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Abstract

Event-based cameras are bio-inspired sensors that capture
brightness change of every pixel in an asynchronous man-
ner. Compared with frame-based sensors, event cameras have
microsecond-level latency and high dynamic range, hence
showing great potential for object detection under high-speed
motion and poor illumination conditions. Due to sparsity and
asynchronism nature with event streams, most of existing ap-
proaches resort to hand-crafted methods to convert event data
into 2D grid representation. However, they are sub-optimal in
aggregating information from event stream for object detec-
tion. In this work, we propose to learn an event representa-
tion optimized for event-based object detection. Specifically,
event streams are divided into grids in the x-y-t coordinates
for both positive and negative polarity, producing a set of pil-
lars as 3D tensor representation. To fully exploit information
with event streams to detect objects, a dual-memory aggre-
gation network (DMANet) is proposed to leverage both long
and short memory along event streams to aggregate effective
information for object detection. Long memory is encoded in
the hidden state of adaptive convLSTMs while short mem-
ory is modeled by computing spatial-temporal correlation be-
tween event pillars at neighboring time intervals. Extensive
experiments on the recently released event-based automotive
detection dataset demonstrate the effectiveness of the pro-
posed method.

Introduction
Object detection is regarded as the core basis of autonomous
driving system. Generally, most of detection algorithms are
designed based on frame-based sensors, which enable the
system to better understand the real driving scenarios. These
sensors are inexpensive and can provide rich information of
scenes. However, due to the low frame rate, conventional
cameras is not ideal for object detection under poor illumi-
nation conditions and fast motion. In addition, these cam-
eras only capture static images, making it difficult for frame-
based detectors to leverage motion information of scenes.

With the advance of neuromorphic vision sensing (NVS)
sensors, these limitations of frame-based cameras have been
addressed. Event-based cameras, such as dynamic vision
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Figure 1: Illustration of the proposed method. At each time
step, EventPillars is applied to convert event streams into a
3D grid representation as the input of DMANet. Then our
network leverages both long and short spatial-temporal in-
formation with events to obtain the detection results of the
k-th time step.

sensors (DVS) (Posch et al. 2014), are novel bio-inspired
vision sensors that encode visual information in pixel-level
event streams. In contrast to conventional frame-based cam-
eras, which capture intensity images at a constant frame
rate (e.g., 30fps), event cameras emit sequences of sparse
and asynchronous events only at positions where brightness
changes. Therefore, the event cameras have several advan-
tages such as high dynamic range (HDR, exceeding 140 dB)
(Posch et al. 2014), high temporal resolution, microsecond-
level latency and are almost absent of motion blur. These
properties make event cameras alone attractive in perform-
ing tasks such as object detection (Mitrokhin et al. 2018;
Perot et al. 2020), tracking (Gehrig et al. 2018; Chen et al.
2019; Maqueda et al. 2018) and optical flow estimation
(Zhu et al. 2018; Ye et al. 2018; Ding et al. 2022), even
in challenging scenarios (e.g., low lighting conditions and
high-speed moving scenes) (Gallego et al. 2022).

Output signal of an event camera is a stream of events,
with each one recording an event’s pixel location, time
stamp and polarity, which are very different from conven-
tional cameras. Therefore, it would be difficult to directly
apply image-based object detection approaches to event
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streams. It requires novel representation and paradigm for
object detection with event streams. Most of existing meth-
ods transform asynchronous event data to a synchronous im-
age with several channels over a fixed time interval (Re-
becq, Horstschaefer, and Scaramuzza 2017; Lagorce et al.
2017; Maqueda et al. 2018; Alonso and Murillo 2019).
These methods encode the spatial and temporal informa-
tion of events to facilitate its processing, and are easy to be
applied to standard image-based deep learning algorithms.
Voxel-based methods (Zhu et al. 2019; Perot et al. 2020;
Hu, Delbrück, and Liu 2020) discretizes event streams into
different bins and groups them into a space-time histogram.
However, these hand-crafted event representations discard
sparsity of events and highly quantify timestamps of events,
resulting in low performance among different vision tasks.
Recent approaches Event Spike Tensor (EST) (Gehrig et al.
2019) and MatrixLSTM (Cannici et al. 2020) are directly ag-
gregating information from raw event data through the learn-
able network. These methods have limitations in accuracy
and are only for event-based object classification or optical
flow estimation, thus they may not be applicable with object
detection.

In this paper, we propose two main contributions toward
event-based object detection. First, we present a novel event
processing algorithm named EventPillars, which is end-to-
end learnable representation for object detection. Compared
to existing methods, EventPillars regards each event as a
point in the 3D x-y-t space and can be jointly trained to gen-
erate a compact 2D event representation for event streams
over a time interval. In specific, EventPillars first divides
event streams into a set of equally spaced pillars (along
timestamps of events) and then generates a multi-channel
event image by encoding each pillar with a 2D convo-
lution network. In this way, EventPillars can take advan-
tage of the spatio-temporal sparsity of events, outperform-
ing existing state-of-the-art methods. Second, to make full
use of streaming data to determine locations of objects, we
propose an event-based object detection framework called
Dual Memory Aggregation Network (DMANet), as shown
in Fig. 1. Different from image-based object detection meth-
ods, which discover objects in a static intensity frame,
DMANet dynamically aggregates both long range and short
range spatial-temporal information with the proposed Long
Range Memory module (LRM) and Short Range Memory
module (SRM) respectively. The proposed method is evalu-
ated on an event-based automotive object detection dataset
(Perot et al. 2020). Extensive ablation study demonstrates
the effectiveness of the proposed learnable event represen-
tation EventPillars and event-based object detection frame-
work DMANet. In summary, the contribution of this work
are three-fold:

• EventPillars, a learnable event representation that con-
verts asynchronous streams of events to synchronous
event-based frames is proposed in this work. Compared
to previous hand-crafted representations, EventPillars is
able to aggregate more representative spatial-temporal
information for object detection.

• A novel framework called DMANet, which aggregates

both short and long range history information over time,
is proposed for for event-based object detection.

• The effectiveness of the proposed EventPillars and
DMANet is validated in experiments on 1 Megapixel Au-
tomotive Detection Dataset. It outperforms state-of-the-
art event-based object detectors by noticeable margin of
6.6% mAP.

Related Work

Event Representations. Due to the asynchronous and
sparse nature of events, event processing is of great im-
portance in the event-based vision. In recent years, several
event-based representations have been proposed for vari-
ous tasks. According to event aggregation strategies, these
representations can be divided into hand-crafted transfor-
mations (Rebecq, Horstschaefer, and Scaramuzza 2017;
Maqueda et al. 2018; Park et al. 2016; Lagorce et al.
2017; Alonso and Murillo 2019; Zhu et al. 2018, 2019)
and end-to-end learnable ones (Gehrig et al. 2019; Cannici
et al. 2020). Hand-crafted feature representations are widely
used in event-based vision community, which convert asyn-
chronous event sequences to synchronous frames that can
be directly fed into deep neural networks. However, most
hand-crafted event representations heavily compress tempo-
ral information with events. Several learnable event repre-
sentations have been proposed recently. EST (Gehrig et al.
2019) learns a dense representation directly from raw event
streams by applying an adaptive learning kernel instead of
impulse functions. Matrix-LSTM (Cannici et al. 2020) uses
an LSTM network to process events and aggregate informa-
tion into a 3D tensor. However, these event representations
are mostly designed for task of object classification and may
not be suitable for location-oriented tasks such as object de-
tection. In this work, we propose EventPillars to preserve
sparsity of events while capturing typical spatial-temporal
information with events for the task of object detection in a
learnable way.
Event-based Object Detection. Most relevant works are
event-based object detection approaches which are devel-
oped very recently. Hu et al. (Hu, Delbrück, and Liu 2020)
proposed Network Grafting Algorithm (NGA) by utilizing
powerful deep models pre-trained on images as initializa-
tion, which can save training costs and greatly reuse the
existing frame-based datasets. The fcYOLO (Cannici et al.
2019) converts events into leaky surface and introduces a hy-
brid network that can extract features in a sparse and asyn-
chronous way. Messikommer et al. (Messikommer et al.
2020) designed a novel event-based processing framework
to transform a synchronous network into an asynchronous
one which can process events asynchronously and greatly re-
duce computation. Perot et al. (Perot et al. 2020) introduced
a recurrent event-based object detector with a temporal con-
sistency loss for better regression. Compared to RED (Perot
et al. 2020), we apply LRM and SRM to aggregate both short
and long range spatial-temporal information which is favor-
able for object detection.
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Figure 2: The pipeline of the proposed architecture. Given a set of events {εi}ki=0, EventPillars module converts events to a 3D
tensor. Next, a CNN backbone is used to extract multi-scale features from the converted 3D event representations. These features
are further enhanced over time by aggregating spatial and temporal information within events with Long Range Memory Module
(LRM) and Short Range Memory Module (SRM). Finally, the enhanced spatial-temporal features are fed into detection head to
predict the bounding boxes.

Methods
Overview
Given an event camera with the spatial resolution of H×W ,
it outputs a stream of events whenever the log intensity
changes over a set threshold C. The events are denoted as
{ei}τ = (xi, yi, ti, pi), where (xi, yi) ∈ [0, H] ×[0,W ] are
spatial coordinate of a pixel, ti is the timestamp of the event,
pi ∈ {−1, 1} is the polarity of the change in brightness
and τ is a time interval. Given a stream of events {ei}τ , the
task of object detection is to predict precise bounding boxes
for objects in the scene over the short interval and classify
them into correct object categories. Since the event cam-
era has very high temporal resolution, quantities of events
could be generated in a short interval, making it expensive
and time-consuming to process every incoming event one
by one. In addition, to make it applicable to powerful con-
volutional neural networks, event streams should be con-
verted to grid-like representation like frames. In this work,
we propose a novel learnable event representation called
EventPillars, as shown in Fig. 3. In addition, a Dual Mem-
ory Aggregation Network (DMANet) is proposed for event-
based object detection by aggregating both long and short
range spatial-temporal information. The overall framework
for event-based object detection is shown in Fig. 2.

EventPillars
Due to the sparsity and asynchronicity of event streams,
computing suitable representation for events is the first step
in the event-based vision algorithms. Most of the previous
approaches apply hand-crafted event representation to en-
code spatial-temporal information with event data and then
convert events into a multi-channel image. However, we no-

tice that these representations are highly sensitive to speed-
variant motion scenes, especially for movement-to-still mo-
ments in driving scenes. That is because most hand-crafted
representations are spatially sparse, which makes them less
robust to the change of number of events. Although some
learning-based event representations (Gehrig et al. 2019;
Cannici et al. 2020) have been proposed recently, they are
only validated on object classification and may not be suit-
able for location-oriented tasks like object detection.

Motivated by the success of learnable representation
PointPillars on point cloud (Lang et al. 2019), we also pro-
pose to compute event representation with a learnable en-
coder instead of relying on a fixed one. The design of Event-
Pillars is shown in Fig. 3. Event representations for positive
events and negative events are computed separately but in a
similar way. For positive events, we first divide them into a
series of equally spaced grids in the x-y plane and each grid
has a size of 1×1 in our experiments. Since directly process-
ing millions of events would dramatically increase computa-
tion cost, we group events into D slices along time and then
randomly sample a few events for each grid in a group. We
then set a fixed number of pillars (K) and a fixed number of
events (M ) per pillar. Spatial coordinates of pillars and num-
ber of events in it are recorded. Note that dense representa-
tion (RK×M×C), coordinates of pillars (RK×3) and event
numbers per pillar (RK×1) are initialized with zero. For
each pillar, it is a container that receives events within the
corresponding spatial grid in chronological order. Events in
that container would be randomly discarded if the number of
events in the pillar is more than M . For all remained events
in those pillars, we augment each of them (x, y, t) with three
additional dimensions (x − xc, y − yc, t − tc), where sub-
script c denotes the mean of those remained events. In this
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Figure 3: The pipeline of EventPillars Representation.

way, we are able to create a dense tensor representation
T1 ∈ RK×M×C , where C is 6, K and M are set manually.

Next, we apply a 1D convolution operation followed by
a batch normalization and a relu operation to generate T2 ∈
RK×M×C

′

. Then a max-pooling operation is taken to gener-
ate T3 ∈ RK×C

′

. Now we have obtained pillar features and
coordinates of each pillar, we can map the features of pillars
to a pseudo-image To ∈ RH×W×C

′

based on the location of
pillars, which called Scatter operation. The implementation
of the EventPillars’s output formulated as:

T2 = Conv1×1 (BN (ReLU(T1))) , T2 ∈ RK×M×C
′

(1)

T3 = MaxPool (T2) , T3 ∈ RK×C
′

(2)

To = Scatter (T3) , To ∈ RH×W×C
′

(3)

In this way, our EventPillars preserves more spatial-
temporal information of events than hand-crafted represen-
tations, providing a more representative feature for event-
based object detection.

Dual Memory Aggregation Network
Although event cameras show certain robustness under chal-
lenging scenarios, there are few event-based object detec-
tion algorithms. Here we propose a novel object detection
framework for event streams, i.e., Dual Memory Aggrega-
tion Network (DMANet). It consists of a Long Range Mem-
ory (LRM) module and a Short Range Memory (SRM) mod-
ule. Both memory modules work together to extract and ag-
gregate informative spatial-temporal features for object de-
tection. Input of this network is a sequence of tensor rep-
resentations {Tk} ∈ RH×W×2C′

computed using EventPil-
lars.
Short Range Memory Module. Events are almost continu-
ous in time and moving trajectories of objects are recorded.
To model spatial-temporal correlation between consecutive
time intervals, we propose a Short Range Memory (SRM)
module. It combines informative features of both previous
and current time intervals such that temporal continuity with
object movement could be fully exploited.

The design of the SRM module is shown in Fig. 2. Specif-
ically, at the k-th time interval, a tensor representation Tk

produced by EventPillars is taken as input of the backbone
with several ResBlocks (He et al. 2016) to compute multi-
scale features

{
F i
k

}
i=1,2,3

∈ Rhi×wi×ci . To make full use

of spatial-temporal correlation between F i
k and short-range

memory F i
k−1, for each spatial scale i we first apply 1 × 1

convolutions to transform features of two time intervals, and
then compute a temporal attention map Ai ∈ Rhiwi×hiwi

through a softmax layer similar to (Wang et al. 2018) as fol-
lows:

Ai = softmax

(
θ
(
F i
k

)
∗ ϕ
(
F i
k−1

)T√
ci
r

)
, (4)

where ci
r is the reduced number of channels and T denotes a

transpose operation. Such an attention map is able to model
spatial-temporal correlation between consecutive temporal
intervals. Finally, the output of SRM module is temporally
aggregated features F̂ i

k ∈ Rhi×wi×ci which is computed by
applying temporal attention to features from previous inter-
val F i

k−1 as follows:

F̂ i
k = F i

k +Ai ∗ φ
(
F i
k−1

)
(5)

Therefore, in the SRM module, information from the previ-
ous interval k − 1 can be instantly integrated into the events
in the following interval k.
Long Range Memory Module. Since events are triggered
once brightness change exceeds a threshold δ, there would
be few events when there is no motion in the scene. In
this case, only focusing on information from recent mem-
ory could not promote integration of spatial and temporal in-
formation. Hence, we further design a module named Long
Range Memory (LRM) to capture informative features ag-
gregated over longer range of time for object localization.

The core module of the proposed LRM is a novel variant
of ConvLSTM (Shi et al. 2015), which is different from re-
current achitecture proposed by (Perot et al. 2020). A Con-
vLSTM layer can preserve history information through its
hidden state and cell unit, hence being widely used in dif-
ferent event-based vision tasks (Rebecq et al. 2019; Cadena
et al. 2021; Cannici et al. 2020). However, as for the task
of event-based object detection in autonomous driving sce-
nario, it is not trivial to directly fuse features of both past
and present for localizing objects. Object movement would
cause misalignment between features in the past and current
time step, which makes it difficult to effectively aggregate
discriminative features about objects and ignore irrelevant
features in the background. To address this issue, we pro-
pose Adaptive-ConvLSTM, which can adaptively capture
long temporal dependencies and aggregate spatial-temporal
features over long range in time, as illustrated Fig. 2. At each
time step k, an embedding layer consisting of 3 × 3 convo-
lutions is applied to the features Fk−1 and Fk. An adaptive
weight is computed to measure the importance of previous
memory units hk−1 and ck−1 through cosine similarity. If
the features F i

k−1 and F i
k are highly relevant, a larger weight

would be assigned to the previous memory units. In this way,
the Adaptive-ConvSTM module not only can adaptively dis-
till the informative features contained in past time steps, but
also build temporal dependencies in the long temporal range.
This would benefit the detection process even in case of little
events are triggered.
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Event Representation Description mAP@0.5 mAP

Event Frame (Rebecq, Horstschaefer, and Scaramuzza 2017) Image of event polarities 37.1 17.7
Event Count (Maqueda et al. 2018) Separate images of events for both polarities 37.4 17.7
Timestamp Image (Park et al. 2016) Image of most recent timestamp 38.9 18.9
Time Surface (Lagorce et al. 2017) Exponential of newest timestamps 35.6 17.0
EV-SegNet (Alonso and Murillo 2019) Image of filtered timestamps & event count 40.0 19.4
Voxel Grid (Zhu et al. 2019) Discretized event volume via binning 39.7 18.8
MatrixLSTM (Cannici et al. 2020) Learned with LSTM 36.5 18.0
EventPillars (Ours) Learned discretized pillars via sampling 42.1 21.3

Table 1: Object detection performance (mAP@0.5 and mAP@0.5:0.95) of different event representations on the 1 Mpx Auto-
Detection Sub Dataset. B and C denotes the number of temporal bins and channels, respectively.

Method mAP@0.5 / mAP params / runtime

RetinaNet-18
(Lin et al. 2017)

26.4 / 13.9 20.1M / 25.6ms

RetinaNet-34
(Lin et al. 2017)

34.1 / 18.1 30.1M / 32.4ms

E2Vid-RetinaNet
(Rebecq et al. 2019)

37.3 / 20.0 30.8M / 111.5ms

RED est
(Gehrig et al. 2019)

35.7 / 17.6 27.9M / 44.0ms

RED
(Perot et al. 2020)

39.7 / 18.8 27.9M / 39.8ms

DMANet voxel
(Ours)

44.4 / 22.7 28.2M / 29.4ms

DMANet (Ours) 46.3 / 24.7 28.2M / 30.2ms

Table 2: Evaluation on the 1 Mpx Auto-Detection Sub
Dataset.

Experiments
In this section, we first introduce the experimental setup
for the event-based object detection task. Then we present
the implementation details of the proposed EventPillars and
Dual Memory Aggregation Network (DMANet). In addi-
tion, we also perform an extensive comparative evaluation
of event representations for event-based object detection and
compare the proposed DMANet with other state-of-the-art
event-based vision methods. We also provide both visualiza-
tion of detection results as well as visualization. Finally, we
conduct some ablation studies on a publicly available event-
based Automotive Detection Dataset (Perot et al. 2020).

Experimental Setup
1 Mpx Auto-Detection Sub Dataset. Although event cam-
eras have great potential in object detection under poor il-
lumination conditions as well as high-speed motion, there
are only a few available datasets for object detection. Proph-
esee was the first to release a high-resolution large-scale
dataset for event-based object detection, with a 1280 × 720
event camera (Finateu et al. 2020). However, after visualiz-
ing event data in the dataset, we found that there are sev-
eral problems with the dataset, such as mosaicing events
and incorrect labels, which may cause difficulty in model
training. Therefore, we conduct data cleaning and sample a
subset of challenging scenes from the original 1 Megapixel

Automotive Detection Dataset. We named this new dataset 1
Mpx Auto-Detection Sub Dataset. It has over 250 GB high
quality event data after compression. The ratio of training
set, validation set and test set is 0.70 : 0.15 : 0.15, which is
similar to dataset used by the original authors. All the exper-
iments are conducted on this dataset in the following.
Evaluation Metrics. We follow the previous work (Perot
et al. 2020) to evaluate the performance of the proposed
methods using the COCO metrics (Lin et al. 2014), and we
report mAP@0.5 and mAP@0.5:0.95 respectively. We then
select the best model on the validation set and apply it to the
test set to report the final mAP.

Implementation Details
Implementation of EventPillars. In our experiments, we
set the time interval of event streams to 50ms, which is same
as (Perot et al. 2020). For each pillar, we set the maximum
number of events per pillar M to 5 and the number of non-
empty pillars K to 100k. In addition, the output channels of
EventPillars are set to 16. In order to make a fair compar-
ison for other event processing strategies, the output of all
event representations are uniformly resized to 512 × 512 in
both training and inference phase. Note that no extra data
augmentation is applied.
Implementation of DMANet. The proposed DMANet is
built based on Pytorch. We use ResNet-18 (He et al. 2016)
as the backbone of our network. As for the optimization,
we use Adam optimizer with an initial learning rate of 2e-
4 and a cosine annealing scheme for learning rate schedul-
ing (Loshchilov and Hutter 2017). The time step for train-
ing adaptive ConvLSTMs is empirically set to 10 according
to GPU memory. All the experiments are conducted on a
single NVIDIA RTX 2080Ti GPU. The code is available at
https://github.com/wds320/AAAI Event based detection.

Effectiveness of the Proposed Method
Effectiveness of EventPillars. We evaluate the proposed
event representation method EventPillars on the 1 Mpx
Auto-Detection Sub Dataset and compare it with several
hand-crafted event representations, as shown in Tab. 1. Since
there is no publicly available code for event-based object de-
tection approaches, we reproduce the RED method (Perot
et al. 2020) by ourselves with help from the authors. It is
taken as the baseline to evaluate the performance of differ-
ent event representation methods.

2496



Our
DMANet

RED

E2Vid+
RetinaNet

RED

E2Vid+
RetinaNet

Our
DMANet

 time

Figure 4: The qualitative results of RED, E2Vid-RetinaNet and DMANet in different scenarios.

As shown in Tab. 1, the proposed EventPillars represen-
tation achieves the best performance among the compared
event representation methods. That could be attributed to its
capability in effectively aggregating spatial-temporal infor-
mation from event streams. In addition, end-to-end learn-
ing fashion provides much flexibility and allows the Event-
Pillars representation to fully adapt to the task of event-
based object detection. In particular, the proposed EventPil-
lars outperforms the widely adopted Voxel Grid method by
2.4% w.r.t mAP@0.5. Simple 2D grid representations based
on histogram of events like Event Frame and Event Count
give very poor results due to their heavy compression of
event in temporal dimension. Loss of temporal information
make them not able to sufficiently leverage temporal con-
tinuousness with object movement. Time Surface performs
worst with only 35.6% mAP because it is very sensitive to
the choice of exponential decay kernel function and noisy
events. MatrixLSTM is also an end-to-end representation,
learning a dense representation from raw events directly, but
only achieves 36.5%mAP due to limit in preserving spatial-
temporal information within events. Generally, event repre-
sentations with multiple channels such as Voxel Grid, EV-
SegNet and EventPillars show better performance than 2D
grid image-like representations such as Event Frame, Event
Count and Time Surface.
Effectiveness of DMANet. Tab. 2 shows the quantitative
comparison results in terms of two evaluation metrics on the
1 Mpx Auto-Detection Sub Dataset. Although the 1 Mpx
Dataset was recorded together with a RGB camera, only
event data are released by the author, thus we do not compare
our event-based detector with other image-based algorithms.
Note that here all detectors use the same Voxel Grid event
representation as used in (Zhu et al. 2019) for fair compari-
son except for the proposed DMANet which uses EventPil-
lars event representation and the method EST. Since ResNet-

18 and ResNet-34 are not equipped with temporal informa-
tion modeling capability and only spatial information within
events are exploited, they perform worst among the com-
pared methods. By directly aggregating stream of events
into reconstructed images with E2Vid (Rebecq et al. 2019),
E2Vid-RetinaNet is able to implicitly leverage both spatial
and temporal information within events and achieves better
performance. By explicitly exploiting temporal information
within events in the object detector, the RED model (Perot
et al. 2020) and the proposed methods are able to make
further improvement on detection performance. DMANet,
the proposed method with the same event representation
as RED, outperforms state-of-the-art method RED by 4.7%
w.r.t. mAP with only 0.3M increase on the number of param-
eters. That could be attributed to the effectiveness of dual
memory mechanism, i.e., LRM and SRM, in extracting in-
formative features for the task of object detection. By re-
placing Voxel Grid representation with EventPillars, there is
another gain of 1.9% mAP in object detection performance.

Visualization of Detection Results
As shown in Fig. 4, we show the visual detection results
of previous methods RED (Perot et al. 2020), E2Vid (Re-
becq et al. 2019) with RetinaNet and the proposed DMANet
sequentially by row. In the first case (corresponding to the
first to third rows), there is no relative motion between event
camera and scene, thus only few events are generated. It is
obvious that RED performs well at the first time step, but the
performance drops dramatically as time went by. Compared
with RED, our model can effectively aggregate both long
range and short range spatial-temporal information from
events. Thus, the proposed DMANet can continue detect-
ing objects even when stopping generating events for a long
period. E2Vid-RetinaNet first reconstruct grayscale image
from events through the memory unit of ConvLSTM, and
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Baseline LRM SRM Skip-sum mAP@0.5

✓ 39.9
✓ ✓ 42.0
✓ ✓ ✓ 43.4

✓ 41.3
✓ ✓ ✓ ✓ 44.4

Table 3: Ablation study on effectiveness of each component
in our DMANet.

Method mAP@0.5 mAP params

a 40.7 20.9 47.5M
b 41.0 21.0 47.5M
c 42.0 21.1 26.8M

Table 4: The performance of different combinations of
method in LRM.

then uses RetinaNet to detect objects. This method highly
depends on the quality of reconstruction and not trivial to
be trained in an end-to-end manner. In the second case (cor-
responding to the top three rows), some two-wheelers are
moving fast in front of the car. It can be seen that nei-
ther E2Vid-RetinaNet nor RED can detect two-wheelers as
well as heavy-occluded vehicles. However, the proposed
DMANet can still detect these objects correctly.

Ablation Study
Effectiveness of each component. To demonstrate the ef-
fect of key components in the proposed method, we con-
duct a series of ablation experiments on the 1 Mpx Auto-
Detection Sub Dataset. In ablation experiments, ResNet18
is used as the backbone network, and we add three Con-
vLSTM layers before FPN layer as our base detector. Long
Range Memory (LRM) and Short Range Memory (SRM)
are two key components of the proposed method. As illus-
trated in Tab. 3, the baseline model achieves 39.9% mAP
on 1 Mpx Auto-Detection Sub Dataset. By only using LRM
module instead of ConvLSTM, we boost mAP with an ad-
ditional +2.1%, demonstrating that LRM can effectively ac-
cumulate relevant information during a time interval. Next,
by using the single frame detector RetinaNet-18 along with
SRM module, we achieve 41.3 %mAP, which shows that the
strength of capturing spatial-temporal correlation features of
SRM. And then, we add the skip-sum layers to fuse low-
level and high-level temporal features, the mAP has reached
43.4%. Finally, by adding SRM module, we boost the mAP
with an additional +1.0%, achieving 44.4%. These improve-
ments show the effects of individual components of the pro-
posed approach.
Effectiveness on feature integration strategy in LRM. In
order to explore the effectiveness of different combination
methods of LRM, we conduct three experiments and report
mAP as well as parameters of models, as shown in Tab. 4.
We use the RetinaNet with ResNet-18 as the base model for
fair comparison. First, we combine several LRM modules
after multi-scale outputs of FPN in method a, each LRM

33.9

17.5

39.7
42.1 42.0 41.9 41.9

20.4 21.3 21.3 21.3 21.2

Figure 5: Analysis on the maximum number of pillars.

module is connected with a 3× 3 convolution with stride of
2. As for method b, we only use the largest scale feature of
FPN instead of multi-scale features. In method c, we place
LRM modules before FPN and the input of each LRM is
different scale of features from Resblock. From Tab. 4, we
observe that different strategies of combination LRM can
obtain good mAP. However, since parameters of ConvLSTM
increases exponentially with input channels, method a and
b have larger parameters than method c. Thus, we choose
method c as in final implementation.
Analysis on the maximum number of pillars. In Event-
Pillars, a series of maximum number of pillars are used to
aggregate information from event streams. To determine the
appropriate number of pillars, we conduct a series experi-
ments on different numbers of pillars from 20k to 120k. In
this experiment, we train the (Perot et al. 2020) with Event-
Pillars. We set the maximum number of pillars to 100k dur-
ing training and set different number of pillars in inference
phase. As shown in Fig. 5, we achieve the best performance
of 42.1% mAP by setting maximum pillar number to 60k.
It’s obvious that if we decrease the pillar number from 40k
to 20k, mAP will be dropped significantly. This is because
there are still many events in 3D-space that are not covered
by pillars. Similarly, when we keep increasing the number
of pillars, all events will be utilized, leaving the extra pillars
unused, thus mAP hardly increases anymore.

Conclusion

This work is targeted for event-based object detection. To
make full use of information within events for the task of
object detection, we propose a novel learnable event repre-
sentation, namely EventPillars. It converts both positive and
negative polarity of events into a set of pillars, generating a
3D tensor representation. Different from hand-crafted event
representation methods, EventPillars can extract informative
spatial-temporal features and can be trained together with
object detector for high detection performance. In addition,
an object detection framework designed for event streams
called DMANet is presented. It leverages both long and
short range memory modules to effectively aggregate spa-
tial and temporal information for object detection. Extensive
experiments demonstrate the effectiveness of the proposed
methods and its superiority compared to other approaches.
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