Learning Context-Aware Classifier for Semantic Segmentation
DOI:
https://doi.org/10.1609/aaai.v37i2.25340Keywords:
CV: Representation Learning for Vision, CV: Segmentation, ML: Representation LearningAbstract
Semantic segmentation is still a challenging task for parsing diverse contexts in different scenes, thus the fixed classifier might not be able to well address varying feature distributions during testing. Different from the mainstream literature where the efficacy of strong backbones and effective decoder heads has been well studied, in this paper, additional contextual hints are instead exploited via learning a context-aware classifier whose content is data-conditioned, decently adapting to different latent distributions. Since only the classifier is dynamically altered, our method is model-agnostic and can be easily applied to generic segmentation models. Notably, with only negligible additional parameters and +2\% inference time, decent performance gain has been achieved on both small and large models with challenging benchmarks, manifesting substantial practical merits brought by our simple yet effective method. The implementation is available at https://github.com/tianzhuotao/CAC.Downloads
Published
2023-06-26
How to Cite
Tian, Z., Cui, J., Jiang, L., Qi, X., Lai, X., Chen, Y., Liu, S., & Jia, J. (2023). Learning Context-Aware Classifier for Semantic Segmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 37(2), 2438-2446. https://doi.org/10.1609/aaai.v37i2.25340
Issue
Section
AAAI Technical Track on Computer Vision II