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Abstract
Zero-shot (ZS) sketch-based three-dimensional (3D) shape
retrieval (SBSR) is challenging due to the abstraction
of sketches, cross-domain discrepancies between two-
dimensional sketches and 3D shapes, and ZS-driven seman-
tic knowledge transference from seen to unseen categories.
Extant SBSR datasets suffer from lack of data, and no cur-
rent SBSR methods consider ZS scenarios. In this paper,
we contribute a new Doodle2Object (D2O) dataset consist-
ing of 8,992 3D shapes and over 7M sketches spanning
50 categories. Then, we propose a novel prototype con-
trastive learning (PCL) method that effectively extracts fea-
tures from different domains and adapts them to unseen cat-
egories. Specifically, our PCL method combines the ideas
of contrastive and cluster-based prototype learning, and sev-
eral randomly selected prototypes of different classes are as-
signed to each sample. By comparing these prototypes, a
given sample can be moved closer to the same semantic
class of samples while moving away from negative ones.
Extensive experiments on two common SBSR benchmarks
and our D2O dataset demonstrate the efficacy of the pro-
posed PCL method for ZS-SBSR. Resource is available at
https://github.com/yigohw/doodle2object.

Introduction
Free-hand sketches comprise a universal modality of human
artistic communications across society. Throughout history,
people of all backgrounds have used sketches to tell sto-
ries, express needs, and transcend language barriers. In mod-
ern times, with the pervasive nature of touchscreen devices
and the rapid development three-dimensional (3D) sensing
and modeling technologies, sketch-based 3D shape retrieval
(SBSR) has attracted widespread attention for these and
other reasons (Wang, Kang, and Li 2015; Dai et al. 2017;
Dai, Xie, and Fang 2018; Qi, Song, and Xiang 2018; He
et al. 2018; Xu et al. 2020; Dai and Liang 2020).

However, hand sketches must be drawn asynchronously
by humans, at the same time, there is a certain threshold
for 3D sensing and modeling. Therefore, data scarcity is
a major bottleneck faced by almost all researches on both
sketches and 3D shapes, when attempting to intuit mean-
ing from adjacent domains. Compared with computer vision
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tasks that rely on large-scale image datasets (Li et al. 2013,
2014b), SBSR tasks are dwarfed in both variety and volume,
wherein the maximum number of classes number just over
100 with no more than 80 samples per class in most cases.
This predicament seems to make the task of SBSR nigh im-
possible, thus largely motivates the task of zero-shot SBSR
(ZS-SBSR), which effectively identifies unseen but related
classes during training to promote practical SBSR knowl-
edge expansion applications.

ZS-SBSR is extremely challenging based on the field’s
highly abstract sketches and huge cross-domain discrepan-
cies between two-dimensional (2D) drawing sketches and
3D shapes. Nevertheless, for ZS learning, ZS-SBSR requires
the transference of semantic knowledge from seen to unseen
classes. However, this describes a capability area in which
traditional SBSR methods generally cannot be applied.

To handle these challenges, we propose a new prototype
contrastive learning (PCL) method (Fig. 1) whose training
process consists of two stages, intra-domain feature extrac-
tion and cross-domain feature alignment, upon which our
novel prototype contrastive loss is framed. After training,
samples from different domains are clustered near their cor-
responding prototype to effectively distinguished positive
and negative samples, including unseen ones that appear
during retrieval. Accordingly, our PCL method can handle
the ZS-SBSR problem.

Furthermore, to advance the practical adaptation of ZS-
SBSR, it is necessary to build a suitable dataset. Thus, we
start with the Doodle2Object (D2O) dataset, which can be
augmented to meet the challenges of ZS-SBSR with the help
of ModelNet40 (Wu et al. 2015) and QuickDraw (Ha and
Eck 2017). D2O consists of 8,992 3D shapes and more than
7M sketches spanning 50 categories. The dataset guarantees
a sample size of at least 30 items per 3D shape class and
contains the temporal information of sketches. We believe
that the proposed D2O dataset has the potential to mimic
the real-world semantic gap between sketches and the larger
domain of 3D shapes.

Extensive experiments are conducted in this study using
the two most common SBSR benchmarks (i.e., SHREC’13
(Li et al. 2013) and SHREC’14 (Li et al. 2014b)), showing
that the proposed PCL method applied to ZS-SBSR outper-
forms contemporary methods on temporal sketch informa-
tion, demonstrating PCL’s potential for the practical appli-
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Figure 1. Proposed prototype contrastive learning method for zero-shot sketch-based three-dimensional shape retrieval.

cation of ZS-SBSR. In summary, the main contributions of
this paper are as follows:
1. An extended SBSR to the more practical ZS-SBSR us-

ing a novel PCL method to improve effective retrieval
for cross-domain data as well as unseen classes;

2. PCL-clustered samples of sketches or 3D shapes near the
corresponding prototype that take advantage of both pro-
totype and contrastive learning to effectively distinguish
between negative and unseen samples;

3. An augmented D2O dataset that alleviates the data
scarcity of existing SBSR data and provides sketches that
are closer to real scenarios;

4. A method that outperforms state-of-the-art SBSR meth-
ods on two widely used benchmarks and our augmented
D2O dataset.

Related Work
SBSR
For decades, many SBSR methods (Li et al. 2013, 2014b;
Furuya and Ohbuchi 2013; Li et al. 2014a) have been built
upon handcrafted features. Then, (Wang, Kang, and Li 2015)
used a Siamese deep learning network to address cross-
domain retrieval problems. Deep correlated (Dai et al. 2017)
and holistic metric learning (Dai, Xie, and Fang 2018) meth-
ods both use discriminative losses to increase the distin-
guishability of different inner-domain classes and correla-
tion losses to minimize the distances between inter-domain
classes. For the first time, structural equation modeling (Qi,
Song, and Xiang 2018) aligns sketches and 3D shapes in a
common semantic space rather than the usual joint feature
space. The triplet-center loss (He et al. 2018) improves the
triplet loss using the combination of center loss. Best view
selection (Xu et al. 2020) selects the best perspective view
of 3D shapes according to training sketches before adopting

a multiview convolutional neural network (Su et al. 2015).
Based on the idea of knowledge distillation, the cross-modal
guidance network (Dai and Liang 2020) first employs a 3D
shape feature extractor and considers it as a teacher to guide
the feature learning of sketches.

We adopt a deep metric method based on prototype learn-
ing in this paper in which the training process is an in-
stance of online distillation. Sketches and 3D shapes are
used together to construct prototypes in the common seman-
tic space.

ZS Retrieval Learning
ZS learning is widely used in various computer vision appli-
cations, such as the related ZS sketch-based image retrieval
(SBIR) task. (Yelamarthi et al. 2018) used conditional vari-
ational and adversarial autoencoders to associate the visual
information of a sketch to that of an image. (Dey et al. 2019)
applied domain and triplet ranking losses to learn a common
embedding space in which the distances between sample
pairs in the same class were smaller than pairs from different
classes. The SEM-paired cycle-consistent generative model
(Dutta and Akata 2019) maps sketch and image characters
to a common semantic space while preserving the back-
translation ability. Semantic-aware knowledge preservation
(Liu et al. 2019) generates fake images from sketches for
the cross-modal retrieval task. The progressive cross-modal
semantic network (Deng et al. 2020) cross-reconstructs se-
mantic features extracted from sketches and images. The
prototype- and memory-enhanced joint distribution optimal
transport method (Hu et al. 2021) introduces trainable clus-
ter prototypes and feature memory banks for unsupervised
SBIR tasks.

In this paper, we map sketch and 3D shape features ad-
jacent to the corresponding prototype, built by the memory
banks of both domains in the common semantic space.
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A More Practical SBSR Dataset

(a) (b) (c)

Figure 2. Samples from sketch or 3D shape datasets,
take categories of bicycle and dog as examples: (a)
SHREC’13/14 shapes; (b) SHREC’13/14 sketches; (c)
QuickDraw sketches. QuickDraw sketches are noticeably
more abstract but are still recognizable.

SHREC’13 (Li et al. 2013) and SHREC’14 (Li et al.
2014b) are the most widely used benchmark datasets for
SBSR tasks. Figs. 2(a) and 2(b) show examples of 3D
shapes and sketches from the datasets. SHREC’13 contains
7,200 hand-drawn sketches and 1,258 3D shapes divided
into 90 classes, each containing 50 sketches for training
and 30 for testing. However, the number of distinct classes
differs for the 3D sketches, where 23 of the 90 classes
have sample sizes no greater than five. SHREC’14 is larger
than SHREC’13, which contains 13,680 sketches and 8,987
3D shapes grouped into 171 classes. Like SHREC’13, this
dataset contains 80 sketches per class: 50 for training and 30
for testing. 38 of the total 171 classes have samples of 3D
less than five shapes.

The scarcity of data in some classes complicates network
learning. Moreover, the sketch samples of SHREC’13/14 are
normal Portable Network Graphics formats that lack natural
temporal sketching information. These have relatively fine
styles compared with an actual user’s free-hand doodling,
which can be described by comparing Figs. 2(b) and 2(c).
Accounting for the limitations of the benchmark datasets, we
contribute a new D2O dataset for the ZS-SBSR task consist-
ing of 8,992 3D shapes and more than 7M sketches divided
into 50 classes.

For the 3D shapes, we extend the SHREC’14 datasets
with ModelNet40 (Wu et al. 2015), one of the most widely
used for 3D shape recognition. The sample size of each class
is guaranteed to be 30 or greater. Nearly 60% of the classes
contain more than 100 3D shapes, and five classes have more
than 500 samples.

To gain a better insight into the actual SBSR performance,
we use the QuickDraw (Ha and Eck 2017) dataset, which
contains 50M drawings sorted into 345 classes collected
from the “Quick, Draw!” game in which users sketched ob-
jects of a given class in 20 s. The dataset contains a large va-
riety of temporal data based on the accumulation of strokes.
Samples tend to match real SBSR scenarios in which non-
expert artists search for 3D shapes by sketching. Examples
are shown in Fig. 2(c).

To the best of our knowledge, this is the first dataset ori-
ented to an SBSR task containing many sketches created
by real users, guaranteeing sample sizes for each 3D shape
class. Our D2O production is a notable step toward the prac-
tical application of ZS-SBSR techniques.

Methodology
Problem Definition
In describing ZS-SBSR, dataset D is defined by
{(xi, yi, ci)|ci ∈ C}, where xi, yi and ci represent the
sketch, 3D shape and the class label of the ith sample,
respectively. Here, C is the set of all possible classes in
D. In our ZS setting, the model is required to test data
whose classes have never been used for training; thus, C is
split into Cs(seen)and Cu(unseen), where Cs ∪ Cu = C and
Cs ∩ Cu = ∅. According to Cs and Cu, we define the training
set, Dtrain = {(xi, yi, ci)|ci ∈ Cs}, and the testing set,
Dtest = {(xi, yi, ci)|ci ∈ Cu}.

PCL

(a) PL (b) CL (c) PCL

Figure 3. Prototype contrastive learning (PCL).

Retrieval methods usually apply triplet loss training,
which pulls the anchor closer to the positive sample and
moves it farther away from negative ones. Hence, mod-
els trained in this fashion show good retrieval performance.
Nonetheless, this does not well-match the real-world situa-
tion. Specifically, the triplet loss-based approach assumes an
equal proportion of positive and negative samples. However,
when we conduct real retrieval tasks, many more negative
than positive samples exist.

We apply the PCL method to cope with this imbalance
using prototype learning (PL) (Snell, Swersky, and Zemel
2017; Ji et al. 2020) to aggregate samples of the same cate-
gory while using contrastive learning (CL) (Wu et al. 2018;
He et al. 2020) to move the sample away from negatives. Our
PCL draws on the main ideas of both methods, as shown in
Fig. 3. Moreover, it is not bound to any particular modal-
ity and has the potential to transfer knowledge from seen to
unseen classes. Thus we apply it to the ZS cross-modality
retrieval scenario.

The PCL process contains two steps. First, we randomly
choose the negative classes based on the training sample and
calculate prototypes (including positives) by concentrating
the samples in memory. Second, we update the network pa-
rameters in memory according to the prototype contrastive
loss, Li,P

NCE (Eq. 1), which references the instance-wise con-
trastive loss function (Oord, Li, and Vinyals 2018), formu-
lated as

Li,P
NCE = − log

exp(sim(vi, Pc+)/τ)∑
exp(sim(vi, Pc)/τ)

, Pc ∈ P . (1)

where v is the feature extracted from the sample, sim is
a similarity measure function that uses the L2 parametric, τ
is the temperature coefficient (0.07), M is the memory bank
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in which v is stored, Pc is the clustering center prototype of
the class-c features in M, c+ is the positive class, and P is
the set of prototypes updated with M.

PCL-Based Intra-Domain Feature Extraction
Influenced by the Siamese network, some models (Wang,
Kang, and Li 2015; Dai et al. 2017; Dai, Xie, and Fang
2018; Dai and Liang 2020; Dey et al. 2019) that deal with
the cross-domain retrieval task use structurally similar fea-
ture extractors on both source and target domains and design
a complex cross-domain loss function to reduce the inter-
domain gap. This is useful for free-hand sketches and real-
life photos, which are both 2D images.

However, there is a huge semantic gap between sketches
and 3D shapes. Much work has been performed on recogni-
tion tasks, and we should not ignore them. Hence, this pa-
per refers to more recent feature extraction networks in both
sketching and 3D shape domains and uses the PCL method
for training. A PCL pseudocode feature extraction method
is given in Algorithm 1.

Algorithm 1: Pseudo-code for PCL-Based Feature
Extraction
Input: feature extractor FEθ, training dataset D,

memory size for each class k, number of
negative classes n, MaxEpoch

Output: feature extractor FEθ

1 binding θ to the optimizer O;
2 initialize sample memory bank M with D and k;
3 for epoch = 1:MaxEpoch do
4 for training sample s and it’s class label c in

Dataloader(D) do
5 initialize the set of class labels C;
6 put the positive class label c into C;
7 randomly choose n negative class labels c−

according to c and put them into C;
8 initialize the set of prototypes P;
9 for ci in C do

10 calculate the prototype P of class ci by
cluster samples in M;

11 put P into set P;
12 end
13 calculate loss with Eq.1;
14 optimize θ with O;
15 randomly choose a sample with label c in M,

replace it with the new sample s;
16 end
17 end

Network Structure of the Sketch Feature Extractor
Humans draw sketches stroke-by-stroke. Thus, they contain
both spatial and temporal information. Therefore, we adopt
a cascaded convolutional neural network (CNN)–recurrent
neural network (RNN) structure to extract their features
(Fig. 4).

Sketch-a-net (Yu et al. 2015) was the first specially ori-
ented deep CNN for free-hand sketching. Compared with

Figure 4. Sketch feature extractor architecture: Sketch-a-net
with spatial attention network; T is set to 1 if the input sam-
ple lacks temporal information.

classic CNN photo-recognition architectures, Sketch-a-net
has a larger convolution kernel (15 × 15) for its first-layer
filters to capture sparse low-texture features and remove lo-
cal response normalization layers (Krizhevsky, Sutskever,
and Hinton 2012), because most sketches are binary images.
The CNN part of our sketch feature extractor uses Sketch-a-
net as the backbone and adds a spatial attention branch (Hu,
Shen, and Sun 2018) for recalibration.

We use the RNN to simulate stroke accumulations. How-
ever, as each SHREC’13/14 sketch sample contains only one
static image, no SBSR method (Wang, Kang, and Li 2015;
Dai et al. 2017; Dai, Xie, and Fang 2018; Qi, Song, and Xi-
ang 2018; He et al. 2018; Xu et al. 2020; Dai and Liang
2020; Xu et al. 2022) makes use of the sketch’s temporal
information. Thus, unless specified, the experiment in this
paper is set to T = 1 so that features are extracted without
entering the RNN loop.

Network Structure of the 3D Shape Feature Extractor
Depending on the data representation form, one can ex-
tract voxel-, point-cloud-, view-, or hybrid-based methods.
Among these, the view-based method has excellent perfor-
mance and high applicability; thus, we refer to it for 3D
shape feature extraction (Su et al. 2015).

Figure 5. 3D shape feature extraction architecture with
multi-view dual attention network.

As shown in Fig. 5, we first render 2D views from multi-
ple 3D object angles and use a shared ResNet-50 CNN (He
et al. 2016) as the backbone to extract the features of each
view. After aggregating the multiple-view features, we re-
fer to the multiview dual attention network (Wang, Cai, and
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Wang 2022) and concurrently apply spatial and view chan-
nel attention branches (Roy, Navab, and Wachinger 2018) to
obtain the final feature.

PCL-Based Cross-Domain Feature Alignment
Thus far, two single-domain feature extractors have been
trained by the PCL method. However, as required by our
cross-domain retrieval task, the semantically equivalent
sketch and 3D shape features must be mapped to adjacent
locations in the common semantic space (i.e., cross-domain
alignment).

Because the prototype concept does not require a spe-
cific modality, we adopt the PCL method to solve the cross-
domain alignment problem. We build sketch-based 3D-
shape sample pairs using their class labels and their domains
to cluster prototypes into common semantic spaces while as-
signing several common classes to each pair to train three
fully connected network layers. Therefore, each sample, re-
gardless of modality, can be near the prototype of the same
class and far from others in the common semantic space. The
specific steps are given in Algorithm 2.

Experiments
Datasets and Settings
Dataset Settings To verify the efficacy of our PCL
method, we conducted experiments on SHREC’13 (Li
et al. 2013), SHREC’14 (Li et al. 2014b), and D2O. For
SHREC’13, 23 of the 90 classes had less than five 3D
shapes, and we classified them as unseen for testing; the
other 67 were classified for training. For SHREC’14, we
classified 38 classes with a 3D-shape sample number of five
or less as unseen for testing; the other 133 were classified for
training. For D2O, we randomly selected 80% of the classes
as seen for training and the remaining 20% as unseen. Ow-
ing to the extremely large number of sketches in D2O, we
randomly took 1,000 per class for experimentation.

To test the performance of the normal SBSR task, we
split the seen samples into training and testing sets. For
SHREC’13/14, the sketches used the original 50–30 divi-
sion, whereas the 3D shapes were divided randomly accord-
ing to 80–20%. For D2O, we randomly chose 80% for train-
ing and 20% for testing.

Implementation Details We implemented our PCL using
PyTorch. A ResNet-50 (He et al. 2016) pre-trained on Im-
ageNet was used as the 3D shape feature extractor back-
bone, whereas the sketch feature extractor applied Sketch-
a-net (Yu et al. 2015). The size of two alignment maps was
2048-1024-256. Memory size k per category was set to 10.

The max epoch number was 50. Adam was adopted as op-
timizer with a learning rate initially set to 1e−4 with expo-
nentially decay at rate 0.95. For testing, each positive sample
tier was paired with nine randomly selected negative tiers.

Evaluation Metrics Nearest neighbor (NN), first-tier
(FT), second-tier (ST), normalized discounted cumulated
gain (nDCG), E-measure (E), mean reciprocal rank (MRR),
and mean average precision (mAP) evaluators were used.
Apart from E, the larger the metric, the better.

Algorithm 2: Steps of Cross-Domain Alignment
Input: pre-trained feature extractor FEx for sketch

and FEy for 3D shape, dataset of sketches
Dx and dataset of 3D shapes Dy , memory
size for each class k, number of negtive
classes n, MaxEpoch

Output: mapping network Mapx for feature from
sketch to common space, mapping network
Mapy for feature from 3D shape to
common space

1 construct sketch feature set Dx
f with FEx and Dx;

2 construct 3D shape feature set Dy
f with FEy and Dy;

3 construct dataset of sketch-”3D shape” feature pairs
D∗ with Dx

f and Dy
f ;

4 initialize feature memory banks Mx and My by the
given size k, with Dx

f and Dy
f respectively;

5 initialize mapping network Mapx and Mapy;
6 for epoch = 1:MaxEpoch do
7 for feature pair fx-fy and corresponding class

label c in Dataloader(D∗) do
8 initialize the set of class labels C;
9 put the positive class label c into C;

10 randomly choose n negative class labels c−
according to c and put them into C;

11 initialize the set of prototypes P;
12 for ci in C do
13 calculate common prototype P ∗ of ci by

clustering features in Mx and My;
14 put P ∗ into P;
15 end
16 calculate loss with Eq.1;
17 update Mapx and Mapy concurrently;
18 update Mx and My with current features fx

and fy respectively;
19 end
20 end

Experiment Results on Three Benchmarks
We compared our PCL method results to those of state-
of-the-art methods, including Siamese (Wang, Kang, and
Li 2015), DCHML (Dai, Xie, and Fang 2018), TCL (He
et al. 2018), and CGN (Dai and Liang 2020), on SHREC’13,
SHREC’14, and D2O using the same settings for fairness.
According to the original papers, the Siamese method used
a three-layer CNN as its backbone, AlexNet was applied
to DCHML, and the backbone of TCL and CGN was the
same pre-trained ResNet-50. All codes used for these meth-
ods were our production, and we did not employ temporal
sketch information.

In Tables 1, 2 and 3, the best retrieval performances
of each method on SHREC’13, SHREC’14, and D2O are
shown in boldface, respectively. Accordingly, our PCL
method outperformed most extant methods on all metrics
with SBSR and ZS-SBSR tasks. Our PCL performed partic-
ularly well on D2O compared with others due to the high ab-
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Method SBSR ZS-SBSR
NN FT ST nDCG E MRR mAP NN FT ST nDCG E MRR mAP

siamese 19.0 14.2 12.5 20.8 76.1 33.2 20.8 13.7 12.4 11.7 18.6 76.2 25.9 20.1
DCHML 41.7 43.3 29.5 51.0 54.7 48.9 52.5 18.3 21.1 13.6 23.8 63.2 27.8 33.9

TCL 43.3 47.7 33.7 57.2 51.5 51.9 56.6 25.0 17.8 20.3 31.4 65.0 39.0 31.7
CGN 65.0 52.0 30.8 60.8 53.4 77.5 58.8 33.3 29.4 22.5 39.8 63.4 48.4 38.6

PCL(ours) 55.0 54.7 41.7 71.9 45.4 68.7 65.9 38.3 38.9 26.1 47.0 54.9 52.4 48.0

Table 1: Sketch-3D shape retrieval performance (%) on SHREC’13

Method SBSR ZS-SBSR
NN FT ST nDCG E MRR mAP NN FT ST nDCG E MRR mAP

siamese 18.7 12.9 12.0 20.0 76.1 31.2 20.7 10.0 8.6 8.7 13.6 78.4 21.4 17.0
DCHML 30.7 32.5 24.6 41.4 61.2 39.7 41.9 16.7 17.7 17.9 27.3 67.3 27.8 30.0

TCL 33.3 31.7 20.9 38.0 63.6 40.7 40.4 21.3 21.6 19.1 30.6 66.5 31.4 32.8
CGN 42.0 35.0 22.2 41.7 61.6 46.8 44.2 26.3 25.0 21.4 35.1 65.0 36.8 35.6

PCL(ours) 43.0 40.3 24.3 45.5 58.1 48.2 49.1 33.3 32.8 22.8 39.9 57.8 45.5 43.4

Table 2: Sketch-3D shape retrieval performance (%) on SHREC’14

Method SBSR ZS-SBSR
NN FT ST nDCG E MRR mAP NN FT ST nDCG E MRR mAP

siamese 15.4 13.1 13.0 20.5 75.7 30.4 20.8 14.6 10.5 9.8 16.2 78.1 28.5 18.0
DCHML 21.0 24.4 23.8 36.1 62.2 34.2 36.5 12.5 14.1 15.4 22.4 72.4 27.0 23.2

TCL 20.2 25.5 23.9 36.7 63.9 37.7 34.6 16.9 15.5 14.9 23.4 72.5 29.8 24.3
CGN 32.1 33.9 27.9 45.8 60.5 50.3 41.5 21.5 14.9 15.7 25.0 72.2 33.7 25.0

PCL(ours) 51.6 40.6 29.2 53.0 55.6 60.6 51.3 32.3 21.6 12.7 28.0 71.4 47.2 29.9

Table 3: Sketch-3D shape retrieval performance (%) on D2O

straction of the QuickDraw style sketches, which were diffi-
cult to capture by classical CNN architectures designed for
common photos.

Fig. 6 shows some retrieval results of our PCL method
on all three datasets with both SBSR and ZS-SBSR tasks.
Query sketches are listed on the left, and their retrieved top-
five 3D shapes are listed on the right based on ranking order.

Further Analysis
Ablation Study We conducted four ablation studies to
validate the ZS retrieval performance of our PCL method:

1. Cluster(W/A): Learn prototypes via dynamic clustering
with cross-domain alignment.

2. Anchor (W/A): Fix anchor points for prototypes with
cross-domain alignment.

3. PCL (O/A): PCL without cross-domain alignment.
4. PCL (W/A): PCL with cross-domain alignment.

The results are shown in Table 4, where the best metrics
are shown in boldface. It is easy to see that apart from the
ST on D2O, the PCL method performed far better than the
cluster and fixed-anchor-point methods on all metrics on all
three benchmark datasets. Furthermore, the semantic align-
ment was crucial for cross-domain tasks.

Temporal Sketch Information Temporal information is
naturally embedded in sketches. However, no known SBSR
methods (Wang, Kang, and Li 2015; Dai et al. 2017; Dai,
Xie, and Fang 2018; Qi, Song, and Xiang 2018; He et al.
2018; Xu et al. 2020; Dai and Liang 2020; Xu et al. 2022)

(a)

(b)

(c)

Figure 6. Retrieval results obtained by PCL: (a) SBSR and
ZS-SBSR examples on SHREC’13; (b) SBSR and ZS-SBSR
examples on SHREC’14; and (c) SBSR and ZS-SBSR ex-
amples on D2O. The failure cases are marked in orange and
boxed up. They somehow look similar to success cases.

2479



Dataset Method NN FT ST nDCG E MRR mAP

SHREC’13

cluster(W/A) 28.3 22.5 17.9 31.5 62.1 46.7 34.7
anchor(W/A) 19.7 18.7 14.5 24.5 69.3 25.8 29.8

PCL(O/A) 9.7 9.5 11.1 16.4 72.1 17.0 23.2
PCL(W/A) 38.3 38.9 26.1 47.0 54.9 52.4 48.0

SHREC’14

cluster(W/A) 21.7 22.1 20.7 32.4 65.7 32.6 33.3
anchor(W/A) 17.7 18.7 18.8 28.5 67.3 28.9 30.3

PCL(O/A) 9.7 10.3 7.9 13.6 68.9 29.1 24.1
PCL(W/A) 33.3 32.8 22.8 39.9 57.8 45.5 43.4

D2O

cluster(W/A) 21.1 18.6 15.5 25.6 71.7 32.7 26.4
anchor(W/A) 18.0 17.9 16.1 25.5 71.5 28.8 26.7

PCL(O/A) 10.1 12.4 9.4 15.1 78.8 28.0 16.5
PCL(W/A) 32.3 21.6 12.7 28.0 71.4 47.2 29.9

Table 4: ZS-sketch 3D shape retrieval performance (%)

Task Stroke Accumulation NN FT ST nDCG E MRR mAP

SBSR

30%(W/R) 28.7 28.4 24.0 39.4 61.9 43.5 38.7
50%(W/R) 35.4 31.5 25.5 42.5 60.1 50.9 40.6
80%(W/R) 52.9 40.7 30.2 53.8 55.4 62.2 50.8

100%(W/R) 49.8 42.6 31.2 55.7 54.1 60.5 53.5
100%(O/R) 51.6 40.6 29.2 53.0 55.6 60.6 51.3

ZS-SBSR

30%(W/R) 19.5 17.8 15.4 24.9 72.7 33.5 24.8
50%(W/R) 21.0 20.8 16.4 27.5 70.9 31.4 28.7
80%(W/R) 32.7 21.6 14.2 29.8 73.4 48.4 28.7

100%(W/R) 36.9 23.7 20.3 33.6 67.9 45.3 30.4
100%(O/R) 32.3 21.6 12.7 28.0 71.4 47.2 29.9

Table 5: Influence (%) of temporal sketch information on D2O

use it, as sketch samples in SHREC’13 (Li et al. 2013) and
SHREC’14 (Li et al. 2014b) contain only static images. For-
tunately, with the help of QuickDraw (Ha and Eck 2017), the
D2O dataset is available to provide temporal information of
sketches. Thus we conducted experiments on D2O with em-
ploying an RNN to mimic stroke accumulation features.

Sketches were re-plotted into several cumulative stroke
sub-pictures (30, 50, 80, and 100%) according to their tem-
poral information, feeding into the RNN after producing
spatial features through the CNN. To compare the “with-
RNN” version (W/R), the retrieval performance of the net-
work without entering the RNN (O/R) loop trained only by
the final sketch image (stroke accumulation 100%) is also
listed. Table 5 presents the results, where the top two of
each metric is bolded. Owing to arbitrary free-hand sketch-
ing, 80% of the stroke accumulation is reliable at 100% and
performs well enough on the network (W/R) to beat the
without-RNN version (O/R), which required 100% final im-
ages. Faster retrieval of the desired 3D shape is obviously
attractive to amateur users with little patience in practical
situations. A retrieval example employing temporal sketch
information is visualized in Fig. 7.

Conclusion
This paper represents a positive step toward achieving prac-
tical ZS-SBSR tasks. Previous SBSR datasets are too scarce
in some 3D shape classes and do not provide temporal
sketch information. To overcome these limitations, we pro-
vided a new D2O dataset using ModelNet40 and QuickDraw
and proposed a novel PCL method to increase the efficacy

Figure 7. Example of a retrieval task employing temporal
sketch information. The correct cases are marked in blue and
boxed by a dashed line. An interesting point worth noting:
the order of the first two retrieval results is swapped after
adding the dog’s tail as the last stroke.

of cross-domain and unseen class data retrieval. Extensive
experiments on the SHREC’13, SHREC’14, and the aug-
mented D2O dataset demonstrated the power of our pro-
posed PCL-enabled ZS-SBSR method. In a future work, we
plan to conduct more experiments with data collected from
real environments, considering the use of AutoML feature
extractors to ease the task of customizing networks for spe-
cific modalities.

2480



Acknowledgments
This work was supported by the National Key Research and
Development Program of China (2020YFC1523204) and
National Natural Science Foundation of China (U2006211
and 62171320).

References
Dai, G.; Xie, J.; and Fang, Y. 2018. Deep correlated holistic
metric learning for sketch-based 3d shape retrieval. IEEE
Transactions on Image Processing, 27(7): 3374–3386.
Dai, G.; Xie, J.; Zhu, F.; and Fang, Y. 2017. Deep corre-
lated metric learning for sketch-based 3d shape retrieval. In
Thirty-First AAAI Conference on Artificial Intelligence.
Dai, W.; and Liang, S. 2020. Cross-modal guidance network
for sketch-based 3D shape retrieval. In 2020 IEEE Interna-
tional Conference on Multimedia and Expo (ICME), 1–6.
IEEE.
Deng, C.; Xu, X.; Wang, H.; Yang, M.; and Tao, D. 2020.
Progressive cross-modal semantic network for zero-shot
sketch-based image retrieval. IEEE Transactions on Image
Processing, 29: 8892–8902.
Dey, S.; Riba, P.; Dutta, A.; Llados, J.; and Song, Y.-Z. 2019.
Doodle to search: Practical zero-shot sketch-based image
retrieval. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2179–2188.
Dutta, A.; and Akata, Z. 2019. Semantically tied paired cy-
cle consistency for zero-shot sketch-based image retrieval.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 5089–5098.
Furuya, T.; and Ohbuchi, R. 2013. Ranking on cross-domain
manifold for sketch-based 3D model retrieval. In 2013 In-
ternational Conference on Cyberworlds, 274–281. IEEE.
Ha, D.; and Eck, D. 2017. A neural representation of sketch
drawings. arXiv preprint arXiv:1704.03477.
He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. 2020.
Momentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 9729–9738.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
He, X.; Zhou, Y.; Zhou, Z.; Bai, S.; and Bai, X. 2018.
Triplet-center loss for multi-view 3d object retrieval. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, 1945–1954.
Hu, C.; Yang, Y.; Li, Y.; Hospedales, T. M.; and Song, Y.-Z.
2021. Towards Unsupervised Sketch-based Image Retrieval.
arXiv preprint arXiv:2105.08237.
Hu, J.; Shen, L.; and Sun, G. 2018. Squeeze-and-excitation
networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 7132–7141.
Ji, Z.; Chai, X.; Yu, Y.; Pang, Y.; and Zhang, Z. 2020. Im-
proved prototypical networks for few-Shot learning. Pattern
Recognition Letters, 140: 81–87.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25.
Li, B.; Lu, Y.; Godil, A.; Schreck, T.; Aono, M.; Johan, H.;
Saavedra, J. M.; and Tashiro, S. 2013. SHREC’13 track:
large scale sketch-based 3D shape retrieval.
Li, B.; Lu, Y.; Godil, A.; Schreck, T.; Bustos, B.; Ferreira,
A.; Furuya, T.; Fonseca, M. J.; Johan, H.; Matsuda, T.; et al.
2014a. A comparison of methods for sketch-based 3D shape
retrieval. Computer Vision and Image Understanding, 119:
57–80.
Li, B.; Lu, Y.; Li, C.; Godil, A.; Schreck, T.; Aono, M.;
Burtscher, M.; Fu, H.; Furuya, T.; Johan, H.; et al. 2014b.
SHREC’14 track: Extended large scale sketch-based 3D
shape retrieval. In Eurographics workshop on 3D object re-
trieval, volume 2014, 121–130.
Liu, Q.; Xie, L.; Wang, H.; and Yuille, A. L. 2019. Semantic-
aware knowledge preservation for zero-shot sketch-based
image retrieval. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 3662–3671.
Oord, A. v. d.; Li, Y.; and Vinyals, O. 2018. Representation
learning with contrastive predictive coding. arXiv preprint
arXiv:1807.03748.
Qi, A.; Song, Y.-Z.; and Xiang, T. 2018. Semantic Embed-
ding for Sketch-Based 3D Shape Retrieval. In BMVC, vol-
ume 3, 11–12.
Roy, A. G.; Navab, N.; and Wachinger, C. 2018. Concur-
rent spatial and channel ‘squeeze & excitation’in fully con-
volutional networks. In International conference on medical
image computing and computer-assisted intervention, 421–
429. Springer.
Snell, J.; Swersky, K.; and Zemel, R. 2017. Prototypical net-
works for few-shot learning. Advances in neural information
processing systems, 30.
Su, H.; Maji, S.; Kalogerakis, E.; and Learned-Miller, E.
2015. Multi-view convolutional neural networks for 3d
shape recognition. In Proceedings of the IEEE international
conference on computer vision, 945–953.
Wang, F.; Kang, L.; and Li, Y. 2015. Sketch-based 3d shape
retrieval using convolutional neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 1875–1883.
Wang, W.; Cai, Y.; and Wang, T. 2022. Multi-view dual
attention network for 3D object recognition. Neural Com-
puting and Applications, 34(4): 3201–3212.
Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.;
and Xiao, J. 2015. 3d shapenets: A deep representation for
volumetric shapes. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 1912–1920.
Wu, Z.; Xiong, Y.; Yu, S. X.; and Lin, D. 2018. Unsuper-
vised feature learning via non-parametric instance discrimi-
nation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 3733–3742.
Xu, P.; Hospedales, T. M.; Yin, Q.; Song, Y.-Z.; Xiang, T.;
and Wang, L. 2022. Deep learning for free-hand sketch: A

2481



survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence.
Xu, Y.; Hu, J.; Wattanachote, K.; Zeng, K.; and Gong, Y.
2020. Sketch-based shape retrieval via best view selection
and a cross-domain similarity measure. IEEE Transactions
on Multimedia, 22(11): 2950–2962.
Yelamarthi, S. K.; Reddy, S. K.; Mishra, A.; and Mittal, A.
2018. A zero-shot framework for sketch based image re-
trieval. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 300–317.
Yu, Q.; Yang, Y.; Song, Y.-Z.; Xiang, T.; and Hospedales,
T. 2015. Sketch-a-net that beats humans. arXiv preprint
arXiv:1501.07873.

2482


