
UCoL: Unsupervised Learning of Discriminative Facial Representations via
Uncertainty-Aware Contrast

Hao Wang*1, Min Li*1, Yangyang Song1, Youjian Zhang2, Liying Chi1

1ByteDance Inc.
2The University of Sydney

haoww.wh@gmail.com

Abstract

This paper presents Uncertainty-aware Contrastive Learning
(UCoL): a fully unsupervised framework for discriminative
facial representation learning. Our UCoL is built upon a mo-
mentum contrastive network, referred to as Dual-path Mo-
mentum Network. Specifically, two flows of pairwise con-
trastive training are conducted simultaneously: one is formed
with intra-instance self augmentation, and the other is to
identify positive pairs collected by online pairwise predic-
tion. We introduce a novel uncertainty-aware consistency K-
nearest neighbors algorithm to generate predicted positive
pairs, which enables efficient discriminative learning from
large-scale open-world unlabeled data. Experiments show
that UCoL significantly improves the baselines of unsuper-
vised models and performs on par with the semi-supervised
and supervised face representation learning methods.

1 Introduction
Unsupervised visual representation learning has led to effi-
cient training on many downstream vision tasks, driven by
recent advances such as the Contrastive Learning based (Wu
et al. 2018; Oord, Li, and Vinyals 2018; Ye et al. 2019; Tian,
Krishnan, and Isola 2020; Chen et al. 2020a,b; He et al.
2020) and the Masked Image Modeling (MIM) based (He
et al. 2022; Xie et al. 2022; Liu et al. 2022; Li et al.
2022) methods. However, most techniques cannot general-
ize well to face-related areas without further supervised fine-
tuning (Bulat et al. 2022). On the other hand, the perfor-
mance gains of face recognition are usually achieved at pro-
hibitive annotation costs (Guo et al. 2016; An et al. 2021).
Scaling up the current annotation size to more identities
tends to suffer from annotation noises (Zhan et al. 2018;
Wang et al. 2018a) and may raise privacy concerns (Erkin
et al. 2009). Thus, the fundamental question on ”How to
learn effective and discriminative facial representation with-
out any supervision?” remains unsolved.

Several prior studies on supervised face clustering (Yang
et al. 2019; Wang et al. 2019; Yang et al. 2020; Shen et al.
2021) stand the dominant approach for solving this problem,
where the goal is to apply a graph convolutional network
(GCN) to learn the cluster patterns based on identity-prior.
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Figure 1: The face recognition performance of
supervised/semi-supervised/unsupervised learning on
benchmarks (LFW and MegeFace). UCoL improves the
baseline of MoCo by a large margin and closes the gap
between unsupervised and supervised methods.

However, they still depend on face identity labels to capture
biases in facial affinity graphs (Yang et al. 2020). Clustering
requires processing the entire dataset for pseudo label gen-
eration, making online end-to-end learning challenging. Ad-
ditionally, assuming no overlap between pseudo labels and
original identities is not always valid in supervised face clus-
tering methods (RoyChowdhury et al. 2020).

In this work, we present a simple framework to approach
unsupervised discriminative facial representation learning,
namely Uncertainty-aware Contrastive Learning (UCoL).
The objective of contrastive loss is incorporated to sepa-
rate positive and negative pairs to improve the discriminative
power of face representations. We show that the contrastive-
based model enables online self-training and efficiently ex-
ploits massive unlabeled face images for open-world large-
scale unsupervised representation learning.

Following the central idea of vallina MoCo (He et al.
2020), we first build a similar momentum contrast frame-
work to train a self-supervised model on face datasets with-
out identity labels. However, it fails to generate promising
results on face verification tasks. The reasons may lie in
the preprocessing of faces by strict alignment. Thus, we re-
move the alignment and compose stronger data augmenta-
tions. Accordingly, the performance can be boosted, yet still
lags behind the supervised models (See the performance of
MoCo in Figure 1). From this perspective, we hypothesize
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that the discriminative clue beyond self-augmented views is
desirable for improvement. To this end, we attempt to incor-
porate the information of pseudo-labels, i.e., the joint train-
ing of the self-supervised representation with pairwise self-
labeling (Asano, Rupprecht, and Vedaldi 2019; Rebuffi et al.
2021). While some contrastive learning methods (Dwibedi
et al. 2021; Van Gansbeke et al. 2021) also utilize the
nearest-neighbors strategy, the appropriate selection of pair-
wise instances has not been extensively explored. Our ap-
proach aims to enhance fully unsupervised contrastive learn-
ing by introducing a novel, uncertainty-aware, and consis-
tent pairwise labeling technique.

Our UCoL is a unified contrastive learning framework
with a simple positive pair selection mechanism. We first
construct the contrastive learning network upon a MoCo
model, wherein the contrastive learning is formulated as dic-
tionary look-up with dual paths. Two types of paired sam-
ples are constructed as positive samples for discriminative
training, i.e., one is from intra-instance with self augmen-
tation, and the other is from inter-instance with pairwise
prediction. Similar to the dictionary keys, we maintain an
additional dynamic queue to store the predicted positive
pairs. Furthermore, we introduce a novel uncertainty-aware
consistency K-nearest neighbors algorithm to select posi-
tive pairs from the query and dictionary keys. Specifically,
by looking up the dictionary keys with queries, the near-
est neighbors are predicted as positive pairs and placed in
the positive queue for inter-instance contrastive learning. We
further exploit the uncertainty-aware strategy of multi-view
and MC-Dropout (Gal and Ghahramani 2016) to enhance
the consistency of labeling. In contrast to the GCN-based
offline clustering, our kNN-based pairwise self-labeling is
simple and effective for online contrastive learning. We
show that UCoL achieves superior results that are close to
the state-of-the-art semi-supervised/supervised methods in
various benchmarks (Figure 1).

The contributions of this paper are summarized as fol-
lows:

• UCoL is a simple framework for fully unsupervised fa-
cial representation learning. To the best of our knowl-
edge, the proposed model is the first end-to-end unsuper-
vised method towards large-scale open-world face verifi-
cation learning.

• We introduce an uncertainty-aware consistency k-nearest
neighbors method, which enables fast and accurate on-
line pairwise self-labeling. The joint task of contrastive
learning and self-labeling allows learning from predicted
pairs and effectively improves the discriminative infor-
mation of feature embeddings.

• UCoL significantly improves the baseline of self-
supervised learning methods without any human anno-
tations for face verification. Notably, our unsupervised
model achieves competitive evaluation results on sev-
eral benchmarks compared with state-of-the-art super-
vised methods, closing the gap between supervised and
unsupervised training.

2 Related Works
Facial representation learning. Learning a compact and
generic facial representation benefits numerous facial anal-
ysis tasks like face detection (Yang et al. 2016), align-
ment (Kowalski, Naruniec, and Trzcinski 2017), and recog-
nition (Cao, Li, and Zhang 2018; Wang et al. 2018b), as evi-
denced by research on supervised training methods (Li et al.
2021; Wang et al. 2018b; Liu et al. 2017; Deng et al. 2019a;
Schroff, Kalenichenko, and Philbin 2015; Zhang et al. 2018;
An et al. 2021) using large-scale datasets (Zhu et al. 2021;
Guo et al. 2016). Some of these methods enforce better clus-
tering on feature embedding from different identities by in-
troducing margin penalties in the loss function. Specifically,
Sphereface (Liu et al. 2017) uses a multiplicative angular
margin penalty, CosFace (Wang et al. 2018b) adds a cosine
margin penalty to the target logit, and ArcFace (Deng et al.
2019a) calculates the angle between the current feature and
the target weight using an arc-cosine function. While these
methods improve feature embedding compactness and class
separation, they require annotated pairs of training data, lim-
iting their use with massive unlabeled face images.

To exploit unlabeled data, face clustering methods (Wang
et al. 2019; Yang et al. 2019, 2020; Shen et al. 2021) cluster
unlabeled face images into ”pseudo pairs” using Graph Con-
volutional Networks (GCN). However, these methods still
require partially annotated data and cannot perform fully
unsupervised clustering. Despite these supervised clustering
methods, there are also works exploring unsupervised face
clustering (Otto, Wang, and Jain 2017; Zhan et al. 2018)
with deep features, yet they mainly focus on designing new
similarity metrics.

Self-supervised representation learning. Recently, con-
trastive learning (Hadsell, Chopra, and LeCun 2006; Wu
et al. 2018; Oord, Li, and Vinyals 2018; Ye et al. 2019;
Tian, Krishnan, and Isola 2020; Chen et al. 2020a,b; He
et al. 2020; Zhang et al. 2021) provides a feasible solution
to obtain a generic and practical feature representation from
large-scale unlabelled data. This technique employs con-
trastive loss, such as InfoNCE, to maximize mutual infor-
mation, bringing together associated samples and separat-
ing those in different classes. To improve contrastive learn-
ing, MoCo (He et al. 2020) proposes the use of a memory
bank to store previous representations. Our work follows
the MoCo framework, as it allows for easy reformulation
of the momentum encoder dictionary in our pipeline. Bu-
lat et al. (2022) conducts a comprehensive evaluation on fa-
cial dataset to compare supervised pretraining with unsuper-
vised pretraining based on SwAV (Caron et al. 2020). Zheng
et al. (2022) combine image-text contrastive learning with
masked image modeling (He et al. 2022; Xie et al. 2022)
to explore low-level and high-level information simultane-
ously. Differ from these works which need to be finetuned
before being applied on downstream tasks, our proposed
method manages to conduct face recognition directly with
the learned facial representation.

Pseudo-labeling. The goal of Pseudo-labeling (Asano,
Rupprecht, and Vedaldi 2019) is to generate pseudo-labels
for unlabeled samples with a model trained on labeled data.
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Face clustering (Wang et al. 2019; Yang et al. 2019, 2020)
also uses this approach by using pre-trained networks to gen-
erate pseudo-labels. Noroozi et al. (2018) extends this idea
by training a large network with a pretext task in an unsuper-
vised setting. Meanwhile, a unique form of Pseudo-labeling,
i.e., pairwise pseudo-labeling, has been widely used in the
literature for dimension reduction or clustering (Van der
Maaten and Hinton 2008). A few methods provide pseudo
labels to train deep convolutional neural networks (Rebuffi
et al. 2021; Shaham et al. 2018; Hsu et al. 2019). In our
method, we utilize the representation learned from unsuper-
vised learning (i.e., MoCo), and select positive pairs on-the-
fly for pairwise contrastive learning.

Calibration and uncertainty. Much evidence shows that
the deep learning models are not well-calibrated and
often fail by providing over-confident incorrect predic-
tions (Nguyen, Yosinski, and Clune 2015; Hendrycks and
Gimpel 2016). To mitigate poor calibration, various works
(Guo et al. 2017; Xing et al. 2019) propose post-processing
techniques of model prediction to guarantee that proba-
bility associated with the predicted class label reflect its
ground truth correctness likelihood. Such calibration can
be interpreted as the overall prediction uncertainty of net-
work from a frequentist view (Lakshminarayanan, Pritzel,
and Blundell 2017). On the other hand, estimating the in-
dividual prediction uncertainty is also of importance in
many domains (Henne et al. 2020; Rizve et al. 2020; Deb-
nath et al. 2021). Monte Carlo Dropout (MC-Dropout) (Gal
and Ghahramani 2016) estimates uncertainty by applying
Dropout at the test phase for multiple times as approximate
Bayesian inference. In this work, we leverage MC-Dropout
to guide the uncertainty-aware pairwise labeling.

3 UCoL
Inspired by contrastive training methods (Hadsell, Chopra,
and LeCun 2006; Wu et al. 2018; Oord, Li, and Vinyals
2018; Ye et al. 2019; Tian, Krishnan, and Isola 2020; Chen
et al. 2020a,b; He et al. 2020), we construct a pipeline
with a momentum framework (similar to MoCo (He et al.
2020)) and reformulate the contrastive training as a dic-
tionary look-up task. That is, given a query sample q, a
positive key sample k+ and a set of negative key samples
{k−} = {k0, k1, k2, · · · }, the contrastive loss, namely In-
foNCE (Oord, Li, and Vinyals 2018), is defined as:

LInfoNCE = − log
exp(q · k+/τ)

exp(q · k+/τ) +
∑
k−

exp(q · k−/τ)
(1)

where τ denotes a temperature hyper-parameter. Here, the
InfoNCE can be thought of as a softmax formed measure
between the similarity of positive and its corresponding neg-
atives. It can be further replaced with margin-based losses
like CosFace (Wang et al. 2018b) or ArcFace (Deng et al.
2019a), as described in the following subsection.

We introduce the two major designs of our method in the
following sub-sections: the dual-path momentum contrastive
network (Section 3.1) and the uncertainty-aware pairwise la-
beling mechanism (Section 3.2).
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Figure 2: The dual-path contrastive network of UCoL. The
blocks filled with yellow refers to the images/features se-
lected by pairwise labeling. The blocks filled with white
refers to the images/features of query samples.

3.1 Dual-path Momentum Contrastive Network
For conventional contrastive learning, the instance discrimi-
nation pretext task is leveraged, where the augmented views
of identical instances comprise the positive pairs while the
cross-instance pairs are negative. Nevertheless, the discrim-
inating information is insufficient to identify actual pairs
with ground truth labels. Motivated by this, we consider two
sources of positive pairs in our contrastive training, one is
from intra-instance with self augmentation (same way as
MoCo (He et al. 2020) and SimCLR (Chen et al. 2020a)),
and the other is inter-instance pairs predicted by online pair-
wise labeling. Thus, the positive pairs of cross-instance col-
lected by predictions could provide additional clues to en-
hance the discrimination. Here, we implement this dual-path
contrastive learning with a Dictionary Queue and a Positive
Queue. The overview of the proposed dual-path momentum
framework of UCoL is visualized in Figure 2.

Dictionary Queue. We start with a brief review of
MoCo’s dictionary queue: given the query samples, MoCo
relies on a dynamic queue of dictionary key samples to
perform the dictionary look-up. In the dictionary, the aug-
mented counterpart samples of queries are positive, and the
rest are negative. In our framework, we maintain an iden-
tical Dictionary Queue (Figure 2 right) as same to MoCo
for the training part of intra-instance self-augmentation. The
size of the dictionary is set to be much larger than the train-
ing mini-batch size, thus scaling up the size of negative pairs
to improve the results.

Positive Queue. In parallel with the Dictionary Queue that
is for intra-instance self-contrast, we keep another dynamic
queue to store the collected inter-instance contrastive pairs,
which are actually positive pairs in the dataset, referred to as
Positive Queue. That is, with an efficient pairwise labeling
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strategy, it continually retrieves neighboring pairs as posi-
tive and caches the results in the Positive Queue alongside
the online training. Formally, given a set of query samples
S and a Dictionary Queue Q = {k−}, the pairwise label-
ing function fpl() outputs the predicted Positive Pair sam-
ples, which are then placed in the Positive Queue P in a
DequeueEnqueue process:

P = DequeueEnqueue(P, fpl(S,Q)) (2)

As the positive pairs with high confidence collected by
fpl could be small-sized and inaccurate in the initial train-
ing state, it is difficult to bootstrap learning from unstable
and insufficient data discrimination. Therefore, the proposed
Positive Queue is beneficial to facilitate the training and im-
prove the discrimination power. Here, the positive queue size
can equal the mini-batch size for balance, or be set as a
hyper-parameter.

Dual-path Momentum Network. We follow MoCo and
exploit the momentum updating mechanism to train an en-
coder network with the contrastive loss. Specifically, the key
encoder is trained with standard forward-backward propaga-
tions to update the network parameters, while the query en-
coder is a counterpart of the key encoder and is updated with
momentum. With the proposed Dictionary Queue and Posi-
tive Queue described above, we have two contrastive flows
from both intra-instances and inter-instances. The intra-
instance flow is formed under the same settings as MoCo,
wherein various augmentations are adopted. For the inter-
instance flow, the contrastive scheme further learns to en-
courage discrimination from actual paired samples, i.e., the
positive query-key pairs are from Positive Queue while Dic-
tionary Queue provides negatives.

Margin-based InfoNCE. Conventionally, the InfoNCE
loss is implemented as the log loss of (N +1)-way softmax-
based classification loss that tries to classify q as k+. For
face recognition, the loss function plays an important role.
In this work, we adopt the Large Margin Cosine (lmc) loss
function used in CosFace (Wang et al. 2018b), and reformu-
late the InfoNCE as:

Llmc = − log
exp(s(q · k+ −m))

exp(s(q · k+ −m)) +
∑
k−

exp(s(q · k−))

(3)
where m and s denote the cosine margin and scale, respec-
tively. Note that the loss takes the L2 normalized encoded
query and keys.

Formally, given a batch S of unlabeled face instances and
two queues described above (Q,P), the combined loss L
for unsupervised face representation learning in UCoL is de-
fined as:

LQ = − log
exp((qa·k+

a −m)/τ)

exp((qa·k+
a −m)/τ)+

∑
k−

exp(qa·k−/τ)
,

where (qa, k
+
a ) = Aug(x), x ∈ S, k− ∈ Q. (4)
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Figure 3: Demonstration of uncertainty-aware pairwise self-
labeling. The predictions of positive pairs are the intersec-
tion of multiple stochastic forward passes of the augmented
views. Then the generated positive pairs are placed into the
positive queue.

LP = − log
exp((qp·kp+)−m)/τ)

exp((qp·k+
p −m)/τ)+

∑
k−

exp(qp·k−/τ)
,

where (qp, k
+
p ) ∈ P . (5)

L = (1− λ)LQ + λLP (6)

where Aug() is a stochastic image transformation and out-
puts two versions of augmented x, and λ is the hyperparam-
eter weighting the contribution of the two contrastive losses.
Note that two losses share the same dictionary keys {k−}.

3.2 Uncertainty-aware Pairwise Self-labeling
The pairwise self-labeling is performed onto the latent em-
beddings of paired samples, which are sampled from the
input query set S and the key dictionary Q respectively.
The general purpose of self-labeling is to predict and assign
pseudo labels. In UCoL, we search the paired neighboring
samples as the actual positive pairs, and the negative pairs
are from inter-instance, processed by thresholding and sub-
set sampling. Figure 3 demonstrates our uncertainty-aware
pairwise self-labeling, which is elaborated below.

K-NN Search for Pairwise Retrieval and Labeling. To
generate accurate positive and negative labels of paired sam-
ples, the mainstream techniques (Wang et al. 2019; Yang
et al. 2019, 2020; Shen et al. 2021) incorporate supervised
clustering like GCNs to construct the facial affinity graphs.
However, it is time-consuming, and the training of GCN also
needs hand-craft supervision. Instead, to keep it simple, we
leverage a K-nearest neighbors strategy for fast and accu-
rate pairwise predictions. It is assumed query-key pairs with
higher similarity are more likely to be positive, while lower
similarities are considered negative. Therefore, we always
rank the keys by similarity scores to find out the head ones
as positive, and the tail ones as negative.

Thresholding and Negative Sampling. Furthermore, to
reduce labeling noise, we set thresholds of confidence onto
the ranked pairs to output label assignments. Specifically, for
the positive label assignments, a initially high threshold is
set and then decreased progressively alongside the training.
For the negative part, an adaptive threshold is empirically set
to Tn = µ−2σ, where µ =

∑
i

piyi and σ =
∑
i

pi(yi − µ)2
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are calculated over the pairwise per-sample similarity distri-
bution with the posterior probabilities obtained by softmax
of Eq. (5).

Positive Selection with Multi-view Uncertainty-aware
Consistency. Although the aforementioned thresholding
and sampling strategy reduce the pairwise prediction error,
the network may still output incorrect pseudo-labels with
high confidence, due to the poor calibrations and high uncer-
tainties. The relationship between network calibration and
prediction uncertainties has been investigated in (Rizve et al.
2020). It is verified that pseudo-labels with more certain pre-
dictions would lead to fewer calibration errors. Following
this core analysis, we propose to incorporate an uncertainty-
aware consistency criterion into the positive selection pro-
cess: we apply MC-Dropout (Gal and Ghahramani 2016)
to obtain the predictions of positive pair labels by multi-
ple stochastic forward passes, and then calculate the inter-
section set of all the predictions. In addition, we also use the
augmented views to conduct the multiple forwards, referred
to as Multi-view Uncertainty-aware Consistency. Thus, if N
stochastic forwards are conducted, we obtain 2N predic-
tions in total for inter-section merging. With the criterion
of Multi-view Uncertainty-aware Consistency, the accuracy
of obtained pairwise pseudo-labels can be largely improved,
providing adequate correct pairs for the unsupervised train-
ing.

Formally, according to the similarity measured by
sim(q, k) = q · k, k ∈ Q, we denote NK(q,Q) as K near-
est neighbors of a probe v in set Q.Given the above, we de-
note K nearest neighbors of i-th stochastic forward pass and
its multi-view variant as N (i)

K (q(i), Q) and N+(i)
K (k+(i), Q),

respectively. Then R(q,Q) is defined as inter-section of 2N
K-nearest neighbors of q and k+ in the set S:

R(q,Q)

= {ki|ki ∈ N (0)
K (q(0), Q) ∧N+(0)

K (k+(0), Q) ∧ · · · } (7)

3.3 Learning from Open-world Unlabeled Data

The proposed UCoL learns from unlabeled data by con-
structing contrastive pairs, which is intuitive and natural for
open-set face evaluations in practice. In general, traditional
supervised training on face verification usually relies on
complete annotations of identities onto the face dataset for
supervision. As the training is limited in the labeled dataset,
it is unable to utilize data from the out-of-set. For exam-
ple, even if the out-of-set data samples are well-annotated,
one should still merge the data into the existing training
dataset to add additional annotations and remove conflicts,
and rebuild a larger closed dataset. Our UCoL provides an
effective solution to address this and allows training under
the open-set settings. By conducting online pairwise self-
labeling and contrastive learning, UCoL is capable of learn-
ing from massive data in the open world, and the discrimi-
native ability could be enhanced consistently driven by the
increasing large-scale of data.

4 Experiments

4.1 Setup

Datasets. MS-Celeb-1M (Guo et al. 2016) dataset is
adopted as the training dataset, and the ground-truth labels
are eliminated under the unsupervised setting. MS-Celeb-
1M is a large-scale face recognition dataset. We adopt the
version of MS1M-RetinaFace (Deng et al. 2019b), which
consists of 5.1M images from 93K classes. All the face im-
ages are preprocessed with alignment and cropping in the
same way with arcface (Deng et al. 2019a).

To demonstrate the effectiveness of the learned facial
representation, we conduct experiments on several standard
face recognition benchmarks, including LFW (Huang
and Learned-Miller 2014), MegaFace (Kemelmacher-
Shlizerman et al. 2016) and LJB-C (Nech and
Kemelmacher-Shlizerman 2017), to test the face veri-
fication accuracy.

Baseline Model. We adopt the standard vision transformer
(ViT) architecture as the backbone network, since ViT has
been demonstrated to have a strong representation abil-
ity in MoCo-v3 (Chen, Xie, and He 2021) and MAE (He
et al. 2022). To make the architecture more suitable for face
recognition tasks, we make some minor tweaks to the orig-
inal ViT-B/16 architecture proposed in (Dosovitskiy et al.
2020). First, the patch size in the patch embedding layer
is changed from 16 to 8, such that the number of patches
for a 112 × 112 image is still 14 × 14. We observed that
the original patch-size 16 performed slightly worse, as the
inadequate number of image patches tends to limit the fit-
ting power of self-attention in vision transformers. Second,
the classification head in ViT is replaced with a linear layer,
which projects the ”hidden” embedding to the face embed-
ding of dimension 512. We denote the modified version as
ViT-B/8.

There are also some changes we made in the MoCo
framework: 1) The projection head introduced in MoCo-
v2 is removed, and the loss function is directly computed
over the output embedding of the encoder. This will lead to
faster convergence. 2) We incorporate CosFace (Wang et al.
2018b) margin into the InfoNCE loss, which improves the
discriminative ability of the learned feature representation.

Implementation Details. We follow a common recipe and
employ the AdamW optimizer to train vision transformers
steadily. Our training approach starts with 5 epochs of lin-
ear warmup and employs a cosine learning rate decay. For
improved stability, we utilize the same setting of layerwise
learning rate decay as MoCo-v3. Our models are trained for
20 epochs on 8 Tesla V100s, with a batch size of 512, learn-
ing rate of 0.004, and weight decay of 5 × 10−4. During
the first 4 epochs, we exclusively use intra-instance con-
trastive learning (λ = 0), then introduce inter-instance self-
labeled pairs by increasing the coefficient λ to 0.5. To per-
form margin-based InfoNCE loss, we set positive and dic-
tionary queues to sizes 512 and 204, 800, respectively, with
hyper-parameters τ = 1/80 and m = 0.3.
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Method LFW MegaFace
Rank 1

MegaFace
Veri

IJB-C
TAR@1e-04 Model Training-set

Supervised
CosFace∗ (Wang et al. 2018b) 99.77 97.02 97.51 95.57 ViT-B/8 MS1M-RetinaFace
ArcFace (Deng et al. 2019a) 99.82 98.35 98.48 95.6 ResNet-100 MS1MV2
PFC (An et al. 2021) 99.83 98.25 98.03 95.8 ResNet-100 MS1MV2
DCQ∗ (Li et al. 2021) 99.83 97.81 97.77 95.76 ViT-B/8 MS1M-RetinaFace

Semi-supervised
STAR-FC (Shen et al. 2021) - 79.26 - - - MS1M
CDP (Zhan et al. 2018) - 81.88 - - Inception-ResNet V2 MS1M
CDP(NRoLL) (Liu et al. 2021) 99.20 84.02 87.19 - MobileFaceNet MS1M
NRoLL (Liu et al. 2021) 99.35 85.77 88.14 - MobileFaceNet MS1M

Unsupervised
MoCo∗ (He et al. 2020) 84.53 6.53 5.66 32.90 ViT-B/8 MS1M-RetinaFace
MAE∗ (He et al. 2022) 84.60 - - - ViT-B/8 Glint360k
FaceCycle
(Chang, Chen, and Chiu 2021) 73.72 - - - 16-layer CNN VoxCeleb1 + VoxCeleb2

UCoL∗ (ours) 99.00 81.02 82.92 84.82 ViT-B/8 MS1M-RetinaFace

Table 1: Comparison of evaluation results on several face recognition benchmarks. Note the ∗ denotes those results are obtained
by our implementations under the same settings with UCoL, and the rest are from the authors.

4.2 Evaluation on Face Recognition Benchmarks
We evaluate our UCoL model on several face recognition
benchmark datasets (LFW, MegaFace and LJB-C) to com-
pare against state-of-the-art methods in different training
scheme, covering supervised (CosFace (Wang et al. 2018b),
Arcface (Deng et al. 2019a), PFC (An et al. 2021), DCQ (Li
et al. 2021)), semi-supervised (STAR-FC (Shen et al. 2021))
and unsupervised settings (MoCo (He et al. 2020), MAE (He
et al. 2022), FaceCycle (Chang, Chen, and Chiu 2021)).
Here, the MoCo model without further pseudo-labeled pairs
is the baseline of our UCoL, which sets up a lower-bound.
Meanwhile, as the DCQ builds a similar MoCo-based frame-
work with contrastive pairs generated with ground-truth
labels, it can be regarded as the supervised upper-bound
of UCoL. The state-of-the-art of semi-supervised models
mostly relies on the GCN to generate pseudo labels and
train a face recognition model with both labeled and pseudo-
labeled data.

The evaluation results and benchmark comparisons are
reported in table 1. The proposed UCoL outperforms the
prior unsupervised methods, especially improving the base-
line of MoCo by a large margin. The MoCo leads to poor
performance on the challenging large-scale evaluations of
MegaFace and IJB-C, mainly due to the insufficient varia-
tions in instance self-augmentation. In contrast, benefiting
from the extra discriminative information enhanced by on-
line pairwise labeling, our UCoL shows effectiveness in im-
proving unsupervised representation learning. In the mean-
while, UCoL achieves competitive results compared with
the state-of-the-art semi-supervised and supervised models
in the community, and the gap between unsupervised and
supervised training has been significantly reduced.

4.3 Ablation Study
We conducted experiments to verify the effect of the ab-
lative variants of our method. The results are presented in

kNN Thres-
holding

Negative
sampling Uncertainty Mega-

Face

A 6.53
B ✓ -
C ✓ ✓ 53.68
D ✓ ✓ ✓ 78.19
E ✓ ✓ ✓ ✓ 81.02

Table 2: Effects of components of UCoL. For negative sam-
pling, the sample rate is 0.3. For uncertainty, the number of
MC-Dropout forward is 4. A refers to MoCo; E refers to
UCoL.

Table 2. First, we incorporate the kNN search with multi-
view consistency without thresholdinghe model fails to con-
verge and leads to degraded training. Then, we adopt the
proposed positive and adaptive negative thresholding; the
model improves the baseline by a remarkable margin. The
negative sampling (with a sample rate of 0.3) provides more
than 24% improvement. The uncertainty-aware consistency
(with 4 stochastic MC-Dropout forward) further improves
the result to 81.02%. A more comprehensive analysis of
each component is presented below.

Positive Thresholding. For the positive thresholding, an
initial high threshold of confidence is used to guarantee the
accuracy of positive selections at the beginning of the train-
ing procedure. The threshold is progressively decreased to a
fixed value within 2 training epochs. We vary this threshold
hyper-parameter, and the experimental results are presented
in Figure 4. With a strictly high threshold 0.6, the result is in-
ferior, since the generated positives with high confidence are
easy samples for training. By relaxing the restriction with a
lower threshold, the evaluation performance can be boosted
consistently. The threshold around 0.45− 0.5 yields the op-
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Figure 4: Ablation on positive thresholding. The x-axis de-
notes the range of decreasing of the positive threshold. The
y-axis represents MegaFace rank1 accuracy.
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Figure 5: Ablation on negative sampling. The x-axis is the
negative sampling rate and the y-axis is the LFW accuracy
performance.

timal performance in our experiments.

Negative Sampling. We further analyze the effect of neg-
ative sampling. The purpose of negative sampling is to pre-
vent the underlying negative noise in the pairwise pseudo-
labels. Figure 5 demonstrate the results with varying nega-
tive sample rates on LFW. As the size of negative pairs pro-
vided by the dictionary queue is much larger than the train-
ing mini-batch size, the experiments show that a relatively
lower negative sample rate would lead to superior perfor-
mance. A lower sample rate would lead to less noisy labels,
but the effective correctly labeled negative pairs are also re-
duced. Hence, if we further reduce the sample rate(lower
than 0.1 in this ablative experiment), it would degrade the
performance.

Multi-view Uncertainty-aware Consistency. For the
Multi-view Uncertainty-aware Consistency, we verify the
effect of MC-Dropout with multiple stochastic forward. In
detail, as the two augmented views are involved to improve
the consistency as well, it would output 2N positive pseudo-
label predictions if we conduct 2N forward passes, and the
intersection of all the predictions is used as the eventual pre-

Multi-view Dropout Forward MegaFace rank1 LFW

Exp1 75.32 97.45
Exp2 ✓ 78.19 98.55
Exp3 ✓ T = 4 81.02 99.00
Exp4 ✓ T = 16 81.11 98.85
Exp5 ✓ T = 64 79.54 98.87

Table 3: Ablation on multi-view uncertainty-aware consis-
tency. The positive threshold is set to 0.5, and the negative
sampling rate is 0.3.

Pretraining
Dataset LFW MegaFace

Rank1
MegaFace

Veri IJB-C

MS1M 99.00 81.02 82.92 84.82
WebFace260M 99.40 89.71 91.22 89.45

Table 4: Comparison of evaluation results obtained by pre-
training on different datasets.

diction. The number of MC-Dropout forward N is set to dif-
ferent values from N = 4 to N = 64 under the setting of
positive threshold 0.5 and negative sampling rate 0.3, and
the results are presented in Table 3. We can see that all the
multi-view and MC-Dropout contribute to the improvement,
as these two strategies can both improve prediction consis-
tency. Increasing forward numbers to 4 led to consistent im-
provement on MegaFace and LFW, while larger numbers led
to comparable and slightly lower performance, probably due
to the exclusion of hard samples with too strict consistency
conditions.

4.4 Discussion about Large-scale Pretraining
Apart from the standard end-to-end training, a two-stage
training is also an option for our proposed method, where
the encoder is initialized by MoCo pretraining on a larger
dataset, and then ”finetuned” by UCoL on a relatively small
dataset. In this way, before the self-labeling even begins, the
discriminative power of the encoder is initially improved.
As a consequence, Ucol can recognize positive samples
more precisely. In table 4, we show the additional result
of model pre-trained on a larger-scale dataset, i.e. Web-
Face260M (Zhu et al. 2021). It can be observed that pre-
training on WebFace260M has a significant performance im-
provement over the end-to-end training on MS1M.

5 Conclusion
We propose the novel uncertainty-aware contrast for un-
supervised facial representation learning. A dual-path mo-
mentum framework is constructed with two types of con-
trastive learning: one is identical to pre-text training with
self-augmentation, and the other is to identify the intra-
instance positive pairs collected by online predictions. Also,
we incorporate a multi-view uncertainty-aware mechanism
in pair-labeling to guarantee accurate selection. We demon-
strate that UCoL improves the performance of unsupervised
models and closes the gap between supervised and unsuper-
vised training.
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