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Abstract

Adding visible watermark into image is a common copyright
protection method of medias. Meanwhile, public research on
watermark removal can be utilized as an adversarial technol-
ogy to help the further development of watermarking. Ex-
isting watermark removal methods mainly adopt multi-task
learning networks, which locate the watermark and restore
the background simultaneously. However, these approaches
view the task as an image-to-image reconstruction problem,
where they only impose supervision after the final output,
making the high-level semantic features shared between dif-
ferent tasks. To this end, inspired by the two-stage coarse-
refinement network, we propose a novel contrastive learning
mechanism to disentangle the high-level embedding seman-
tic information of the images and watermarks, driving the re-
spective network branch more oriented. Specifically, the pro-
posed mechanism is leveraged for watermark image decom-
position, which aims to decouple the clean image and wa-
termark hints in the high-level embedding space. This can
guarantee the learning representation of the restored image
enjoy more task-specific cues. In addition, we introduce a
self-attention-based enhancement module, which promotes
the network’s ability to capture semantic information among
different regions, leading to further improvement on the con-
trastive learning mechanism. To validate the effectiveness of
our proposed method, extensive experiments are conducted
on different challenging benchmarks. Experimental evalua-
tions show that our approach can achieve state-of-the-art per-
formance and yield high-quality images. The code is avail-
able at: https://github.com/lianchengmingjue/DENet.

Introduction
As an important carrier, social media provides a platform for
us to deliver and share different images and video content,
whose security and robustness have become an important
trend in recent research. Among them, watermarking (Cox
et al. 2002; Katzenbeisser and Petitcolas 2000) is a common
copyright protection approach of digital media. Meanwhile,
many researchers pay attention to the watermark removal
methods as an adversarial technology to boost the further
development of digital watermarks.

*These authors contributed equally.
†Corresponding author.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

“watermark”

“watermark-free image”

“watermark”

high-dimensional space

“watermark-free image”

Figure 1: The main idea of our proposed DENet. Our goal
is to disentangle the watermark-free image and watermark
embeddings in the high-level space, which can provide more
explicit cues for the decoder to reconstruct the images. The
decoupled embedding of the watermark images has a more
separate distribution of the potential content.

Some early watermark image removal methods (van Re-
nesse 1996; Pei and Zeng 2006) adopt traditional techniques
like nonlinear pixel domain technology and Independent
Component Analysis (ICA) algorithm to decompose the
watermark-free images and watermarks. With the flourish
of deep learning, recent methods view the watermark image
removal task as the image-to-image translation issue. Ben-
efiting from the end-to-end reconstruction network (Ron-
neberger, Fischer, and Brox 2015) and generative adversar-
ial networks (Goodfellow et al. 2014), the existing methods
can achieve satisfactory watermark removal performance.
More recently, Cun et al. (Cun and Pun 2021) and Liang
et al. (Liang et al. 2021) propose to utilize multi-branch net-
works to locate and separate the watermark and image and
finally refine the reconstructed images.

However, the above mentioned methods ignore the high-
level semantic embedding of the watermark and watermark-
free image feature. To be specific, the previous methods
capture the watermark image’s semantic information within
a single encoder, which will make their learning represen-
tation less discriminative and separate, as shown in Fig 1
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bottom. These uncertain cues are then fed into the decoder
for further image reconstruction, which may harm the net-
work to model the useful information, explicitly. With this
in mind, our goal is to disentangle their semantic embed-
dings in the high-dimensional space, driving the network fo-
cusing on different parts of the watermarks and clean im-
age, as shown in Fig 1 top. This can provide valuable cues
to the subsequent networks to map watermark images to
watermark-free ones maintaining high-quality patterns.

To this end, we propose a disentangled embedding net-
work for visible watermark removal, termed as DENet.
Specifically, we design a contrastive learning mechanism to
decouple the semantic information of both the watermarks
and watermark-free images. In this paper, we organize two
sets of contrast loss constraints and construct a Siamese
network to obtain positive and negative pairs. In addition,
we introduce a self-attention-based enhancement module,
which aims to strengthen the perception of features in dif-
ferent regions. In this paper, we make an early attempt to ex-
plore contrastive learning in the watermark image removal,
and we experimentally investigate the features manifolds of
both the disentangled embeddings. Extensive experimental
evaluations on different challenging benchmarks, including
LOGO-H, LOGO-L and LOGO-Gray (Cun and Pun 2021)
and the qualitative intermediate visualization all validate the
effectiveness of our proposed method. We expect this work
will provide a new perspective for considering the relation-
ship between supervised and contrastive learning.

Our contributions can be summarized as follows:

• We make the first endeavour to explore the impact of
different embedding of clean images and watermarks in
high-dimensional space and experimentally pull the pos-
itive pairs while pushing the negative pairs away, which,
to our best knowledge, has not been well explored.

• We propose a disentangled embedding network for wa-
termark removal, which aims to decouple the image and
watermark representations in the high-level embedding
space by contrastive learning mechanism to obtain more
oriented features for reconstruction. Besides, we intro-
duce a self-attention-based enhancement module for net-
work to capture information from different regions.

• Extensive experimental evaluations on different datasets
validate the superiority and effectiveness of our proposed
method, which can achieve new state-of-the-art perfor-
mance and yield high-quality output.

Related Work

Watermark Removal
Watermark removal share the similar scheme with image de-
hazing (He, Sun, and Tang 2010; Zhang and Patel 2018; Liu
et al. 2022), deraining(Qian et al. 2018; Ren et al. 2019) and
shadow removal(Cun, Pun, and Shi 2020; Liu et al. 2021).
In essence, they are all the task of recovering the source im-
age from a damaged image, but there are still differences
that cannot be ignored in specific applications. For dehaz-
ing and deraining, the interference factors, such as haze and

raindrop, permeate the whole image. Moreover, there are
plenty of repeated patterns and semantics between differ-
ent regions within the same image and even among different
images. However, watermarks are usually concentrated in a
local area of the image, and each watermark exists indepen-
dently with a unique information representation. For shadow
removal, the shadow usually appears as a meaningless grey
area, while the watermark, as a symbol of media copyright,
is usually colorful and meaningful. Therefore, these differ-
ences make watermark removal a unique and challenging
research topic.

In the early works (Huang and Wu 2004; Pei and Zeng
2006; Park, Tai, and Kweon 2012), researchers mainly relied
on hand-crafted features. Huang et al. proposed a visual-
watermark attack scheme based on traditional image inpaint-
ing. Pei et al. used Independent Component Analysis (ICA)
to separate source images from watermarked and referenced
images. Park et al. formulated the problem using Bayes’
rule via cross-channel correlation assumption. These meth-
ods not only rely on manual features but also require users
to locate the watermark, which has a detrimental effect on
usability. To avoid manual intervention, Dekel et al. (Dekel
et al. 2017) assumed that different images have the same wa-
termark, but it’s unrealistic in real-world applications

With the development of deep learning, a number of
data-driven neural network methods have emerged. Some of
them (Li et al. 2019; Cao et al. 2019) only treated the water-
mark removal as an image-to-image translation task. Other
alternative methods (Hertz et al. 2019; Liu, Zhu, and Bai
2021; Cun and Pun 2021; Liang et al. 2021) with better per-
formance considered both watermark localization and water-
mark removal within a multi-task learning framework. Hertz
et al. first removed visual motifs from images blindly and
pioneered the single encoder with multi-decoder architec-
ture for multi-task watermark removal. Pun et al. proposed
a two-stage network for prediction and refinement, respec-
tively. Inspired by multi-level feature fusion, Liang et al. de-
signed several complex and elaborate modules to enhance
the quality of generated images. Nevertheless, none of the
above methods realize the importance of disentangling high-
level semantics embedding between different tasks and still
only progressively approach different goals.

Contrastive Learning
Contrastive learning is an effective method widely used in
the field of unsupervised visual representation learning (He
et al. 2020; Chen et al. 2020; Su et al. 2021; Su, Lin, and Wu
2021; Su et al. 2022). The core idea of contrastive learning
is to construct positive and negative pairs, and adopt loss
functions such as Info-NCE (Wu, Wu, and Huang 2021)
to narrow the distance between positive pairs and widen
the distance between negative pairs. Moreover, This idea
have achieved impressive performance in image transla-
tion (Park et al. 2020) and image harmonization (Liang and
Pun 2022) by properly constructing positive and negative
samples, combined with patch-wised contrastive loss. To the
best of our knowledge, this mechanism has not been ex-
plored in the field of watermark removal.
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Figure 2: The overview of our proposed method. In the training phase, given the triple input including watermarked image,
watermark-free image and watermark, they are first encoded by a share-weight convolutional backbone. Then the output feature
of the watermarked image is passed through the self-attention enhancement block, which yields two different embeddings W∗

and W∗−. For the query W∗−, we then construct the positive pairs as {W∗−,W−} and the negative pair as {W∗−,W}. For
the query W∗, vice versa. We aim to minimize the positive pairs distances while maximizing the negative pairs distances in
the high-dimensional space to decompose the distributions between the watermark and watermark-free image. Then, these
features are fed into the decoder and yield coarse results. Later, the coarse results are combined together and viewed as the
input for the second stage refinement network, which finally produces the refined output. During the testing phase, given only
the watermarked image, it will undergo the pre-trained network and finally reconstruct to the watermark-free image.

Methodology
In this paper, we address the watermark image removal is-
sue from a new perspective. Our goal is to disentangle the
embedding of the watermark and watermark-free image in
the high-level space, thereby explicitly providing oriented
valuable decoupling information to the network. In particu-
lar, we propose an effective framework, termed as DENet.
In the following sections, we will show the overall network
architecture and the proposed disentangled embedding mod-
ule in detail.

Overall Architecture
The overview of our DENet is shown in Fig 2. Inspired by
the former multi-stage refinement networks (Cun and Pun
2021; Liu, Zhu, and Bai 2021; Liang et al. 2021), we also
adopt the cascade coarse-to-refine network to perform wa-
termark image removal. However, our proposed network is
totally different from the previous works. To be specific,
given the triple input that can be easily accessed in the
datasets, including the watermarked image, watermark-free
image and watermark, they are first fed into a share-weight
encoder to capture the semantic information. Then, we can
obtain the semantic embedding W− and W corresponding
to the watermark-free image feature and watermark feature.
Later, the watermarked image feature is further sent to the

self-attention block to model semantic information among
different pixel regions, which will yield two different em-
beddings W∗ and W∗−.

Afterward, we construct two triplets {W∗−,W−,W} and
{W∗,W−,W}, as illustrated by the blue and red arrows
in Fig 2. For each triplet, our goal is to minimize the pos-
itive pairs distance while maximizing the negative pairs dis-
tances. In this way, we can decouple their semantic embed-
ding in the high-level space and obtain more oriented seman-
tic features, which is beneficial for the subsequent decoder
network branch. We will give a detailed elaboration of the
disentangled embedding in the following section. Later, the
two different disentangled embedding cues are fed into the
corresponding decoder for the watermark removal and wa-
termark localization, which yields to coarse watermark-free
image and the watermark mask, respectively. And then, the
coarse results are concatenated together and passed through
the refinement network in Unet (Ronneberger, Fischer, and
Brox 2015) architecture. Note that we inject the decoder in-
formation from the coarse stage into the refinement stage to
aggregate more potential hints, which is similar to (Liang
et al. 2021). Concretely, we adopt tensor element-wise addi-
tion operation for two feature maps within the same resolu-
tion. Finally, the refinement network will produce the refined
reconstructed watermark-free image.
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Disentangled Embedding Mechanism

In order to disentangle the embeddings of the different
learning features, we introduce contrastive learning mech-
anism (He et al. 2020) to perform this task. As mentioned
above, we can yield two different watermark-free image em-
bedding W∗− and watermark embedding W∗ as illustrated
in Fig 2, for simplicity, we take W∗− as an example to elab-
orate our disentangled embedding mechanism.

Specifically, given the watermark-free image embedding
W∗− ∈ RN×C×H×W and the encoder feature W,W− ∈
RN×C×H×W , we first downsample the watermark mask
given in the dataset to M ∈ RN×1×H×W , and reformulate
the embedding as follows:

n = φ(W ⊙M), (1)

p = φ(W− ⊙M), (2)

q = φ(W∗− ⊙M), (3)

where ⊙ denotes element-wise multiplication, φ indicates
global average pooling. Query q is supposed to be similar to
its positive key p and dissimilar to negative key n.

In practice, we do not directly feed the watermark im-
age into the share-weight encoder. Instead, we fill the black
region of the watermark with the same content as the
watermark-free image, otherwise the useless information of
0 will cause damage to the encoder. And here we use Eqn.
(3) to remove the content that was filled before.

Naı̈ve Distance: One might only consider the positive
pairs and try to make their embedding distance closer with
L2 loss, which can be performed as follow:

Lnaı̈ve =
1

N

N∑
i=1

||qi − pi||2. (4)

However, this naı̈ve idea does not achieve the best perfor-
mance, as shown in the experimental section.

Triplet Distance: For a more comprehensive considera-
tion of both the positive and negative pairs, we simultane-
ously punish the triplet as follows:

L−
CL = − 1

N

N∑
i=1

log
exp(qi · pi/τ)

exp(qi · pi/τ) + exp(qi · ni/τ)
, (5)

where τ is a temperature parameter that controls the weight.
L+
CL is in reverse, viewing W ∗ as query, {W,W−} as posi-

tive and negative keys, respectively. Therefore, the total con-
trastive learning loss is as follows:

LCL = L+
CL + L−

CL. (6)

Moreover, we present intuitive visualization for the ef-
fects of contrastive learning, which can be found in the ex-
perimental section.

Self-Attention Block
Although the above mechanism provides additional supervi-
sion for disentangling network learning, it is hard to achieve
ideal embedding with only conventional convolution layers.
Inspired by (Vaswani et al. 2017; Wang et al. 2020), we
adopt multi-head attention to capture information from dif-
ferent regions. Given the input X , for i-th head, we then
formulate the function as follow:

Qi,Ki, Vi = XWQ
i , XWK

i , XWV
i ,

headi = softmax(
QiK

T
i√

dk
)Vi,

(7)

where WQ
i , WK

i and WV
i are three projection matrices. dk

is the feature dimension. We finally concatenate all the fea-
tures from different heads as output.

Likewise, we have visualized the attention map, which
will be explained in detail in the experimental section.

End-to-end Training
Our proposed framework is an end-to-end network, and all
modules are updated in one backpropagation. The loss func-
tion used in the training phase is as follows.

Following (Hertz et al. 2019), binary cross-entropy loss
is applied to supervise watermark mask M̂ with its ground
truth M

Lmask = −
∑
i,j

(Mi,j log M̂i,j +(1−Mi,j) log(1−M̂i,j)).

(8)
Given watermark-free ground-truth image I , coarse out-

put image Îcoarse and refined output Îrefine, we employ L1

loss to squeeze the gap between the ground truth and predic-
tion output.

Lcoarse = ||I − Îcoarse||1, (9)

Lrefine = ||I − Îrefine||1. (10)

Similar to (Liang et al. 2021; Cun and Pun 2021), we add
additional deep perceptual loss (Johnson, Alahi, and Fei-Fei
2016) for higher quality output

Lperc =
∑

k∈1,2,3

||Φk
vgg(Î)− Φk

vgg(I)||1, (11)

where Φk
vgg(·) denotes the activation map of k-th layer in

the pre-trained VGG16 (Simonyan and Zisserman 2014).

Finally, all the above loss functions are combined to get
the final loss function with controllable hyper-parameters:

Lall = Lcoarse + Lrefine + λmaskLmask+

λcontrastLCL + λpercLperc. (12)
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τ 0.02 0.05 0.07 0.1 0.2

PSNR 44.04 43.9 44.24 44.1 44.07

Table 1: Effects of the temperature parameter τ in con-
trastive loss on LOGO-L dataset.

h 1 4 8 16

PSNR 43.98 44.24 44.16 44.19

Table 2: Effects of the multi-head number h in self-attention
block on LOGO-L dataset.

Baseline Refinement attention contrast PSNR

✓ 42.89
✓ ✓ 43.58
✓ ✓ ✓ 43.88
✓ ✓ ✓ naı̈ve 44.01
✓ ✓ ✓ ✓ 44.24

Table 3: Analysis of different modules on LOGO-L dataset.

Experiment
In this section, we start by introducing the datasets and im-
plementation details. Then, we provide extensive ablation
experiments with enriched visualization results to investi-
gate the benefit of each module. Finally, we compare our
DENet with state-of-the-art methods on various datasets, in-
cluding LOGO-L, LOGO-H and LOGO-Gray (Cun and Pun
2021). The experimental results demonstrate our effective-
ness both qualitatively and quantitatively.

Datasets and Implementation Details
Similar to the existing watermark removal method (Cun and
Pun 2021), all the experiments are conducted on the LOGO
series dataset. LOGO-L: LOGO-L contains 12151 water-
marked images for training and 2025 images for testing. In
this dataset, the watermark transparency range is between
35% and 60%, and the watermark size is also resized to 35%
to 60% of the original image. LOGO-H: This dataset con-
tains the same number of images as LOGO-L, but the water-
mark size in this dataset accounts for 60% to 80%, and the
transparency is set from 60% to 85%. Thus, this is a harder
dataset compared to LOGO-L due to the missing texture and
the larger watermark area. LOGO-Gray: This dataset also
includes 12151 images for training and 2025 images for test-
ing. Different from the above two datasets, the embedded
watermarks only contain grey-scale images.

Our method is implemented with Pytorch (Paszke et al.
2019). The models are trained for 200 epochs, where
the input image resolution is 256 × 256. We choose

(a) Before contrastive learning (b) After contrastive learning

(c) From left to right: Watermarked Image, Watermark-free Image,  
Watermark. Their features are embedded into t-SNE as sample.

Figure 3: The t-SNE (Van der Maaten and Hinton 2008) vi-
sualization of the embedding distributions of the watermark
(blue) and watermark-free image (orange) before and after
the proposed contrastive learning mechanism.

Adam (Kingma and Ba 2014) as optimizer with learning
rate of 1e-3, batch size 16. The hyper-parameters in (7) are
λmask = 1, λvgg = 0.25, λcontrast = 0.25, respectively. Fol-
lowing previous work(Cun and Pun 2021; Liang et al. 2021),
we evaluate our method on several popular metrics, such as
Peak Signal-to-Noise Radio (PSNR), Structural Similarity
(SSIM) (Wang et al. 2004) and the deep perceptual similar-
ity (LPIPS) (Zhang et al. 2018).

Ablation Study
In this section, we perform extensive ablation experiments
to demonstrate the necessity and significance of each mod-
ule of our network. Specifically, we first conduct sensitivity
analysis experiments of the parameters. Then, we remove
all modules and add them back incrementally to explore
their effectiveness. Most notably, we present impressive vi-
sualization results, which provide a glimpse into the inter-
pretability of our proposed modules.

Sensitivity analysis: Following (Chen et al. 2020;
Vaswani et al. 2017), we search for optimal temperature
parameter τ and head number h w.r.t. PSNR on LOGO-L
dataset. Tab 1 and Tab 2 show the effect of using different τ
and h. For τ , we find that when the value is set to 0.07, it can
achieve the best performance. Moreover, we find that when
h = 1, that is, when multi-head attention degenerates into
single-head attention, the performance drops significantly.
However, when h continues to increase, the performance im-
provement is not obvious and even decreases. Therefore, we
set temperature parameter τ to 0.07 and multi-head numbers
h to 4 in the following experiments.
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Methods
LOGO-H LOGO-L LOGO-Gray

PSNR ↑ SSIM ↑ LPIPS↓ PSNR ↑ SSIM ↑ LPIPS↓ PSNR ↑ SSIM ↑ LPIPS↓

UNet 30.51 0.9612 5.44 34.87 0.9814 2.97 32.15 0.9728 3.53
SIRF 32.35 0.9673 8.01 36.25 0.9825 6.55 34.33 0.9782 6.72

BS2AM 31.93 0.9677 4.45 36.11 0.9839 2.23 32.91 0.9754 3.05
DHAN 35.68 0.9809 6.61 38.54 0.9887 5.91 36.39 0.9836 5.94
BVMR 36.51 0.9799 2.37 40.24 0.9895 1.26 38.90 0.9873 1.15
SplitNet 40.05 0.9897 1.15 42.53 0.9924 0.87 42.01 0.9928 0.73
SLBR 40.56 0.9913 1.06 44.10 0.9947 0.70 42.21 0.9936 0.69

DENet (Ours) 40.83 0.9919 0.89 44.24 0.9954 0.54 42.60 0.9944 0.53

Table 4: Quantitative comparisons of our DENet with the other state-of-the-art methods on LOGO-H, LOGO-L and LOGO-
Gray datasets. We choose PSNR, SSIM and LPIPS (in percentage) as metrics. The best results are marked in bold.

采用

Figure 4: Visualization of the attention maps. The red cross
denotes the selected pixels, with similar feature representa-
tion in blue color and dissimilar features in white.

Individual module analysis: As shown in Tab 3, we
investigate the effectiveness of each module in our frame-
work by removing all and adding them back incrementally.
We started with a basic structure of ResUnet as (Hertz et al.
2019), except that it has two branches for predicting water-
mark location and watermark-free image, respectively. The
performance of this baseline method is reported in the first
row of Tab 3. Then, consistent with SLBR (Liang et al.
2021), we add Unet with feature injection as refinement net,
which is shown in the second row. It can be seen that the
performance will improve. After that, we add self-attention
module in both branches to focus on different regions, lead-
ing to the third row in Tab 3. By comparing the second
row with the third row, it demonstrates the effectiveness
of the self-attention module. In addition, we introduce the
contrastive learning mechanism and try to add contrastive
loss function. In the fourth row, we first add the nav̈e l2
loss described in Eqn. (4). Then, we choose the proposed
contrastive loss function instead, and the performance is re-
ported in the fifth row. By comparing the second row to the
fifth row, we can observe that the loss function in Eqn. (5) is
more efficient, resulting in the best performance.

Visualization of contrastive learning mechanism: To
further study the effectiveness of our proposed contrastive
learning method, we obtain the feature W ∗, W ∗− de-
scribed in Fig 2 and perform t-SNE algorithm (Van der
Maaten and Hinton 2008; Poličar, Stražar, and Zupan 2019).
As illustrated in Fig 3(a), without our contrastive learning
mechanism, the watermark feature W ∗(blue points) and the
watermark-free image feature W ∗−(orange points) are ex-
tremely confusing, and no effective distinction boundary
can be seen. That is, watermark and watermark-free images
share highly entangled in high-level semantics. This is easy
to understand because they come from the same encoder,
and the loss function acts on the output image, which is far
from deep layers. On the contrary, as shown in Fig 3(b), af-
ter applying contrastive learning, the features of both water-
mark and watermark-free images are clearly clustered and
separated from each other. It indicates that the deep features
of different branches have their own orientation, thus the
subsequent learning can be more focused on their respective
tasks, such as watermark localization and removal. In other
words, this experiment strongly demonstrates that our pro-
posed disentangled embedding mechanism can efficiently
distinguish the watermark image feature and decompose the
intrinsic components, leading to better performance.

Visualization of self-attention module: To further ver-
ify the effectiveness of our proposed self-attention mod-
ule, we present the attention map from Eqn. (7) accord-
ing to (Wang et al. 2020). We first calculate AttnMap =
1
h

∑h
i=1 softmax(QiK

T
i√

dk
) and then visualize it as shown in

Fig 4. In each row, the selected pixels are the same, except
that the second and third attention map come from the wa-
termark removal and watermark localization branch, respec-
tively. Although the location is the same, the area of concern
is so different. For the watermark removal branch, the pix-
els within the watermark are more similar to other pixels
around the watermark, which can help the network perceive
the original watermark-free image information and restore
the texture of the area covered by the watermark. Mean-
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Input GT Ours SLBR SplitNet WDNet BVMR Watermark

采用Figure 5: Qualitative comparisons with other state-of-the-art watermark removal methods. Our approach can yield more high-
quality reconstructed output without watermark artifacts.

while, for the localization branch, the pixels in the water-
mark pay more attention to other pixels inside the water-
mark because the localization branch only cares about com-
pletely segmenting the watermark. Therefore, it proves that
our self-attention module can capture information in differ-
ent regions according to the corresponding task.

Comparisons with State-of-the-art Methods
The quantitative comparison of our proposed DENet with
other existing watermark removal methods is summarized in
Tab 4. Among them, Unet (Ronneberger, Fischer, and Brox
2015), SIRF (Zhang, Ng, and Chen 2018), BS2AM (Cun
and Pun 2020), DHAN (Cun, Pun, and Shi 2020) are mi-
grated from related tasks such as blind image harmoniza-
tion, shadow removal, etc. BVMR (Hertz et al. 2019), Split-
Net (Cun and Pun 2021), and SLBR (Liang et al. 2021) are
the latest technologies dedicated to watermark removal.

Our framework outperforms all the other methods on
the three datasets and achieves new state-of-the-art perfor-
mance. The various experimental results are sufficient to
prove the effectiveness of our approach, which starts from
a disentangling embedding perspective. It should be pointed
out that we have not designed any complex modules tailored
for watermark removal, such as SMR,MBE (Liang et al.
2021) and S2AM (Cun and Pun 2021). We only use two
general approaches (contrast learning and self-attention) to
build framework based on our understanding of watermark
removal. Furthermore, extensive ablation experiments and
visualizations support the interpretability of our method.

Moreover, we present qualitative results of our DENet ap-
proach compared with other methods in Fig 5. From left to
right, we display the input watermarked image, the ground-
truth of the watermark-free image, the watermark-free im-
age generated by different methods, and the ground-truth
of the watermark. We can observe that DENet produces the
most satisfactory results, which shows better watermark lo-
calization and repaired texture in some complicated areas.
For example, in the first row, SLBR and SplitNet fail to iden-
tify the complete region of the watermark. In the third row,
WDnet mistakenly paints the watermark area with incongru-
ent colors, while BVMR does not remove the watermark at
all. In these cases, our DENet can accurately identify the
watermark region and restore the original texture properly.

Conclusion
In this paper, we propose a disentangled embedding net-
work (DENet) for visible watermark removal. Specifically,
through a contrastive learning mechanism, we decouple
the image and watermark representation in the high-level
embedding space, leading to obtaining more oriented fea-
tures for localization and reconstruction, respectively. To
further improve the network‘s ability to capture informa-
tion from different regions, a self-attention module is intro-
duced. Comparisons on various datasets show that DENet
can achieve state-of-the-art performance qualitatively and
quantitatively. In addition, extensive ablation experiments
and visualizations have demonstrated the effectiveness and
interpretability of our proposed method.
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