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Abstract

Over the years, learning-based multi-view stereo methods
have achieved great success based on their coarse-to-fine
depth estimation frameworks. However, 3D CNN-based cost
volume regularization inevitably leads to over-smoothing
problems at object boundaries due to its smooth properties.
Moreover, discrete and sparse depth hypothesis sampling ex-
acerbates the difficulty in recovering the depth of thin struc-
tures and object boundaries. To this end, we present an Ef-
ficient edge-Preserving multi-view stereo Network (EPNet)
for practical depth estimation. To keep delicate estimation
at details, a Hierarchical Edge-Preserving Residual learning
(HEPR) module is proposed to progressively rectify the up-
sampling errors and help refine multi-scale depth estimation.
After that, a Cross-view Photometric Consistency (CPC) is
proposed to enhance the gradient flow for detailed structures,
which further boosts the estimation accuracy. Last, we de-
sign a lightweight cascade framework and inject the above
two strategies into it to achieve better efficiency and per-
formance trade-offs. Extensive experiments show that our
method achieves state-of-the-art performance with fast in-
ference speed and low memory usage. Notably, our method
tops the first place on challenging Tanks and Temples ad-
vanced dataset and ETH3D high-res benchmark among all
published learning-based methods. Code will be available at
https://github.com/susuwj/EPNet.

Introduction
Multi-View Stereo (MVS) aims to reconstruct the 3D scene
geometry from multiple calibrated images which is a funda-
mental topic in computer vision. Benefiting from the coarse-
to-fine architecture (Cheng et al. 2020; Yang et al. 2020; Gu
et al. 2020), learning-based MVS methods have achieved
significant progress concerning both efficiency and qual-
ity of the reconstruction in recent years (Wang et al. 2021;
Peng et al. 2022; Su, Xu, and Tao 2022). However, exist-
ing learning-based MVS methods still struggle to recover
the depth at thin structures and object boundaries and are
hard to balance efficiency and generalization ability.

The core idea of learning-based methods is building cost
volumes by the differentiable homography (Yao et al. 2018;
Gu et al. 2020) with sampled depth hypotheses. And 3D
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Figure 1: (a) left: comparison results of GPU memory and
run-time consumption (image size 1920×1024, 5 views),
middle and right: comparison with state-of-the-art learning-
based methods on Tanks & Temples and ETH3D datasets
(higher is better). (b) Qualitative comparison with CasMVS-
Net (Gu et al. 2020) and GBi-Net (Mi, Di, and Xu 2022)
on Scan9 of DTU dataset. Our method can recover edge-
preserving depth maps with rich details.

CNNs are applied on cost volumes for regressing the depth
map of the reference view. The 3D CNN-based cost vol-
ume regularization usually leads to over-smoothing prob-
lems at object boundaries (Tosi et al. 2021) caused by its
smooth properties. Moreover, as the sampled depth hypothe-
ses are discrete and the number of hypotheses is limited, it is
hard to capture precise depths of thin structures and object
boundaries, resulting in blur artifacts in the estimated depth
maps. This problem is further exacerbated in the widely used
coarse-to-fine architectures which first estimate initial depth
maps with coarse depth hypotheses at low resolution and
gradually refine the initial depth maps with finer cost vol-
umes at higher resolution. As initial depth hypotheses are
very sparse and the depth searching range in the finer stage
is around the depth map estimated in the previous stage,
it is hard to recover depth at object boundaries at the first
stage, and errors in the initial depth map will be propagated
to the finer stage. Additionally, in the coarse-to-fine archi-
tecture, simple bilinear upsampling is generally used in ex-
isting methods to upsample the low-resolution depth map
to the higher one, which produces cross-edge interpolation.
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This further aggravates the problem of blur artifacts in the
estimated depth maps. Blur artifacts not only reduce the ac-
curacy of the depth map but also reduce the completeness
of the reconstructed point cloud by destroying the geometric
consistency between views.

To address the problems above, we resort to utilizing the
context information in the image, which is a crucial clue to
reflect the structure of a scene but is ignored by most MVS
methods. We thus propose a Hierarchical Edge-Preserving
Residual learning (HEPR) module which incorporates the
context information in the reference image to perform edge-
aware depth refinement by learning residual maps with high-
frequency details. Instead of directly upsampling the depth
map to a higher resolution with the bilinear upsampling in
the coarse-to-fine architecture, we hierarchically use resid-
ual learning networks in the HEPR under the guidance of
image context information to estimate residual maps that
are used to blend high-frequency details into depth maps
predicted by the backbone network, so as to achieve edge-
preserving upsampling while refining the erroneous regions
of the depth maps predicted by the backbone network. In this
way, blur-free depth maps can be obtained which can boost
the reconstruction quality.

Furthermore, we noticed that some extreme outliers re-
sulting from hard samples in depth domain prevent the fur-
ther optimization for more accurate depth estimation of fine-
grained regions. As shown in Figure 2 (a), errors between
Ground Truth (GT) and estimated depth maps in the depth
domain are dominated by extreme errors of texture-less ar-
eas (highlighted by the black box). Such dominant errors are
harmful to the optimization of interested regions but also are
useless for texture-less areas as in theory they are nearly un-
predictable (Ding et al. 2022b). To this end, we propose an
auxiliary Cross-view Photometric Consistency (CPC) loss
to optimize depth errors in image domain instead of depth
domain only, so as to enhance the optimization direction to-
wards the interested regions. Specifically, the proposed CPC
loss measures the difference between the images synthesized
by GT and estimated depth maps as shown in Figure 2 (b).
This inverse warping from depth domain to image domain
results in that the minor errors of interested areas in depth
domain can be magnified due to the non-smooth change of
colors in the image, and the excessive outliers from texture-
less areas are suppressed, thus generating a more uniform
error map. This can be observed by comparing error maps
between Figure 2 (a) and (b). As a result, we can enhance
the gradient flow of fine regions to boost performance.

In addition, most of the current learning-based meth-
ods generally construct cost volumes with high-resolution,
which induces high consumption of memory and run-time
(Peng et al. 2022; Ding et al. 2022a) as these grow cu-
bically with the increase of cost volumes’ resolution (Yao
et al. 2019). This inevitably hinders the practical applica-
tions which generally require the algorithms to be resource
friendly and efficient. Although some efficient methods are
proposed recently (Wang et al. 2021, 2022a,b), they show
unpleasant performance compared with non-efficient meth-
ods (Peng et al. 2022; Ding et al. 2022a). To relief this high
consumption of resource, we delicately design a lightweight
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Figure 2: Comparison of error maps in depth domain and
image domain, where error maps are obtained by using ab-
solute error between the GT and estimated depth map or im-
ages synthesized by the GT and estimated depth map. Note
that there are pixels without ground truth depth in GT and in-
valid pixels in the synthesized image, we masked them with
zeros in error maps and synthesized images which are pre-
sented in white in GT and error maps, and black in synthe-
sized images. The L and H denote the error is low and high.

cascade framework by stacking two stages at the same res-
olution, which contributes to maximizing depth hypothesis
sampling accuracy as much as possible with a low overhead
of memory and run-time.

By embedding the proposed HEPR module and CPC loss
into our lightweight cascade framework, an Efficient edge-
Preserving multi-view stereo Network (EPNet) is presented
in this paper which can ensure high performance while
maintaining high efficiency. Extensive experiments on var-
ious MVS benchmarks show that our method achieves state-
of-the-art performance. Particularly, as shown in Figure 1
(a), we achieve competitive results compared with Trans-
MVSNet (Ding et al. 2022a) and UniMVSNet (Peng et al.
2022) with the 56.66% and 69.68% reduction in GPU mem-
ory consumption, 88.90% and 74.00% reduction in run-time
consumption, and achieve comparable GPU memory and
run-time consumption compared to efficient methods Iter-
MVS (Wang et al. 2022a) and MVSTER (Wang et al. 2022b)
with much better generalization ability on Tanks and Tem-
ples and ETH3D high-res benchmarks.

To summarize, our contributions are as follows:
• We present a novel efficient edge-preserving multi-view

network that exploits context information in the im-
age for high-quality edge-aware depth estimation with
friendly memory and run-time consumption;

• We propose a hierarchical edge-preserving residual
learning module to perform the depth refinement which
supports blur-free depth upsampling;

• We introduce a cross-view photometric consistency loss
to effectively enhance the gradient flow of detailed re-
gions during training.

Related Works
Learning-based MVS Learning-based MVS methods
have achieved encouraging performance on various MVS
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benchmarks, where most of these methods mainly follow
the pipeline of MVSNet (Yao et al. 2018). To reduce the
memory consumption caused by the use of 3D CNNs, the
coarse-to-fine strategy (Cheng et al. 2020; Yang et al. 2020;
Gu et al. 2020) is widely used in recent methods. This
kind of method generally first estimates the initial depth
map with low-resolution and coarse depth hypotheses, then
upsamples the initial depth map to a higher one with the
bilinear upsampling and generates finer depth hypotheses
based on the previous estimation to refine the initial depth
map. Recently, several variants based on multi-stage meth-
ods are proposed, e.g., introducing pixel-wise visibility in-
formation of source views into cost volumes (Zhang et al.
2020; Xu et al. 2022), applying epipolar-assembling-based
kernel and entropy-based refining strategy to adaptively ag-
gregate matching costs along epipolar lines (Ma et al. 2021),
embedding the transformer into MVS (Ding et al. 2022a),
constructing the cost volume by non-parametric depth dis-
tribution modeling (Yang, Alvarez, and Liu 2022) and so
on. Although these methods have solved some problems in
the vanilla multi-stage methods, they still have difficulty in
solving the problem of blur artifacts.

Some other methods are dedicated to improving effi-
ciency. PatchmatchNet (Wang et al. 2021) introduces the
idea of Patchmatch which can reduces the overhead of mem-
ory and run-time. GBiNet (Mi, Di, and Xu 2022) formu-
lates MVS as a binary search problem that decreases mem-
ory consumption by reducing the cost volume size. IterMVS
(Wang et al. 2022a) and Effi-MVS (Wang, Li, and Dai 2022)
present iterative GRU-based optimizers which are memory
and run-time consumption friendly. MVSTER (Wang et al.
2022b) can estimate depth with fewer depth hypotheses by
using the epipolar Transformer and optimal transport. How-
ever, these methods show limited generalization ability.

Depth Refinement and Upsampling in MVS In previous
methods, the refinement/upsampling modules generally are
involved as a final step of MVS which is used to refine/up-
sample the depth maps obtained from the backbone network,
so as to get depth maps with better quality or higher resolu-
tion. MVSNet (Yao et al. 2018) uses a refinement module
to refine the initial depth maps. To alleviate the stair effect,
R-MVSNet (Yao et al. 2019) proposes a variational depth
map refinement module. PatchmatchNet (Wang et al. 2021)
designs a refinement module based on (Hui, Loy, and Tang
2016). IterMVS (Wang et al. 2022a) introduces a spatial up-
sampling module (Teed and Deng 2020) to upsample the
depth to a higher resolution. Distinct from these methods,
we propose a HEPR module to perform the depth refine-
ment on the intermediate pyramid stages, so as to enforce
the entire network achieve edge-aware depth estimation.

Loss Function in MVS Most of the learning-based MVS
methods are supervised by L1 loss only (Yao et al. 2018; Gu
et al. 2020; Wang et al. 2021). The recurrent-based meth-
ods (Yao et al. 2019; Yan et al. 2020; Wei et al. 2021)
and GBiNet (Mi, Di, and Xu 2022) use the cross entropy
loss. TransMVSNet (Ding et al. 2022a) introduces the focal
loss (Lin et al. 2017) to handle ambiguous predictions. Iter-
MVS (Wang et al. 2022a) proposes a hybrid training strat-

egy with the L1 loss and cross entropy loss. UniMVSNet
(Peng et al. 2022) unifies the advantages of regression and
classification by the unified focal loss. However, these loss
functions all act in the depth domain, which may easily af-
fected by some extreme outliers during training. Note that
the proposed CPC loss is different from the photometric con-
sistency loss in self-supervised/unsupervised methods (Xu
et al. 2021), which is vulnerable to the adverse effects of il-
lumination changes and occlusion from different views. As
CPC loss aims to transfer the difference between the GT and
predicted depth from the depth domain to the image domain,
it implicitly avoids the adverse effects of these factors.

Method
Given a reference image X0 and its N -1 source images
{Xi}N−1

i=1 with their intrinsic and extrinsic camera param-
eters, MVS aims to recover the depth of the reference view.
Figure 3 illustrates the overall pipeline of the EPNet, which
is mainly composed of two modules: the Multi-Scale Depth
Estimation (MSDE) module and the HEPR module. The
MSDE adopts the designed lightweight cascade structure
with the coarse-to-fine strategy (Gu et al. 2020) to estimate
depth maps in an efficient manner. During training, the pro-
posed CPC loss is used with L1 loss to supervise the MSDE
for enhancing the gradient flow of detail structures. And the
HEPR is embedded to the MSDE to gradually achieve edge-
preserving depth refinement.

Hierarchical Edge-Preserving Residual Learning
The drawback of estimating depth solely based on geomet-
ric information is that some areas of the estimated depth
map are not aligned with the context of the reference image,
namely, there are blur artifacts in the depth maps. Moreover,
the coarse-to-fine architecture depends on the estimation of
coarse stages, which has the problems of error accumulation
and aggravating blur artifacts. We approach these problems
by performing edge-preserving refinement on the interme-
diate output of the coarse-to-fine architecture with the pro-
posed HEPR module. Specifically, we task this module with
learning a depth residual progressively to aid the coarse es-
timation to recover fine details at higher resolution with the
guidance of the reference image.

As shown in Figure 3 (b), the HEPR module first adopts
a context encoder to extract multi-scale context features of
the reference image which is used to guide the depth resid-
ual learning network to learn fine details. Then, the depth
residual learning networks are applied to hierarchically re-
fine the intermediate output of the MSDE, so that the so-
phisticated structure can be progressively recovered. The in-
put of the depth residual learning network is features of the
depth maps extracted by the depth feature extraction net-
work and context features extracted by the context encoder.
The depth feature extraction network has a three-layer shal-
low CNN followed by a deconvolution layer with stride 2 to
extract features from the normalized depth maps. The depth
map is normalized by

D̂n = (D̂o −mean(D̂o))/std(D̂o), (1)
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Figure 3: The overview of EPNet. (a) illustrates the pipeline of multi-scale depth estimation which adopts the coarse-to-fine
strategy to estimate depth maps. The orange box in this module gives the specific process of stage-wise depth estimation where
the proposed cross-view photometric consistency loss is applied during training. (b) shows the details of hierarchical edge-
preserving residual learning module.

where D̂n denotes the normalized depth, D̂o denotes the
depth estimated by MSDE, mean(·) and std(·) denote cal-
culating the mean and standard deviation of the depth map.

The concatenated depth features and context features are
processed by the depth residual learning network that mainly
consists of an encoder and a decoder with skip connections
to couple context features and depth map features. The en-
coder and decoder of the depth residual learning network
consist of several residual blocks for learning a better cou-
pling. Finally, the depth residual is output and added to the
upsampled and normalized depth maps, generating an edge-
preserving depth map with higher resolution, this process
can be formulated by:

D̂rn = Up(D̂n) + ∆D̂, (2)

where D̂rn denotes the refined normalized depth map, Up(·)
denotes using bilinear upsampling to upsample the input to
twice its original size, and ∆D̂ denotes the learned depth
residual. The D̂rn is unnormalized by the original mean and
standard deviation, and the edge-aware depth map D̂r is:

D̂r = std(D̂o) · D̂rn + mean(D̂o). (3)

Cross-view Photometric Consistency Loss
The core idea of cross-view photometric consistency is to
magnify gradient flows of detailed regions by measure the
difference between synthesized images at the reference view
by GT and estimated depth based on the images of source
views. For a pixel pj in the reference image X0 with the
depth value d, its corresponding pixel p̂j in the source view
is computed as:

p̂j = Ki(R0,i(K
−1
0 pjd) + t0,i), (4)

where K0 and Ki denote the intrinsic camera parameters of
the reference view and i-th source view,R0,i and t0,i denote
the relative rotation and translation between the reference
view and i-th source view.

With the transformation above, the image I0,i synthesized
by the i-th source image based on the depth maps D at
the reference view can be obtained by differentiable bilin-
ear sampling:

I0,i(pj) = Ii(p̂j). (5)

A binary mask Mi is also generated during this process
which indicates the invalid pixels in the synthesized image
I0,i, i.e., pixels projected to the outside regions of the image.

In this case, the cross-view photometric consistency is

LCPC =
N∑
i=1

∑
p∈Mi

|Igt0,i(p)− Î0,i(p)|
|Mi|

, (6)

where Igt0,i and Î0,i denote images synthesized by the i-th
source image based on the GT and estimated depth maps,
respectively, N denotes the number of views, Mi denotes
the valid pixels in both synthesized images and the GT depth
map which is produced byMi·Ω, Ω indicates the valid pixels
in the GT depth map.

We use CPC loss and L1 loss in depth domain to constrain
the MSDE module of EPNet:

LB =
4∑

s=0

λs(
∑
x∈Ω

|Ds
gt(p)− D̂s

o(p)|
|Ω|

+ µLs
CPC) (7)

where Ds
gt and D̂s

o denote the GT and estimated depth maps
at stage s, respectively, λs and µ are weight coefficients. The
HEPR part is constrained by the L1 loss in depth domain
alone, so the total loss of EPNet is formulated as:

L = LB + LR = LB +
∑
s=1,3

ηs
∑
x∈Ω

|Ds+1
gt (p)− D̂s

r(p)|
|Ω|

(8)
where D̂s

r denotes the depth output by HEPR at stage s, ηs
is a weight coefficient for stage s.
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Edge-Preserving Multi-View Stereo Network
As shown in Figure 3, EPNet combines the MSDE with
HEPR. The MSDE applies the coarse-to-fine strategy to pro-
gressively estimate high-resolution depth maps, which first
extracts multi-scale image features

{
F k
i

}N−1

i=0
(k = 0, 1, 2)

with resolution 1/23−kH×1/23−kW for all images with reso-
lutionW×H by using a 2D U-Net with shared weights. The
encoder and decoder of the 2D U-Net (Ronneberger, Fis-
cher, and Brox 2015) are formed by multiple residual blocks.
Then, the stage-wise depth estimation is performed as (Gu
et al. 2020) does. As the stage-wise depth estimation is the
same for all stages, we omit subindices to ease notation. For
each stage, all feature maps of source views are warped into
a set of fronto-parallel planes of the reference view at the
sampled depth hypotheses to form the N − 1 warped fea-

ture volumes
{
F́i

}N−1

i=1
by the differentiable homography

(Yao et al. 2018). And the group-wise correlation similar-
ity (Xu and Tao 2020) with 8 groups is used to construct
the two-view cost volume Ci by using the reference feature
F0 and i-th warped source feature F́i. A two-layer 3D CNN
followed by a Sigmoid activation and a max-pooling layer is
imposed on the Ci (Xu et al. 2022) at the first stage to ob-
tain the visibility map Vi of each source view, which is used
to aggregate the two-view cost volumes into a unified cost
volume C in a weighed fusion manner for all stages.

Unlike previous methods which directly use bilinear sam-
pling to upsample the estimated depth maps to the next scale,
we adopt the proposed HEPR module to further refine and
upsample the estimated depth D̂o. In this way, the edge-
preserving depth D̂r can be obtained that is used as the
basis for determining the depth sampling range in the next
stage. We adopt the depth hypothesis sampling strategy of
CasMVSNet (Gu et al. 2020) which uniformly samples the
depth hypotheses with a decreasing depth sampling range
and a decreasing depth sampling number. Note that different
from the most of learning-based methods where the resolu-
tion of the estimated depth map in the next stage generally is
twice that of the previous stage, the resolution of the depth
maps estimated in the stage 0 and stage 1, stage 2 and stage 3
is the same in EPNet, so we can increase the number of depth
hypothesis samples as much as possible without adding a
lot of overhead of memory and run-time. In this case, the
EPNet consists of 5 stages which estimates the depth with
resolution of 1/8H × 1/8W at the coarsest stage and esti-
mates the depth with resolution of 1/2H × 1/2W at the finest
stage. Note that, avoiding estimating the depth map at full
resolution can greatly decrease the consumption of memory
and run-time which is also the main reason for the high effi-
ciency of some methods (Wang et al. 2021, 2022a).

Experiments
Datasets and Evaluation Metrics
Datasets The DTU dataset (Aanæs et al. 2016), Blended-
MVS (Yao et al. 2020) dataset, Tanks and Temples dataset
(Knapitsch et al. 2017), and ETH3D high-res benchmark
(Schöps et al. 2017) are used. DTU (Aanæs et al. 2016)

consists of more than 100 scenes captured under 7 differ-
ent lighting conditions, which is split into the training set,
validation set and evaluation set as (Ji et al. 2017) does and
preprocessed as (Yao et al. 2018) does. The BlendedMVS
(Yao et al. 2020) is a large-scale dataset containing 17k sam-
ples of 113 scenes, which is divided into the training set and
validation set. Tanks and Temples (Knapitsch et al. 2017) is
composed of both realistic outdoor and indoor scenes, which
is further divided into intermediate subset and advanced
subset. ETH3D (Schöps et al. 2017) also contains outdoor
and indoor scenes captured in realistic environments, but the
baseline between views is wider compared with that in Tanks
and Temples whose data are presented as video sequences.

Evaluation Metrics The Accuracy (Acc.) and Complete-
ness (Comp.) of the distance metric are used to measure the
quality of reconstructed point clouds for DTU dataset, while
the accuracy and completeness of the percentage metric are
adopted for Tanks and Temples dataset and ETH3D high-res
benchmark. We calculate the average of the mean accuracy
and the mean completeness as the overall score for DTU
dataset and F1 score for the other two datasets.

Implementation Details
Following (Peng et al. 2022), EPNet is first trained on DTU
and then fine-tuned on BlendedMVS. During training, the
resolution of images for DTU and BlendedMVS is set to
640 × 512, and the number of views N is 5 for DTU and 7
for BlendedMVS. The EPNet is composed of 5 stages, the
number of depth hypotheses for each stage is set to 32, 16,
8, 8, 8, and the corresponding depth sampling range decays
by 0.5 for the second stage and 0.25 for the rest.

The proposed method is implemented by PyTorch (Paszke
et al. 2019). Adam (Kingma and Ba 2014) is used as the
optimizer. For the model including the HEPR module, we
first train the MSDE alone for 1 epoch, then train the HEPR
module alone for 2 epochs to warm up this branch, and fi-
nally train the full model for another 9 epochs, and the ini-
tial learning rate 0.001 is decreased by half at 8-th, 10-th
and 11-th epoch. While for the model excluding the HEPR
module, it is trained for 10 epochs with the initial learning
rate 0.001 decreased by half at 6-th, 8-th and 9-th epochs.
When fine-tuned on BlendedMVS, the model is trained for
10 epochs with the initial learning rate 0.0001 decreased by
half at 6-th and 8-th epochs. The robust training strategy
(Wang et al. 2021) is used in all models for better learning of
pixel-wise visibility. The experiments are performed on one
GeForce RTX 2080Ti GPU. When testing, we first use the
proposed model to predict depth maps for all input views,
then use the probability map and geometric consistency as
previous methods do (Zhang et al. 2020; Yan et al. 2020) to
filter and fuse the depth maps to a unified 3D point cloud.

Benchmark Performance
Results on DTU We evaluate EPNet on the evaluation set
of DTU dataset using the model trained on the training set
of DTU dataset only, where the number of views is 5 and
the resolution of images is 1600 × 1152. Quantitative re-
sults of reconstructed point clouds are given in Table 1. As
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Method Acc. ↓ Comp.↓ Overall ↓

Tr
a. Gipuma 0.283 0.873 0.578

COLMAP 0.411 0.657 0.534
L

ea
rn

in
g

MVSNet 0.396 0.527 0.462
Vis-MVSNet 0.369 0.361 0.365
IterMVS 0.373 0.354 0.363
CasMVSNet 0.325 0.385 0.355
EPP-MVSNet 0.413 0.296 0.355
PatchmatchNet 0.427 0.277 0.352
UGNet 0.334 0.330 0.332
PVSNet 0.337 0.315 0.326
Effi-MVS 0.321 0.313 0.317
NP-CVP-MVSNet 0.356 0.275 0.315
UniMVSNet 0.352 0.278 0.315
TansMVSNet 0.321 0.289 0.305
MVSTER 0.340 0.266 0.303
GBi-Net 0.327 0.268 0.298
EPNet 0.299 0.323 0.311

Table 1: Quantitative results of reconstructed point clouds
on DTU evaluation set by using the distance metric [mm]
(lower is better).

Image EPNet

CasMVSNet UniMVSNet

Image CasMVSNet EPNetUniMVSNet

Figure 4: Qualitative comparisons of estimated depth maps
with CasMVSNet (Gu et al. 2020) and UniMVSNet (Peng
et al. 2022) in terms of Scan33 and Scan11 in DTU dataset.

shown, our method achieves competitive results compared
with existing methods, and the Accuracy of our method is
second only to Gipuma (Galliani, Lasinger, and Schindler
2015) among all methods. We also compare our method with
state-of-the-art methods CasMVSNet (Gu et al. 2020) and
UniMVSNet (Peng et al. 2022) in terms of the estimated
depth maps on Scan33 and Scan11, qualitative comparisons
are visualized in Figure 4. As illustrated, our method can re-
cover the depth of thin structures and object boundaries well,
and the edge of our depth map is able to align with the image
better compared with other methods.

Results on Tanks and Temples To validate the general-
ization ability of EPNet, we test our method on Tanks and
Temples benchmark without any fine-tuning on it, results are
given in Table 2. The number of views is 11 and the resolu-
tion of images is 1920× 1024. For a fair comparison, we re-
spectively use the model trained on DTU only, and the model
trained on DTU and fine-tuned on BlendedMVS to test on
Tanks and Temples. As illustrated, our method achieves
excellent performance for both models trained on DTU
only and fine-tuned on BlendedMVS. Specially, our DTU-
only trained model outperforms all learning-based methods

Method Intermediate (↑) Advanced (↑)
Acc. Comp. F1 Acc. Comp. F1

Tr
a. COLMAP 43.16 44.48 42.14 33.65 23.96 27.24

ACMM 49.19 70.85 57.27 35.63 34.90 34.02

D
T

U

MVSNet 40.23 49.70 43.48 - - -
NP-CVP-MVSNet 45.82 80.12 57.53 - - -
CasMVSNet 47.62 74.01 56.84 29.68 35.24 31.12
PatchmatchNet 43.64 69.37 53.15 27.27 41.66 32.31
IterMVS 46.82 73.50 56.22 28.04 42.60 33.24
PVSNet 53.71 63.88 56.88 29.43 41.17 33.46
Effi-MVS 47.53 71.58 56.88 32.23 41.90 34.39
EPNet 53.26 71.60 60.46 30.75 44.12 35.80

B
le

nd
ed

M
V

S

NP-CVP-MVSNet 47.05 84.69 59.64 - - -
Vis-MVSNet 54.44 70.48 60.03 30.16 41.42 33.78
IterMVS 47.53 74.69 56.94 28.70 44.19 34.17
PVSNet 48.20 78.63 59.11 32.93 41.41 35.51
EPP-MVSNet 53.09 75.58 61.68 40.09 34.63 35.72
TransMVSNet 55.14 76.73 63.52 33.84 44.29 37.00
UGNet 56.40 72.93 63.12 38.36 37.86 37.12
GBi-Net 54.48 71.25 61.42 30.58 48.83 37.32
MVSTER 51.17 77.50 60.92 33.23 45.90 37.53
UniMVSNet 57.54 73.82 64.36 33.76 47.22 38.96
EPNet 57.01 72.57 63.68 34.26 50.54 40.52

Table 2: Quantitative results on Tanks and Temples dataset
using percentage metric (%) (higher is better). Methods are
separated into three categories (from top to bottom): tradi-
tional, trained on DTU, and trained or fine-tuned on Blend-
edMVS.

that also are trained on DTU only and traditional methods
(Schönberger et al. 2016; Xu and Tao 2019) on both ad-
vanced subset and intermediate subset. For methods trained
or fine-tuned on BlendedMVS, our method obtains compa-
rable performance to state-of-the-art methods. It is worth
noting that our method under this condition achieves the best
result on the advanced subset among all published works.
Moreover, our method performs much better on two subsets
in terms of F1 score compared with state-of-the-art efficient
methods PatchmatchNet (Wang et al. 2021), IterMVS (Wang
et al. 2022a), Effi-MVS (Wang, Li, and Dai 2022), GBi-Net
(Mi, Di, and Xu 2022) and MVSTER (Wang et al. 2022b),
which further verifies the superiority of our method.

Results on ETH3D We further verify the generalization
ability of our method on more challenging ETH3D high-res
benchmark without any fine-tuning on it, quantitative results
of point clouds on ETH3D high-res benchmark are shown in
Table 3. The number of views is 7 for the model trained on
DTU and 10 for the model fine-tuned on BlendedMVS, the
resolution of images is 2432× 1600. Obviously, our method
is superior to both traditional methods and learning-based
methods. For the model solely trained on DTU, our method
performs better than all learning-based methods listed in the
Table 3. We obtain much better performance on both train-
ing set and test set when the model is fine-tuned on Blend-
edMVS, which not only performs better than state-of-the-
art traditional method ACMM (Xu and Tao 2019) but also
state-of-the-art learning-based methods. This demonstrates
wonderful generalization ability of the EPNet.
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Method Training set (↑) Test set (↑)
Acc. Comp. F1 Acc. Comp. F1

Tr
a. COLMAP 91.85 55.13 67.66 91.97 62.98 73.01

ACMM 90.67 70.42 78.86 90.65 74.34 80.78

D
T

U

PVSNet 67.84 69.66 67.48 66.41 80.05 72.08
PatchmatchNet 65.43 64.81 64.21 69.71 77.46 73.12
IterMVS 73.62 61.87 66.36 76.91 72.65 74.29
EPNet 71.90 66.17 68.08 72.87 78.80 75.46

B
le

nd
ed

M
V

S

GBi-Net 73.17 69.21 70.78 82.02 75.65 78.40
MVSTER 68.08 76.92 72.06 77.09 82.47 79.01
IterMVS 79.79 66.08 71.69 84.73 76.49 80.06
UGNet 79.62 67.57 72.78 82.78 79.87 80.83
PVSNet 83.00 71.76 76.57 81.55 83.97 82.62
EPP-MVSNet 82.76 67.58 74.00 85.47 81.79 83.40
Vis-MVSNet 83.32 65.53 72.77 86.86 80.92 83.46
EPNet 79.36 79.28 79.08 80.37 87.84 83.72

Table 3: Comparisons of reconstructed point clouds on
ETH3D using percentage metric (%) at threshold 2cm
(higher is better). Methods are separated into three cate-
gories (from top to bottom): traditional, trained on DTU, and
trained or fine-tuned on BlendedMVS.

Model CPC HEPR DTU (↓) ETH3D (↑)
Acc. Comp. Overall F1

Model-A 0.360 0.300 0.330 63.84
Model-B X 0.358 0.295 0.327 64.33

EPNet X X 0.299 0.323 0.311 68.08

Table 4: Ablation results on DTU evaluation set by using the
distance metric [mm] (lower is better) and ETH3D training
set by using F1 score (%) at threshold 2cm (higher is better).

Ablation Study

The ablation study is performed to validate the effectiveness
of each component in the proposed method. All experiments
in this part are conducted on the model trained with the DTU
training set, and tested on the DTU evaluation set with reso-
lution 1600× 1152 and number of views N = 5 and on the
ETH3D training set with resolution 2432×1600 and number
of views N = 7. Due to that the CPC loss is able to trans-
fer the error between the GT and the estimated depth map
in the depth domain to the image domain, the error of de-
tailed regions can be magnified to be optimized better. This
is beneficial for predicting more accurate depth maps. As
shown in Table 4, Model-B achieves better results compared
to Model-A in terms of the reconstruction Acc. and overall
quality on DTU and better generalization ability on ETH3D.
Moreover, the performance of full model is greatly improved
when the HEPR is introduced. This is because the HEPR
module not only can help to refine the erroneous areas esti-
mated by the multi-scale depth estimation module but also
can achieve edge-preserving upsampling to enable the edge
of the estimated depth map to align with the context of the
image better. As a result, the issue of blur artifacts can be
alleviated which greatly improves the quality of depth maps
and contributes to more accurate point clouds. The qualita-
tive results shown in Figure 5 further validate the effective-
ness of the CPC loss and HEPR module.

Image Model-A EPNetModel-B

Figure 5: Qualitative comparisons of estimated depth maps
for ablation study in terms of Scan15 in DTU dataset.

Model Hypotheses DTU (↓) ETH3D (↑)
Overall Mem. Time F1

Model-C∗ 48,32,8 0.325 8065 0.7272 59.77
Model-D 32,16,8 0.339 2907 0.1792 59.22
Model-A 32,16,8,8,8 0.330 2843 0.1920 63.84

Table 5: Experiments results on DTU evaluation set by us-
ing the distance metric [mm] (lower is better), memory con-
sumption (MB) and run-time (s), and on ETH3D training set
by using F1 score (%) at threshold 2cm (higher is better). ∗
denotes the resolution of final output depth maps is H ×W ,
otherwise it is 1/2H × 1/2W . Hypotheses give the number
of depth hypotheses for each stage. Underline denotes the
resolution of depth maps output by these stages is the same.

Memory and Run-time Comparison
Table 5 presents experimental results of several variants
of Model-A. It can be observed from the experimental re-
sults of Model-C∗ and Model-D that estimating depth maps
with resolution from 1/8H × 1/8W to 1/2H × 1/2W rather
than from 1/4H × 1/4W to H ×W can greatly reduce the
memory and run-time consumption with just a little perfor-
mance degradation. Comparing Model-D with Model-A, it
can be seen that stacking stages at the same resolution can
increase the number of depth hypotheses without adding ex-
tra memory consumption and with a small increase in run-
time, which is helpful for improving performance. More-
over, combing Model-A with HEPR and CPC to get the
EPNet, it consumes about 2753 MB and 0.2298s to infer
a depth map on DTU. We further compare the memory and
run-time consumption with several top-performing learning-
based methods, the results are reported in Figure 1 (a). As
shown in Figure 1, compared with the most efficient meth-
ods PatchmatchNet (Wang et al. 2021), IterMVS (Wang
et al. 2022a) and MVSTER (Wang et al. 2022b), the mem-
ory and run-time overhead of our method are comparable,
but EPNet has much more powerful generalization ability.

Conclusion
We present an efficient edge-preserving multi-view stereo
network in this paper. The proposed HEPR module can help
the EPNet achieve edge-preserving depth upsampling and
correct erroneous regions in the depth maps estimated by
the MSDE module of EPNet. Moreover, to enhance gradient
flows of detailed regions, a CPC loss is proposed, so that the
network can be optimized better. In addition, by carefully
designing the structure of the multi-scale depth estimation
module, our method can estimate depth maps efficiently. Ex-
tensive experiments show that EPNet achieves state-of-the-
art performance on various datasets.
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