
Text to Point Cloud Localization with Relation-Enhanced Transformer

Guangzhi Wang1, Hehe Fan2, Mohan Kankanhalli2

1Institute of Data Science, National University of Singapore
2School of Computing, National University of Singapore

guangzhi.wang@u.nus.edu, hehe.fan@nus.edu.sg, mohan@comp.nus.edu.sg

Abstract

Automatically localizing a position based on a few natural
language instructions is essential for future robots to commu-
nicate and collaborate with humans. To approach this goal,
we focus on the text-to-point-cloud cross-modal localization
problem. Given a textual query, it aims to identify the de-
scribed location from city-scale point clouds. The task in-
volves two challenges. 1) In city-scale point clouds, similar
ambient instances may exist in several locations. Searching
each location in a huge point cloud with only instances as
guidance may lead to less discriminative signals and incor-
rect results. 2) In textual descriptions, the hints are provided
separately. In this case, the relations among those hints are
not explicitly described, leading to the difficulties of learn-
ing relations. To overcome these two challenges, we propose
a unified Relation-Enhanced Transformer (RET) to improve
representation discriminability for both point cloud and nat-
ural language queries. The core of the proposed RET is a
novel Relation-enhanced Self-Attention (RSA) mechanism,
which explicitly encodes instance (hint)-wise relations for the
two modalities. Moreover, we propose a fine-grained cross-
modal matching method to further refine the location predic-
tions in a subsequent instance-hint matching stage. Experi-
mental results on the KITTI360Pose dataset demonstrate that
our approach surpasses the previous state-of-the-art method
by large margins.

Introduction
Understanding natural language instructions in the 3D real
world is a fundamental skill for future artificial intelligence
assistants to collaborate with humans. In this paper, we fo-
cus on the outdoor environment and study the task of natural
language-based localization from city-scale point clouds. As
shown in Figure 1, given a linguistic description of a posi-
tion, which contains several hints, the goal of the task is to
find out the target location from a large-scale point cloud.
This task can effectively help mobile robots, such as self-
driving cars and autonomous drones, cooperate with humans
to coordinate actions and plan their trajectories. By under-
standing the destination from natural language instructions,
it reduces the human effort required for manual operation.

However, this task is intrinsically challenging. Precise lo-
calization requires both correct language interpretation and
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Heading to a place:
[hint1] east of a dark-green terrain.
[hint2] south of a gray road.
[hint3] west of a dark-green traffic sign.
[hint4] south of a green terrain.

Textual Query

Localization

Figure 1: Illustration of the text to point cloud localization
task. Given a textual query, which usually contains several
independent hints, the goal is to localize the point of interest
in a huge city-scale point cloud.

effective large-scale point cloud understanding. Considering
the difficulties, an existing method (Kolmet et al. 2022) first
divides a city-wide point cloud into several cells, and then
solves this task in a Coarse-to-Fine manner.

The goal of the ‘coarse’ stage is to find out the target
cell that contains the queried location according to the given
natural language descriptions. In this stage, the instances
included in point cloud cells and those mentioned in lan-
guage descriptions are mainly used for text-to-point-cloud
retrieval based on their types, without considering their rela-
tions. In the ‘fine’ stage, each object in the textual query is
matched with an in-cell point cloud instance, whereby a tar-
get location will be predicted from each hint. This pioneer-
ing method sets up a significant starting point for tackling
the challenging task. However, it fails to consider the intrin-
sic relations in both stages, resulting in sub-optimal perfor-
mance.

For the coarse stage, because similar ambient instances
may exist in several cells, performing retrieval based on only
the cell-contained and query-related instance types without
considering their relations may lead to low discriminabil-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

2501



ity for both cell and query representations, which inevitably
leads to ambiguity. Based on those low-discriminability rep-
resentations, it is difficult to find out the correct cell. In the
fine stage, we observe that insufficient cross-modal collabo-
ration leads to difficulties in location refinement. Given the
retrieved cell, precise location prediction requires joint un-
derstanding of both point clouds and textual queries. How-
ever, in the previous method (Kolmet et al. 2022), the cross-
modal collaboration is only performed from textual queries
to point clouds in a single step, which results in optimization
difficulty for multi-task learning.

In this work, we aim to solve the aforementioned short-
comings in both stages. For the coarse stage, we pro-
pose to encode pairwise instance relations to improve rep-
resentation discriminability for both modalities, which is
achieved through a novel Relation-Enhanced Transformer
(RET) architecture. In particular, the in-cell point cloud in-
stance relations are modeled as their geometric displace-
ments, while computed as the fusion of hint representations
in the linguistic domain. These relations from two modali-
ties are respectively incorporated into their representation in
a unified manner, which is achieved through the proposed
Relation-enhanced Self-Attention (RSA) mechanism. For
the fine stage, we perform Cascaded Matching and Refine-
ment (CMR) to enhance cross-modal collaboration. In par-
ticular, different from (Kolmet et al. 2022) which achieves
this objective in a single step, we perform description-
instance matching and position refinement in two sequential
steps. Such formulation allows us to minimize the optimiza-
tion difficulty of multi-objective learning and noisy interme-
diate results, thereby improving cross-modal collaboration.

We validated the effectiveness of our method on the
KITTI360Pose benchmark (Kolmet et al. 2022). Extensive
experiments demonstrate that the proposed method can sur-
pass the previous approach by a large margin, leading to new
state-of-the-art results. Our contributions are three-fold:
• We propose a novel Relation-Enhanced Transformer

(RET) to improve representation discriminability for
both point clouds and textual queries. The core com-
ponent of RET is the Relation-enhanced Self-Attention
(RSA) mechanism, which encodes instance (hint) rela-
tions for the two modalities in a unified manner.

• We propose to perform cross-modal instance matching
and position refinement in two sequential steps. This for-
mulation allows us to minimize the optimization diffi-
culty of multi-task learning and the influence of noisy
intermediate results, thereby improving cross-modal col-
laboration for fine-grained location prediction.

• We perform extensive experiments on the KITTI360Pose
dataset (Kolmet et al. 2022). The results show that our
approach can surpass previous method by a large margin,
resulting in new state-of-the-art performance. Additional
ablation studies further demonstrate the effectiveness of
each component in the proposed method.

Related Work
Transformer and Attention Mechanism. Transformer and
self-attention mechanism (Vaswani et al. 2017; Fan, Yang,

and Kankanhalli 2021) has become increasingly popular in
recent years. Although first proposed for natural language
processing, with architectural adaptation, Transformer has
been widely applied to many vision tasks including visual
recognition (Dosovitskiy et al. 2020; Liu et al. 2021), object
detection (Carion et al. 2020; Zhu et al. 2020) and seman-
tic segmentation (Cheng, Schwing, and Kirillov 2021). Be-
sides, the transformer-based architectures are also utilized to
model cross-modal (e.g., vision and language) relations (Tan
and Bansal 2019; Lu et al. 2019; Li et al. 2019; Zhang et al.
2021; Li et al. 2022). In these architectures, the attention
mechanism is widely employed to implicitly learn relations
among the input tokens. Nevertheless, without explicit rela-
tion encoding, the vanilla Transformer can only encode rela-
tions implicitly with the help of positional encoding (Doso-
vitskiy et al. 2020). To facilitate better relation modeling,
some works modulate the attention computation process
by explicitly incorporating element relations. For example,
(Wu et al. 2021) modified the attention mechanism via uni-
fied relative position bias to improve visual recognition. For
object detection, spatial relations between bounding boxes
are introduced to modulate the attention weights (Liu et al.
2022; Gao et al. 2021). For dynamic point cloud analy-
sis, displacement between points (Fan, Yang, and Kankan-
halli 2022) is utilized for point-specific attention computa-
tion. In this work, we propose to model relations for both
point clouds and language queries by explicitly incorporat-
ing intra-modality relations in a unified manner.
Visual Localization. The task that is most related to ours is
vision-based localization (Arandjelovic et al. 2016; Brach-
mann et al. 2017; Hausler et al. 2021), which is to estimate a
pose based on an image or image sequence. Existing meth-
ods mostly solve this task in two stages (Sarlin et al. 2019;
Sattler, Leibe, and Kobbelt 2016; Zhou et al. 2020). The first
stage finds a subset of all images using image retrieval-based
techniques (Arandjelovic et al. 2016; Hausler et al. 2021;
Torii et al. 2015), while the second stage establishes pixel-
wise correspondence between the query image and the re-
trieved one to predict the precise pose. In this work, we also
study the task of localization in a coarse-to-fine manner, but
differ from visual localization in that: 1) we try to infer the
location from city-wide point clouds instead of images. 2)
we try to estimate the pose from textual query rather than
images. Compared to visual localization, our task requires
multi-modal understanding and is more challenging to solve.
3D Language Grounding. As we humans live in a 3D
world and communicate through natural language, recent
work has begun to investigate the tasks on the cross-modal
understanding of 3D vision and natural language. Among
these tasks, the one that is most related to ours is 3D lan-
guage grounding, which aims at localizing an object in
point clouds from a given natural language query. For ex-
ample, ScanRefer (Chen, Chang, and Nießner 2020) stud-
ies 3D language grounding from real-life in-door scenes.
ReferIt3D (Achlioptas et al. 2020) studies a related task un-
der a simpler setting, which assumes the object instances
are segmented in advance. InstanceRefer (Yuan et al. 2021)
improves previous methods by adopting a 3D panoptic seg-
mentation backbone, utilizing multi-level visual context. Re-
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east of a dark-green terrain.
south of a gray road.

south of a green terrain. 
west of a dark-green traffic sign. 
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Figure 2: Framework of the proposed method. The city-scale point cloud is first divided into individual cells. Then, in the
coarse stage, the cells and the textual query are respectively encoded with the proposed Relation-Enhanced Transformer (RET),
which are later used for query-cell matching. In the fine stage, each hint is matched with an in-cell instance. Then, cross-modal
fusion dynamically aggregates hints and instance representations for offset prediction. The target location is predicted based on
matching results and offset predictions.

cently, graph structure (Feng et al. 2021) is also utilized to
improve the representation learning qualities.

Methodology
Preliminaries
Given a textual query, our goal is to identify the position it
describes from a city-scale point cloud. To handle the large-
scale point cloud, we divide each scene into a set of cubic
cells of fixed size by a preset stride. Each cell C contains a
set of p point cloud instances, which are encoded by Point-
Net++ (Qi et al. 2017) into vector representations {pi}

p
i=1.

Following (Kolmet et al. 2022), the textual query T is repre-
sented as a set of hints {hj}hj=1, each encoding the direction
relation between the target location and an instance.

Inspired by the existing work (Kolmet et al. 2022), given
the cell splits, we solve this task in a coarse-to-fine manner
with two stages. The coarse stage is formulated as textual
query based cell retrieval. The goal of this stage is to train
a model that encodes C and T into a joint embedding space
whereby matched query-cell pairs are close while those un-
matched are pulled apart (Kiros, Salakhutdinov, and Zemel
2014). In the fine stage, given a retrieved cell, we aim to
refine the position prediction by utilizing fine-grained cross-
modal information. In particular, we first match each hint
in the query with an in-cell instance by formulating it as an
optimal transport problem (Liu et al. 2020). After that, with
the matching results, we predict the target location through
a cross-modal fusion of point cloud instance and hint repre-
sentations. Based on the fused representation, we predict the
target location for each matched instance. Finally, we obtain
the target location prediction based on a weighted combi-

nation of the matching and location prediction results. The
framework of our method is shown in Figure 2. In the fol-
lowing of this section, we will explain the proposed method
for coarse stage and fine stage. After that, our training and
inference procedure will be detailed.

Coarse Stage: Relation-Enhanced Transformer
After the cell split, the goal of the coarse stage is to suc-
cessfully retrieve the cell C given a textual query T . To ap-
proach this objective, we need to encode C and T into a joint
embedding space. An intuitive solution is to encode both
C and T based on the instances they contained as is done
in (Kolmet et al. 2022). However, with such representations,
the low discriminability for cells and textual queries results
in poor retrieval performance. We argue that this can be at-
tributed to the following two reasons. On the one hand, the
outdoor scenes are often of low diversity, whereby a group
of mentioned instances can appear at multiple different lo-
cations. Thus, simply describing a cell with its contained in-
stances can result in less discriminative representations. On
the other hand, the textual queries often contain limited clues
compared to the point clouds, making this cross-modality re-
trieval especially challenging. To this end, we propose to ex-
plicitly encode instance-relations to provide more discrimi-
native representations for both modalities.

The Transformer (Vaswani et al. 2017) has been widely
utilized for relation-based representation learning in vari-
ous tasks (Hu et al. 2018; Liu et al. 2021; Fan, Yang, and
Kankanhalli 2022). The key component of the Transformer
is the Self-Attention (SA) operation:

Attn(Q,K,V ) = Softmax(QKT /
√
d)V , (1)
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Pooling

Matmul
Add

Figure 3: Illustration of the proposed Relation-enhanced
Self-Attention (RSA) mechanism. Pairwise relations are ex-
plicitly encoded into the value computation process.

where d is the representation dimension and Q,K,V ∈
RN×d are the query, key and value matrices by transform-
ing in-cell instances (or hints for textual queries) with corre-
sponding linear transformations:

Q = WQX,K = WKX,V = W V X, (2)

with W ∗ ∈ Rd×d are learnable matrices and X = P ∈
Rp×d or H ∈ Rh×d represents stacked instances1.

Despite its generality, the vanilla SA lacks explicit rela-
tions in both modalities, thus is less informative to represent
the cell and query. To this end, we propose a novel Relation-
Enhanced Transformer (RET) to model explicit instance re-
lations in both point clouds and textual descriptions. Our
RET is a stack of multiple Transformer encoder layers, ex-
cept that, in place of SA, we propose a Relation-enhanced
Self-Attention (RSA) to explicitly incorporate relation in-
formation into value computation. The computation process
is shown as follows and illustrated in Figure 3.

RSA(Q,K,V ,R) = Softmax(QKT /
√
d)(V +Pool(R, 1)),

(3)
where R ∈ RN×N×d captures pairwise relations with
Rij ∈ Rd representing the relation between the i-th and j-
th instance (hint). Pool(R, 1) indicates pooling tensor R
along dimension 1. In this way, our model can explicitly
encode instance relations through this computation process,
leading to more informative representations.

The definition of relation varies flexibly with task objec-
tive and input modality. For point cloud data, we take the
geometric displacement of two instances as their relations,
as direction is often mentioned in textual queries and thus
informative for retrieval:2

RV
ij = W V (ci − cj), (4)

where ci ∈ R3 represents the center coordinate of the i-th
instance and W v ∈ Rd×3 transforms the displacement into

1Note that the attention operation is often performed in different
subspaces with multiple heads, which is omitted for simplicity.

2We have also tried other features such as number of points
and bounding boxes of instances but didn’t observe performance
improvement.

embedding space. For the linguistic description, we compute
the hint relation as the concatenation of their embeddings:

RL
ij = WL[hi;hj ], (5)

where WL ∈ Rd×2d transforms the linguistic feature into
representation space. With the computation of RSA, the
instance-wise relations for different modalities can be uni-
formly incorporated into query or cell representations

Finally, the cell (description) representations Cm (Tm) are
obtained via a pooling operation over all instances (hints)
output from the RET for cross-modal retrieval.

Fine Stage: Cascaded Matching and Refinement
Following the coarse stage, we aim to refine the location pre-
diction within the retrieved cell in the fine stage. Inspired
by (Kolmet et al. 2022), we perform instance matching and
location refinement to utilize the fine-grained visual and lin-
guistic information, which involves the following two objec-
tives: (1) For each hint, we find the in-cell instance it refers
to via a matching process. (2) For each matched pair (i, j),
a regressor predicts an offset t̂i ∈ R2 for each matched hint
hj , which represents the offset from the instance center ci
to the target location.3

Previous method (Kolmet et al. 2022) achieves the two
objectives within a single step. However, given the objec-
tive of both hint-instance matching and offset prediction,
the multi-task learning process introduces optimization dif-
ficulty. Furthermore, in the early training steps, the matcher
is only partially trained, which produces noisy matching re-
sults. The regressor learns and makes predictions based on
this noisy results, leading to unstable learning process and
sub-optimal performance.

To this end, we propose a Cascaded Matching and Refine-
ment (CMR) strategy for the fine stage, where hint-instance
matching and offset regression are sequentially performed.
Specifically, following (Kolmet et al. 2022), we first train
the SuperGlue (Sarlin et al. 2020) matcher for hint-instance
matching, which is formulated as an optimal-transport prob-
lem. Given the trained matcher, we obtain a set of hint-
instance matching results {pi,hj , wi}hj=1, where wi repre-
sents the confidence of the match. Then, to reduce the noise
for regression, we predict the target location according to
matched instances only.

Precise location prediction requires proper understand-
ing on both point cloud (what and where the referred in-
stance is, e.g., dark-green terrain) and language de-
scription (what is the relation between the matched instance
and the target location, e.g., east of). For this, we pro-
pose to facilitate cross-modal collaboration via the Cross-
Attention (CA) mechanism, which is commonly used for
cross-modality information fusion.

CA(H,P ) = Attn(WQH,WKP ,W V P ), (6)

where H , P represent hints and instances, respectively, and
W ∗ are learnable transformation matrices. Shortcut connec-
tion and layer normalization (Ba, Kiros, and Hinton 2016)

3For position prediction, we ignore the height information and
considers 2D coordinates only.
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Method
Localization Recall (ϵ < 5/10/15m) ↑

Validation Set Test Set
k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

Text2Pos (Kolmet et al. 2022) 0.14/0.25/0.31 0.36/0.55/0.61 0.48/0.68/0.74 0.13/0.21/0.25 0.33/0.48/0.52 0.43/0.61/0.65
RET (Ours) 0.19/0.30/0.37 0.44/0.62/0.67 0.52/0.72/0.78 0.16/0.25/0.29 0.35/0.51/0.56 0.46/0.65/0.71

Table 1: Performance comparison on the KITTI360Pose.

follows the cross-attention operation. With these operations,
the hint representation hi is accordingly updated to h̃i by
dynamically fusing visual information. As such, the infor-
mation in the two modalities are joint utilized with the help
of cross-modal collaboration.

Then, we predict the offset (the direction vector from in-
stance center to target location) from the updated hint:

t̂i = MLP(h̃j). (7)
To utilize the matching results, the final prediction is ob-
tained via a weighted combination of each hint’s prediction:

ĝ =
∑
i

wi∑
m wm

(ci + t̂i), (8)

where wi ∈ [0, 1] is the confidence score of the match
(pi,hj , wi) and is set to 0 for non-matched instances. To
filter out noisy matches, we consider only matches with con-
fidence score greater than 0.2.

Training and Inference
Training. For the coarse stage, we train the proposed RET
for cross-modal retrieval with pairwise ranking loss (Kiros,
Salakhutdinov, and Zemel 2014):

Lcoarse =

Nb∑
m=1

Nb∑
n̸=m

[α− ⟨Cm, Tm⟩+ ⟨Cm, Tn⟩]+

+

Nb∑
m=1

Nb∑
n̸=m

[α− ⟨Tm, Cm⟩+ ⟨Tm, Cn⟩]+,

(9)

where Nb is the batch size, α is a hyper-parameter to con-
trol the separation strength and ⟨·, ·⟩ represents inner product
between vectors. This loss function encourages the represen-
tation of matched description-cell pair to be by a margin α
closer than those unmatched. For the fine stage, we employ
the loss in (Sarlin et al. 2020) to train the matcher, while L2

loss is applied to train the offset regressor.
Inference. We first encode all cells and queries into a joint
embedding space with the proposed Relation-Enhanced
Transformer. Then, for each query representation, we re-
trieve top-k cells with highest similarity. For each retrieved
cell, we use the SuperGlue matcher trained in the fine stage
to match each hint with an in-cell instance, which is fol-
lowed by offset prediction based on the fused representa-
tions. Finally, the position prediction is given by Eq. 8.

Experiments
Dataset and Implementation Details
Dataset Details. We evaluate our method on the recently
proposed KITTI360Pose dataset (Kolmet et al. 2022), which

is built upon the KITTI360 dataset (Liao, Xie, and Geiger
2021) with sampled locations and generated hints. It con-
tains point clouds of a total of 9 scenes, covering 14,934
positions with a total area of 15.51km2. We follow (Kol-
met et al. 2022) to use five scenes for training, one for val-
idation, and the remaining three for testing. We sample the
cells of size 30m with a stride of 10m. For more details on
the dataset preprocessing, please refer to our supplementary
material.
Implementation Details For the coarse stage, we trained
the model with AdamW optimizer (Loshchilov and Hutter
2018) with a learning rate of 2e-4. The models are trained
for a total of 18 epochs while the learning rate is decayed
by 10 at the 9-th epoch. The α is set to 0.35. For the fine
stage, we first train the matcher with a learning rate of 5e-
4 for a total of 16 epochs. Afterwards, we fix the matcher
and train the regressor based on the matching results for 10
epochs with a learning rate of 1e-4. The regressor is for-
mulated as a 3 layer Multi-Layer Perceptron. Both of the
two steps adopt an Adam (Kingma and Ba 2014) optimizer.
The RET has 2 encoder layers for both point cloud part and
linguistic part, each utilizing the Relation-enhanced Atten-
tion (RSA) mechanism with 4 heads and hidden dimension
2048. For the two stages, we encode each instance in the cell
with PointNet++ (Qi et al. 2017) provided by Text2Pos (Kol-
met et al. 2022) for a fair comparison. The hint representa-
tions are obtained by concatenating learned word embed-
dings. More details are provided in our appendix.4

Comparison with the State-of-the-art

We compared our method with Text2Pos (Kolmet et al.
2022) on the KITTI360Pose dataset. Following (Kolmet
et al. 2022), we report top-k (k = 1/5/10) recall rate of dif-
ferent error ranges ϵ < 5/10/15m for comprehensive com-
parison. The results are shown in Table 1. Text2Pos gives
a recall of 0.14 when k = 1 and ϵ < 5m. In contrast,
our method can significantly improve the recall rate to 0.19,
which amounts to 35.7% relative improvement upon the
baseline. Furthermore, when we relax the localization error
constraints or increase k, consistent improvements upon the
baseline can also be observed. For example, with ϵ < 5m,
our method achieves top-5 recall rate of 0.44, which is 8%
higher than previous state-of-the-art. Similar improvements
can also be seen on the test set, showing our method is su-
perior to the baseline method.

4Code available at: https://github.com/daoyuan98/text2pos-ret
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Method k = 1 ↑ k = 3 ↑ k = 5 ↑
w/o both relations 0.11 0.24 0.32
w/o linguistic relation 0.14 0.28 0.37
w/o visual relation 0.16 0.30 0.40

Full (Ours) 0.18 0.34 0.44

Table 2: Ablation study of the Relation-Enhanced Trans-
former (RET) on KITTI360Pose validation set. ”wo X rela-
tion” indicates replacing the proposed RSA with the vanilla
Self-Attention in the corresponding modality.

Ablation Studies
In this section, we perform ablation studies for both stages
to investigate the effectiveness of each proposed component
in our method. The ablation studies for coarse stage and fine
stage are provided separately for clear investigation.
Coarse Stage. We study the importance of explicit relation
incorporation in the coarse stage. Since the coarse stage is
formulated as a retrieval task, we use top-1/3/5 recall rate as
evaluation metric, whereby the cell that contains the ground
truth location is defined as positive.
Relation Incorporation. We first study the necessity of ex-
plicit relation modeling for both point cloud and textual
queries. The results are shown in Table 2. It can be observed
that relation modeling contributes significantly to successful
retrieval. In particular, without any relation incorporation,
the top-5 recall rate is 0.32. With the explicit fusion of lin-
guistic relation, we observe an increase of 0.05 recall rate
under same condition. Besides, with the incorporation of vi-
sual (point cloud instance) relations only, the top-5 recall
rate can be improved by 0.08, indicating explicit relations
in the point clouds play a more important role. Finally, with
both relations, we achieve an improvement of 0.12 at top-5
recall rate upon that without any relation, showing that both
visual and linguistic relations are necessary and complemen-
tary to improve the cell retrieval performance.
RET Hyper-parameters. We also studied the importance of
the hyper-parameters involved in RET, namely the number
of layers of RET and the number of heads of RSA. The re-
sults are shown in Table 3. It can be observed that, thanks to
the strong relation modeling capacity of the proposed RET,
we can obtain the best performance with 2 layers and 4 heads
in the RSA. Decreasing and increasing the number of layers
both lead to worse performance, which may be attributed to
underfitting and overfitting, respectively.
Fine Stage. The objective of the fine stage is to correctly
match linguistic hints and point cloud instances and regress
the target location. Thus, we study the performance of the
matcher and regressor, respectively.
Matcher. Following (Sarlin et al. 2020), we take precision
and recall as the the evaluation metric of the matcher. With
an identical matcher architecture, we investigate the impact
of training strategy on the matcher performance. The results
are shown in Table 4. It can be seen that compared with joint
training (Kolmet et al. 2022), our cascaded training achieves
not only high precision and recall in the training set, but
also stronger generalization on the validation set. The re-

#Layers #Heads k = 1 ↑ k = 3 ↑ k = 5 ↑
1 4 0.16 0.31 0.40
1 8 0.16 0.30 0.40

2 2 0.17 0.32 0.42
2 4 0.18 0.34 0.44
2 8 0.16 0.31 0.40

3 4 0.16 0.32 0.39
3 8 0.15 0.29 0.37

Table 3: The effects of #layers of RET and #heads of RSA.

Strategy Train Validation
Precision ↑ Recall ↑ Precision ↑ Recall ↑

joint 98.12 98.16 86.67 87.59
cascade(ours) 98.89 99.04 92.18 93.01

Table 4: Comparison of training strategy and matcher per-
formance on the KITTI360Pose dataset.

sults demonstrate that the cascade training strategy is able to
mitigate the multi-task optimization difficulty.
Regressor. The regressor predicts the target location based
on the the matching results. We study the effects of cas-
caded training, cross-attention based cross-modal fusion and
confidence weighting for final location prediction. We use
regression error as evaluation metric and compare different
versions on both KITTI360Pose training and validation set.
The results are shown in Table. 5. Without cascaded training
strategy, the regressor achieves an error of 10.24 and 10.01
on the training and validation set, respectively, which is 1.72
and 0.86 higher than that with cascaded training. This re-
sult suggests that our cascaded training strategy also allevi-
ates the optimization difficulty of the regressor, which was
caused by the noisy intermediate results. Furthermore, with-
out cross-attention mechanism, the regression error also in-
creases by a considerable margin, showing that cross-modal
collaboration is important for precise location prediction. Fi-
nally, with confidence-based weighting, we can further re-
duce the regression error on both the training and validation
set, suggesting this information from the trained matcher can
be further utilized to improve performance.

Visualizations
Embedding Space Visualization. We visualize the learned
embedding space via T-SNE (Van der Maaten and Hin-

Method Train Error ↓ Validation Error ↓
w/o cascade training 10.24 (+1.72) 10.01 (+0.86)
w/o cross-attention 9.57 (+1.05) 9.56 (+0.41)
w/o confidence weighting 9.02 (+0.50) 9.23 (+0.08)

Ours 8.52 9.15

Table 5: Ablation study on the regression error of the fine-
stage on the KITTI360Pose dataset.
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Ground Truth Top-1 Top-2 Top-3 Ground Truth Top-1 Top-2 Top-3

(a) (b) 

(c) 

(e) 

(d) 

(f) 

557.85 10.00 20.00

0.00 10.00 50.99

10.00 0.0 819.08

10.00 0.00 64.03

14.14 211.90 221.36

455.41 1150.00 218.40

Building Pole Traffic Light Traffic Sign Parking Sidewalk Vegetation Terrain Road Wall Garage

Figure 4: Qualitative retrieval results on KITTI360Pose validation set. The red dot in the ground truth cell indicates the target
location. In each retrieved cell, the number in the lower right indicates the center distance between this cell and the ground
truth. Green box indicates positive cell which contains the target location, while red box indicates negative cells.

ton 2008) in Figure 5. It can be observed that the base-
line method Text2Pos (Kolmet et al. 2022) results in a less
discriminative space, where positive cells are relatively far
away from the query and sometimes separated across the
embedding space. In contrast, our method draw positive cell
and query representations closer in the embedding space, re-
sulting in a more informative embedding space for retrieval.

Te
xt

2P
os

O
ur

s

Textual Query Negative CellPositive Cell

Figure 5: T-SNE visualization of embedding space for the
coarse stage. A cell is considered as positive if it contains
the location described by the query. Compared with baseline
method (Kolmet et al. 2022), our method can produce better
representation where positive cells are closer to the target.

Qualitative Cell Retrieval Results. We show some exam-
ple text to point cloud retrieval results in Figure. 4. For a
given query, we visualize the top-3 retrieved cells. A re-
trieved cell is defined as positive if it contains the target lo-
cation. It can be observed that, our method can retrieve the

ground truth cell or those close in most cases. Sometimes,
negative cells can also be retrieved, e.g., top-1 in (a) and
top-3 in (e). It can be seen that these retrieved negative cells
exhibit high semantic similarity with the ground truth cell,
even though far away from it. We also show a failure case (f),
where the retrieved cells are all negative. It can be seen that
even though far away from the target location, all these neg-
ative cells have instances similar to the ground truth. These
observations suggest that outdoor scenes are indeed of low
diversity, indicating that successful retrieval requires highly
discriminative representations to disambiguate the cells.

Conclusion
In this work, we proposed a novel method for precise
text-based localization from large-scale point clouds. Our
method employs a coarse-to-fine principle and pipelines this
process into two stages. For the coarse stage which is formu-
lated as a textual query based cell retrieval task, we aim to
improve representation discriminability for both point cloud
and query representations. This is achieved through explicit
modeling of instance relations and implemented via a newly
proposed Relation-Enhanced Transformer (RET). The core
of RET is a novel Relation-enhanced Self-Attention (RSA)
mechanism, whereby the instance relations for the two
modalities are explicitly incorporated into the value com-
putation process in a unified manner. For the fine stage,
our method performs description-instance matching and
position refinement in a cascaded way, whereby cross-
modal information collaboration is enhanced through the
cross-attention mechanism. Extensive experiments on the
KITTI360Pose dataset validated the effectiveness of the pro-
posed method, which achieves new state-of-the-art perfor-
mance. Additional ablation studies further corroborate the
effectiveness of each component in the proposed method.
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