
We train and compare our model with the existing method
on the Panoptic Narrative Grounding dataset (González et al.

Dataset Type mIoU p@0.3 p@0.5

RefCOCO
testA random 9.2 2.5 0.1

zero-shot 28.0 42.5 12.4

testB random 9.8 3.3 0.3
zero-shot 17.7 22.4 7.8

RefCOCO+
testA random 9.3 2.6 0.2

zero-shot 27.7 41.1 11.9

testB random 10.5 3.8 0.3
zero-shot 20.6 27.4 9.4

RefCOCOg test random 9.9 4.0 0.6
zero-shot 27.4 40.1 16.3

Table 4: Zero-shot results of EPNG on RES. EPNG is not
trained with RES data.

2021). It is consist of images and the corresponding text. Un-
like the brief phrase in other datasets such as RefCOCO (Yu
et al. 2016), the texts of PNG are long and are a narrative
of all items in the complete image and their relationships.
It often has hundreds of words and more complex semantic
information. The noun-level segmentations are provided for
each text. It encompasses both the thing and the stuff, simi-
lar to panoptic segmentation. The difference is that the thing
will include both the singular and the plural according to the
semantics, which also brings more difficulty for vision-text
alignment. The dataset includes a total of 133,103 training
images and 8,380 test images with 875,073 and 56,531 seg-
mentation annotations, respectively.

Implementation Details
Experimental Settings In this paper, we follow (González
et al. 2021) to use the ResNet-101 as our visual back-
bone, which is pre-trained on the ImageNet (Krizhevsky,
Sutskever, and Hinton 2012). BERT is used as the text
backbone. During the training process, all the backbones
are frozen except for the last two layers of ResNet-101.
For parallel training, we increase the input image resolu-
tion to 640 × 640, so the shapes of the last three layers are
20×20×256, 40×40×256, and 80×80×256, respectively.
Moreover, the dimension of text features is 768. The num-
ber of attention heads is 8 and the hidden dimension is 2048.
Besides, the number of Layers S is 3. In terms of hyper-
parameters, we use λ1 = 2, λ2 = 2 and λ3 = 1 to balance
the final loss. We set the initial learning rate η = 1e−5 which
is half decayed by every 5 epochs, and fix η = 5e−7 after
10 epochs. The batch size is 32. We train it on 4 RTX3090
GPUs, which cost 20 hours in total. The optimizer is Adam.
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Narrative Image Baseline Ground Truth
In this image they are two buffaloes
stand-ing on an open area. On the
background we can see a monuments.
On the top there is a sky with full
clouds. In the center of the image we
can see trees and plants. On the
bottom we can see a grass on the
ground.

This image is a black and white
image. This image is taken indoors.
In the back-ground there is a wall. In
the middle of the image there is a
monitor on the table. At the bottom of
the image there is a table with a
keyboard and a mouse on it.

This picture shows a woman standing
and flying a kite with string and we
see water and a cloudy sky and and
women wore a black jacket and we
see grass on the ground

His picture shows a bus on the road
and we see couple of trees and a
electric pole and a cloudy sky

EPNG

Figure 3: Visualization of EPNG. We mark the same color between the nouns in the narrative and the referred pixels.
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Figure 4: Comparison of the attention of the sampled point for the LPA and MHA from the top layer. The red point represents
the sampled point.

Metrics Following (González et al. 2021), we use Average
Recall (González et al. 2021) as our metric. Specifically, we
calculate Intersection over Union (IoU) between masks and
the ground truth. We use the integral of the IoU curve as the
final metric. Additionally, we simultaneously analyze this

measure for the thing, stuff, single, and plural.

Quantitative Analysis
Comparison with the state-of-the-arts. We first evaluate
the overall performance of the model using the Average Re-
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Referring Image Prediction Ground Truth

the man playing 
tennis

a lady wearing jeans
and a pink and gray
north face jacket

front left chicken

man

Figure 5: The visualization of zero-shot setting for RES.

call metric, as shown in Tab. 1. In Tab. 1, we also introduce a
baseline model for comparison, which is the same as EPNG
except for LPA and SAL. The performance of the one-stage
baseline is much inferior to the two-stage PNG. It is because
single-stage models are trained end-to-end from scratch, suf-
fering from greater training difficulties. After adding LPA
and SAL, the proposed EPNG can bring up to 23.3% gain
on all the masks, 32.2% on the thing, and 9.9% on the stuff,
respectively. This fully demonstrates the effectiveness of the
proposed method. In terms of the inference speed, we set the
batch size to 12, and calculate the average inference time on
each image. Our EPNG has a significant benefit, being 10×
faster than the two-stage model and using only 38% of its pa-
rameters, allowing for model deployment on edge devices.

To make a fair comparison with PNG, we adopt FPN with
a ResNet-101 backbone pre-trained with Panoptic Feature
Pyramid Network (Kirillov et al. 2019a) on MS COCO. Our
EPNG achieves better performance (i.e., 2.6 points of per-
formance gain) at 10× inference speed, which better demon-
strates the contribution of our EPNG.

Ablation Study To verify the contribution of our proposed
LPA and SAL, we conduct ablation experiments on the two
modules, respectively. In Tab. 2, we compare LPA with other
position embeddings. As can be seen that the method that
does not use any location and distance information performs
the worst, demonstrating the importance of location infor-
mation for this task. Meanwhile, our LPA achieves the best
performance than other relative position embeddings, which
are widely used to capture location information.

To verify the efficiency of SAL, we perform two exper-
iments with and without it, of which results are given in
Tab. 3. It can be seen that SAL brings a significant improve-
ment of 6.0 points to EPNG, which fully validates our mo-
tivation that the improvement of semantic consistency can
well improve the segmentation accuracy in PNG.

Zero-Shot Study for RES Meanwhile, we validate our
model’s generalization by conducting zero-shot experiments
on the datasets of the RES task, e.g., RefCOCO (Yu et al.
2016), RefCOCO+ (Yu et al. 2016), and RefCOCOg (Mao
et al. 2016; Nagaraja, Morariu, and Davis 2016). These
datasets are built based on MS COCO (Lin et al. 2014). We
use the feature of the whole phrase as the text feature. The
results are shown in Tab. 4. By comparing with the fully ran-
domized model, we can find that the zero-shot performance
of EPNG is significantly improved. Even on the more com-
plex dataset i.e., RefCOCO+, our performance is close to
some early supervised REC models, like (Liu et al. 2017),
mIoU of which is 30.48 and 29.5 on the testA and testB of
RefCOCO+, respectively.

Qualitative Analysis

Visualization As shown in Fig. 3, we present some typical
grounding results from EPNG compared to the ground truth.
Compared to the baseline, our method can generate more
accurate masks, especially for the edge parts. This further
proves the effectiveness of our method.

Attention Visualization To figure out the role of LPA in
our proposed method, we visualize its attention weights dur-
ing inference in Fig. 4. Compared with the baseline, LPA
presents diverse local attention patterns with miscellaneous
scopes, which brings a powerful capability to model local
semantic relationships. This also validates the motivation of
LPA, and our proposed method does allow the model to fo-
cus locally and improve the accuracy of attention.

Zero-Shot for RES Additionally, Fig. 5 shows some qual-
itative results of our zero-shot study on RES. Our method
can achieve very accurate segmentation, which fully demon-
strates its transferability. For example, in the second case,
our model identifies the segmentation of “man”, which is
wrong even in the ground truth. Due to the ability of the
finest-grained and complex semantic understanding, EPNG
can handle more general scenarios with greater potential.

Conclusion

In this paper, we proposed an End-to-End Panoptic Narrative
Grounding network (EPNG) for real-time inference. To bet-
ter handle the many-to-many relationships between pixels
and phrases, two innovative designs are proposed, namely
Local-Sensitive Attention (LPA) and bidirectional Semantic
Alignment Loss (SAL), respectively. Extensive experiments
show that our proposed EPNG achieves significant perfor-
mance gains compared to the baseline. More importantly,
compared to the two-stage model, EPNG achieves compet-
itive performance with faster inference (10x) and fewer pa-
rameters. Furthermore, we conducted zero-shot experiments
on RES and achieved surprising performance. These results
demonstrate the excellent generalization of our model and
also provide a reference for a subsequent unified vision-
language segmentation framework.
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