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Abstract

Point cloud panoptic segmentation is a challenging task that
seeks a holistic solution for both semantic and instance seg-
mentation to predict groupings of coherent points. Previous
approaches treat semantic and instance segmentation as sur-
rogate tasks, and they either use clustering methods or bound-
ing boxes to gather instance groupings with costly compu-
tation and hand-crafted designs in the instance segmenta-
tion task. In this paper, we propose a simple but effective
point cloud unified panoptic segmentation (PUPS) frame-
work, which use a set of point-level classifiers to directly pre-
dict semantic and instance groupings in an end-to-end man-
ner. To realize PUPS, we introduce bipartite matching to our
training pipeline so that our classifiers are able to exclusively
predict groupings of instances, getting rid of hand-crafted de-
signs, e.g. anchors and Non-Maximum Suppression (NMS).
In order to achieve better grouping results, we utilize a trans-
former decoder to iteratively refine the point classifiers and
develop a context-aware CutMix augmentation to overcome
the class imbalance problem. As a result, PUPS achieves 1st
place on the leader board of SemanticKITTI panoptic seg-
mentation task and state-of-the-art results on nuScenes.

1 Introduction
As one of the most challenging problems in computer vi-
sion, panoptic segmentation (Kirillov et al. 2019b) seeks a
holistic solution to both semantic segmentation and instance
segmentation. Shortly after the researchers proposed the
question in image data, two LiDAR datasets (Behley, Mil-
ioto, and Stachniss 2020; Fong et al. 2021) for autonomous
driving extend the research area to point cloud data. These
emerging challenges aim at assigning points with groupings
of countable thing instances and uncountable stuff classes,
revealing that perception system of autonomous vehicles de-
mands understanding of the environment in terms of both se-
mantic level and instance level through point cloud sensors.

To solve point cloud panoptic segmentation, previous ef-
forts can be divided into two streams: proposal-based meth-
ods and proposal-free methods. As the name indicates,
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Figure 1: Illustration of previous framework and PUPS.

proposal-based methods rely on proposals generated by an
object detection head to get instance segmentation and em-
ploy an extra semantic branch for semantic segmentation.
Besides their cascaded structure, this stream of methods in-
volves lots of hand-crafted components such as proposals
and non-maximum suppression (NMS). As for proposal-free
methods, they introduce clustering-based methods in their
instance branch based on the predicted offsets to instance
centers. Similarly, an extra semantic branch is attached for
semantic segmentation. Although outstanding results have
been achieved by these methods on different benchmarks,
there are two main drawbacks as shown in the upper part
of Figure 1: 1) they treat semantic and instance segmenta-
tion as surrogate tasks, which does not truly solve panoptic
segmentation holistically; 2) their instance branch involves
many hand-crafted components and post-processing, which
is complicated and time-consuming.

Inspired by recent developments in image segmenta-
tion (Cheng, Schwing, and Kirillov 2021; Wang et al. 2021;
Li et al. 2022c; Zhang et al. 2021), we propose PUPS, a sim-
ple but effective point cloud unified panoptic segmentation
framework to solve the challenges above. In essence, the aim
of point cloud panoptic segmentation is to predict groupings
of coherent points. PUPS unifies point cloud instance and se-
mantic segmentation as a classifier-assigning problem. More
specifically, PUPS allocates a set of point-level classifiers,
learning to assign them to exclusive instances or semantic
classes. By utilizing bipartite matching in the training phase,
we achieve PUPS in an end-to-end manner and it is able to
predict exclusive groupings with no hand-crafted design or
post-processing as shown in Figure 1.
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In addition to predicting exclusive groupings, we adopt
two designs to produce better grouping results. First, we uti-
lize a transformer decoder to refine the classifiers. In each
stages of refinement, our point-level classifiers query point
features from backbone and generate refined classifiers. Af-
terwards, the classifiers integrate the feature of correspond-
ing instances and semantics, enhancing their ability to distin-
guish between groupings. Moreover, we employ a classifier
self-attention to incorporate global relations into the classi-
fiers. After the classifiers are refined, new point groupings
are produced and can be further used to refine the classifiers
in the next stage together with the refined classifiers. Second,
in order to alleviate class imbalance and train the classifiers
more sufficiently, we design a context-aware CutMix (Yan,
Mao, and Li 2018; Xu et al. 2021; Li et al. 2022b) augmen-
tation. We cut instances from training scans and mix them
with the instances in the current scan based on their back-
ground to avoid damaging their context so that performance
is improved in return.

To evaluate the effectiveness of our proposals, we conduct
extensive experiments on two point cloud panoptic segmen-
tation datasets. Our method ranks 1st on the leader board of
SemanticKITTI (Behley, Milioto, and Stachniss 2020) and
achieves state-of-the-art results on nuScenes (Caesar et al.
2020).

To sum up, the contributions of this paper are listed below:

• To the best of our knowledge, PUPS is the first simple
but effective point cloud unified panoptic segmentation
framework, using a set of point-level classifiers to di-
rectly predict semantic and instance groupings.

• To get rid of post-processing and hand-crafted designs,
we introduce bipartite matching in our training so that
the classifiers are able to exclusively predict groupings.

• We utilize a transformer decoder to iteratively refine the
classifiers with point features to produce more accurate
groupings of points.

• To encounter class imbalance, we adopt a context-aware
CutMix strategy to enhance the performance of segmen-
tation by preserving the context of instances.

• We achieve rank 1 performance on the leader board of
SemanticKITTI panoptic segmentation task and SOTA
results on nuScenes.

2 Related Work
Panoptic Segmentation aims to divide an input sample into
countable thing instances or uncountable stuff classes. The
output of panoptic segmentation is to assign element-wise
label with both instance ID and semantic class. For input
modal of LiDAR point cloud or image, panoptic segmenta-
tion models follow two typical frameworks: proposal-based
and proposal-free.

2.1 LiDAR Point Cloud Panoptic Segmentation
Proposal-based methods This kind of methods are usu-
ally formulated in a two-stage manner: segmentation after
detection (Milioto et al. 2020; Hurtado, Mohan, and Val-
ada 2020). Moreover, SemanticKITTI (Behley, Milioto, and

Stachniss 2020) and nuScenes (Caesar et al. 2020) report
results by joining state-of-the-art point cloud object detec-
tion methods and point cloud semantic segmentation meth-
ods. Taking in range-view images, EfficientLPS (Sirohi et al.
2021) utilizes a instance branch to predict classes, bound-
ing boxes and masks for thing classes and fuse semantic
feature to predict stuff classes. After post-processing, the
range-view result is projected back to point-wise result. It is
worth noting that hand-crafted components such as anchors
or NMS are often involved in these methods.

Proposal-free methods As for proposal-free ones, they
usually predict instance centers and point-wise offset to cen-
ters to output panoptic segmentation result (Zhou, Zhang,
and Foroosh 2021; Hong et al. 2021). Recently, Panoptic-
PHNet (Li et al. 2022b) introduces a K-NN transformer
to predict more accurate offsets. Additionally, proposal-
free methods (Gasperini et al. 2021; Hong et al. 2021; Li
et al. 2022b) often involve clustering algorithms to cluster
points to instances. GP-S3Net (Razani et al. 2021) propose
a novel graph-based clustering method to effectively predict
instances from over-segmented clusters.

PUPS directly groups point cloud without any bounding
box proposals, hand-crafted post-processing or clustering al-
gorithms. It is worth noting that these hand-crafted compo-
nents in both proposal-based/free methods require lots of
computation and careful tuning.

2.2 Image Panoptic Segmentation
Proposal-based methods This stream of methods follow
the pipeline that bounding boxes are first obtained and masks
of each bounding box are predicted afterwards, such as
Panoptic-FPN (Kirillov et al. 2019a). These methods fuse
their masks of thing classes and masks of stuff classes with
merging modules (Liu et al. 2019; Li et al. 2019; Porzi et al.
2019a).

Proposal-free methods Proposal-free methods solves
panoptic segmentation by employing two separate branches
to predict semantic masks and group pixels to instances. One
of the most popular grouping methods is instance center re-
gression, which predicts pixel-level offsets to instance cen-
ters (Neven et al. 2019; Cheng et al. 2020). Recently, fol-
lowing DETR (Carion et al. 2020), multiple works introduce
bipartite matching in their training (Zhang et al. 2021; Wang
et al. 2021; Cheng, Schwing, and Kirillov 2021; Li et al.
2022a), simplifying the process of panoptic segmentation.

Inspire by the methods that introduce bipartite match-
ing into their training pipeline, we propose PUPS, the first
framework on point cloud data which is able to exclusive
predict panoptic groupings of points and can be trained in
an end-to-end manner.

3 Method
In this section, we first state the definition of point cloud
panoptic segmentation in Section 3.1. Then, we present the
network architecture of PUPS in Section 3.2, along with its
two core components, i.e., bipartite matching (Section 3.3)
and classifier refinement (Section 3.4). Lastly, we show a
context-aware CutMix for instances in Section 3.5.
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Figure 2: Pipeline of PUPS. Point features are first encoded by a RPV backbone (Xu et al. 2021) and fed into the unrefined
classifiers to get initial groupings and semantics. Then, point features activated by corresponding groupings are integrated
into the classifiers and a self-attention is applied to the classifiers to produce refined classifiers. For simplicity, we omit the
superscripts of classifiers in Section 3.4. With the refined classifiers, more accurate groupings and semantics are obtained. To
clarify, groupings and semantics of all stages will be supervised by ground-truth with bipartite matching in training and only
the groupings and semantics of the last stage will be used to output segmentation results in inference.

3.1 Problem Formulation
Point cloud panoptic segmentation aims at grouping a point
cloud P ∈ RK×4 of K points into a set of thing in-
stances and stuff classes, among which thing instances re-
fer to countable objects (e.g. person, car, bicycle) and stuff
classes refers to uncountable backgrounds (e.g. road, terrain,
vegetation). As shown in Equation 1, ground-truth group-
ings in a point cloud are defined as:

{yi}Mi=1 = {(gi, ci)}Mi=1, (1)

where gi ∈ {0, 1}K is a ground truth binary mask indicat-
ing which points belong to group i, ci is the semantic class
of group i, and M is the number of ground truth groupings
in the point cloud. Note that the groupings are mutually ex-
clusive, i.e. , each point in a point cloud belongs to either an
instance of things or a background stuff. In this way, each
point is assigned to a group ID and a semantic class.

3.2 Point Cloud Unified Panoptic Segmentation
Given the definition in Section 3.1, we allocate N learnable
point-level classifiers to predict the groupings for both dis-
tinct thing instances and background stuff in a unified man-
ner. We denote the learnable parameters of the classifiers as
θ = {θi | θi ∈ RC}Ni=1, where C is the number of chan-
nels. As shown in the inference pipeline of Figure 2, K
points are fed into a backbone to extract point-wise feature
F . Using the feature F and the parameters θ, PUPS generate
two vital scores for panoptic segmentation results: grouping
scores G = {ĝi | ĝi ∈ [0, 1]K}Ni=1 and semantic scores
∆ = {∆i | ∆i ∈ RT }Ni=1, where T is the number of thing
and stuff classes.

First of all, grouping scores G indicate the probability of
the K points belonging to N groups, which are used to de-
cide the group ID for each point. Similarly, semantic scores
∆ indicates the probability of the N groupings belonging
to T semantic classes, which are used to assign semantic
classes to groupings, and further decide semantic classes for
each point.

Specifically, with the parameters θ of classifiers and the
feature F of points, we utilize a simple matrix multiplication
and a sigmoid, denoted as δ(·, ·), to obtain grouping scores
G for each point with respect to each classifier:

ĝi = δ(θi, F ), i = 1, . . . , N, (2)
where F ∈ RK×C is the point-level features of K points.

Similarly, we utilize δ(·, ·) to predict a semantic score
∆i ∈ RT for each point-level classifier, where T is the num-
ber of thing and stuff classes:

∆i = δ(ψ, θi), i = 1, . . . , N. (3)

To clarify, ψ ∈ RC stands for a set of learnable parameters.
To output the result of panoptic segmentation, PUPS as-

signs semantic class ci to ĝi and groupings to points by:

ĉi = argmax∆i, (4)

ẑi,k =

{
1 if ĝi,k = max

i
(ĝi,k)

0 otherwise
, (5)

{ŷi}Ni=1 = {(ẑi, ĉi)}Ni=1, (6)

Our prediction is organized similarly to Equation 1 and
group ID and semantic class for each point is obtained.

Now, PUPS is able to predict the groupings directly. In-
stead of adding post-processing at test time, we use bipartite
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matching (Section 3.3) in our training pipeline to prevent
multiple classifiers from predicting the same instance.

3.3 Bipartite Matching
One solution to the aforementioned problem is to make
our point-level classifiers learn from exclusive ground truth
groupings. Therefore, a one-to-one mapping from the M
ground-truth groupings to the N classifiers is needed. In-
spired by recent application of bipartite matching in ob-
ject detection (Carion et al. 2020) and image segmenta-
tion (Cheng, Schwing, and Kirillov 2021; Li et al. 2022c;
Zhang et al. 2021), bipartite matching is able to assign one
ground-truth to only one prediction according to a cost ma-
trix. This one-to-one rule plays a vital role in exclusively
predicting the point cloud panoptic segmentation results for
the reason that there are no classifier assigned to learn the
same thing instance or stuff class, reducing the possibility
of duplicate predictions. It also prevents the classifiers from
only focusing on easy groupings because all ground truths
are mapped, reducing the bias of the model. Since instance
ID prediction is not required for stuff classes, several clas-
sifiers are constantly mapped to the ground truth of stuff
classes.

Cost Computation To match the predictions {ŝi}Ni=1 =
{(ĝi,∆i)}Ni=1 and ground-truths {yi}Mi=1{(gi, ci)}Mi=1, we
compute the cost matrix based on their pairwise accordance
in terms of both points and groups. For simplicity, we term
the match cost and the training loss between prediction and
ground-truth with the same notation:

Lmatch = αLdice + βLfocal + γLCE, (7)

where dice loss Ldice (Milletari, Navab, and Ahmadi 2016)
and cross entropy loss (LCE) are for point-wise accordance
between ĝi and gj (∀1 ≤ i ≤ N, 1 ≤ j ≤ M ). The focal
loss (Lin et al. 2017) is for group classification between ∆i

and cj (∀1 ≤ i ≤ N, 1 ≤ j ≤ M ). For classifiers that
are not assigned with any ground truth, they are masked as
negative.

In summary, Section 3.2 resolves the problem of predict-
ing the groupings and Section 3.3 enables the classifiers to
learn from exclusive ground truth so that there is no need
to apply post-processing to remove duplicate predictions or
clustering algorithms to coalesce segmented groupings.

3.4 Classifier Refinement
Although the process is simple as stated in Section 3.2, it is
challenging to accurately classify the unordered points into
groups. Being different from classifying points into seman-
tic classes, panoptic segmentation demands a further step to
discriminate instance information within one semantic class.
Moreover, the predicting process is purely point-based, i.e.,
points are treated as isolated only with implicit spatial infor-
mation, and appearance encoded in their backbone features.
Thus, classifying the points into groups only once may in-
troduce noises from other groups

To fulfill the aforementioned demand and overcome the
problem, we employ a transformer decoder with S stages to
refine the point-level classifiers with point features as shown

in Figure 2. In each stage of the transformer decoder, the
process of refinement are divided into three parts: 1) classi-
fier feature query. It gathers point features for each classifier.
2) classifier update. It updates the classifiers with the gath-
ered features. 3) classifier self-attention. It further models
the context information between classifiers.

Classifier Feature Query First, we query the point fea-
tures with grouping scores from Equation 2 using the pa-
rameters of the point-level classifiers fed into this stage. The
grouping score serves as an attention map for the ith clas-
sifier with respect to every single point in the point cloud
so that the most related features are collected as instance
and semantic information. With the point features and their
attention, the discriminative instance and semantic feature
F θi ∈ RC of the grouping i is obtained by:

Fθi =
1

K

K∑
k=1

ĝi,k · Fk. (8)

For simplicity, we omit the superscript used in Figrue 2 and
θ = {θi}Ni=1 stands for the parameters of the classifiers fed
into this stage.

Classifier Update Since the objective of classifiers is to
learn the distinct groupings of points, we integrate the dis-
criminative instance and semantic features into the parame-
ters of the classifiers so that they are able to retrieve instance
points that are missing in the current groups and rule out
noisy ones, thus producing more accurate results. Specifi-
cally, we first project the features into the space of classi-
fiers’ parameter and employ a learnable momentum m to
control the extent of integration. The calculation of the pro-
jection and momentum m is as followed:

m = 1− σ(φ1(Fθi)) (9)

θ̃i = (1−m) · φ2(Fθi) +m · θi, (10)
where σ is a non-linear function sigmoid and φ1, φ2 are
linear transformations.

Classifier Self-attention Lastly, besides the integration of
classifier parameters and their corresponding local informa-
tion gathered by the attention maps, we apply self-attention
to incorporate global relation into the parameters of the clas-
sifiers. We utilize a multi-head self-attention (Vaswani et al.
2017) to model the relation between classifiers. The relation
helps classifiers distinguish between each other and under-
stand the context of the point cloud, reducing the probability
that their groupings share a large overlap and enhancing the
grouping accuracy.

Eventually, the point features and the refined classifiers
are again feed into the next stage of the decoder. The refined
grouping scores generated by Equation 2 in the next stage
is able to gather more points from the instance and suppress
noisy ones more accurately, producing better instance fea-
ture. The refined semantic scores produced by Equation 3
assign better semantic classes for the groupings.

3.5 Context-aware CutMix
In object detection and segmentation, class imbalance is a
common issue, leading to performance degradation in the
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Method PQ PQ† SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

R.Net + P.P. 37.1 45.9 75.9 47.0 20.2 75.2 25.2 49.3 76.5 62.8
KPC + P.P. 44.5 52.5 80.0 54.4 32.7 81.5 38.7 53.1 79.0 65.9
Panoptic-PolarNet 54.1 60.7 81.4 65.0 53.3 87.2 60.6 54.8 77.2 68.1
DS-Net 55.9 62.5 82.3 66.7 55.1 87.2 62.8 56.5 78.7 69.5
EfficientLPS 57.4 63.2 83.0 68.7 53.1 87.8 60.5 60 .5 79.5 74 .6
GP-S3Net 60.0 69 .0 82.0 72.1 65.0 86.6 74.5 56.4 78.7 70.4
Panoptic-PHNet 61.5 67.9 84 .8 72.1 63.8 90 .7 70.4 59.9 80 .5 73.3

PUPS (ours) 62 .2 65.8 84.2 72 .8 65 .7 90.6 72.7 59.6 79.5 73.1
PUPS § (ours) 65.7 70.3 85.7 75.8 68.1 91.6 74 .3 63.9 81.4 76.9

Table 1: Comparison of LiDAR panoptic segmentation performance on SemanticKITTI test set, in which PQ is the primary
metric for comparison. R.Net, P.P. and KPC refer to RangeNet++ (Milioto et al. 2019), Point Pillars (Lang et al. 2019) and
KPConv (Thomas et al. 2019), respectively. § represents results of model ensemble and test-time augmentation (TTA). Bold
refers to best result and italic refers to second best result. All scores are in [%]. Our method rank 1st on the leader borad of
SemanticKITTI1

minor classes. A trivial solution to this issue is to cut objects
out of training set to form a sample database. Before an in-
put is fed into a network, the objects are sampled from the
database and mix with the existing ones.

Context-aware Mixing We suggest mixing instances in
accordance with their context in light of the aforementioned
scenario. After an instance is sampled from the database,
context-aware mixing translate the instance to the nearest
contextual point. Contextual points are the points that most
possibly exist underneath an instance, e.g., car instances
are most possibly on top of road and parking but not pole.
Panoptic segmentation methods are able to model the rela-
tion between instances and background since their objective
is to distinguish among them. Thus, preserving the context
is beneficial to the recognition of instances. As a result, the
grouping results of the mixed classes are enhanced.

4 Experiment
To evaluate PUPS, we conduct experiments on two popular
LiDAR point cloud datasets: SemanticKITTI(Behley, Mil-
ioto, and Stachniss 2020) and nuScenes(Fong et al. 2021).

4.1 Datasets and Evaluation Metric
SemanticKITTI proposes the first panoptic segmentation
challenge on point cloud data. It contains 22 data sequences
splited into 3 parts: 10 for training, 1 for validation and 11
for testing. There are 8 thing classes and 11 stuff classes.

nuScenes is a large-scale dataset for autonomous driv-
ing, which contains LiDAR data of 1000 scenes. The 1000
scenes are divided into 3 parts: 750 for training, 100 scenes
for validation and 150 scenes for testing. There are 10 thing
classes and 6 stuff classes.

Evaluation Metric Mean Panoptic Quality (PQ) (Kirillov
et al. 2019b) is adopted as the primary evaluation metric for
our experiment. As shown in Equation 11, PQ of a specific
class can be decomposed into Segmentation Quality (SQ)
and Recognition Quality (RQ):

PQc =

∑
(p,g)∈TPc

IoU(p, g)

|TPc|︸ ︷︷ ︸
segmentation quality (SQ)

× |TPc|
|TPc|+ 1

2 |FPc|+ 1
2 |FNc|︸ ︷︷ ︸

recognition quality (RQ)

,

(11)
where TPc is the set of matched predicted masks and ground
truth masks of class c, FPc is the set of unmatched pre-
dicted masks of class c, FNc is set of unmatched ground
truth masks of class c, and IoU(p, g) is the intersection-over-
union of predicted mask p and ground truth mask g. Mean
PQ is the average of PQ of all classes and we additionally re-
port PQTh, SQTh and RQTh of thing classes, PQSt, SQSt and
RQSt of stuff classes and PQ† (Porzi et al. 2019b), where PQ
of stuff classes is replaced by their IoU in the calculation.

4.2 Implementation Details
Settings and Hyper-parameters Our implementation is
based on MMDetection3D (MMDetection3DContributors
2020). Specifically, we train our models for 80 epochs with
a batch size of 4. The learning rate is set to 0.002 initially
and decrease with a factor of 0.1 after 50 epochs. We adopt
AdamW (Loshchilov and Hutter 2017) with a weight decay
of 0.05 as our optimizer. In addition to our proposed Cut-
Mix augmentation, we apply random flipping along x- and
y- axis, random rotation along z- axis and random scaling.
Unless specified, the point feature dimension is set to 128
and the number of classifiers is set to 100. The number of re-
finement stages is 3. As for training, the losses are included
in Equation 7 and the coefficients α, β, γ are set to 4, 1, 1
respectively.

Backbone We employ the backbone of RPVNet (Xu et al.
2021) in PUPS. It fuse points, voxels and range-view fea-
ture, and extract representative features. We follow the same
backbone architecture as RPVNet but change the output fea-
ture dimension to 128. The voxel size is set to 5 cm and 10
cm for SemanticKITTI and nuScenes respectively.

1Our 1st place performance is assessed on Aug 12th, 2022 in
https://competitions.codalab.org/competitions/24025#results.
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Method PQ PQ† SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

R.Net + P.P. 36.5 - 73.0 44.9 19.6 69.2 24.9 47.1 75.8 59.4
KPC + P.P. 41.1 - 74.3 50.3 28.9 69.8 33.1 50.1 77 .6 62.8
DS-Net 57.7 63.4 77.6 68.0 61.8 78.2 68.8 54.8 77.1 67.3
Panoptic-PolarNet 59.1 64.1 78.3 70.2 65.7 87.4 74.7 54.3 71.6 66.9
EfficientLPS 59.2 65.1 75.0 69.8 58.0 78.0 68.2 60.9 72.8 71.0
Panoptic-PHNet 61.7 - - - 69.3 - - - - -
GP-S3Net 63.3 67.5 81.4 75.9 70.2 86.2 80 .1 58.3 77.9 71 .9

PUPS (ours) 64 .4 68 .6 81 .5 74.1 73 .0 92 .6 79.3 58.1 73.5 70.4
PUPS § (ours) 66.3 70.2 82.5 75 .6 74.6 93.4 80.3 60 .2 74.5 72.2

Table 2: Comparison of LiDAR panoptic segmentation performance on SemanticKITTI validation set, in which PQ is the
primary metric for comparison. R.Net, P.P. and KPC refer to RangeNet++ (Milioto et al. 2019), Point Pillars (Lang et al. 2019)
and KPConv (Thomas et al. 2019), respectively. § represents results of model ensemble and test-time augmentation (TTA). Bold
refers to best result and italic refers to second best result. All scores are in [%].

Method PQ PQ† SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

PanopticTrackNet 51.4 56.2 80.2 63.3 45.8 81.4 55.9 60.4 78.3 75.5
DS-Net 55.9 62.5 82.3 66.7 55.1 87.2 62.8 56.5 78.7 69.5
GP-S3Net 61.0 67.5 84.1 72.0 56.0 85.3 65.2 66.0 82.9 78.7
EfficientLPS 62.0 65.6 83.4 73.9 56.8 83.2 68.0 70.6 83.8 83.6
Panoptic-PolarNet 63.4 67.2 83.9 75.3 59.2 84.1 70.3 70.4 83.6 83.5
Panoptic-PHNet 74.7 77.7 88 .2 84.2 74.0 89 .0 82.5 75.9 86.8 86.9

PUPS (ours) 74.7 77 .3 89.4 83 .3 75 .4 91.8 81 .9 73 .6 85 .3 85 .6

Table 3: Comparison of LiDAR panoptic segmentation performance on nuScenes validation set. Bold refers to best result and
italic refers to second best result. All scores are in [%].

# of Stages PQ SQ RQ Ltrain

1 62.1 80.6 72.0 0.213
2 63.5 81.0 73.2 0.139
3 64.4 81.5 74.1 0.125
4 63.2 80.8 72.9 0.113
5 63.0 80.5 73.0 0.101

Table 4: Ablation study of number of refining stages on val-
idation set of SemanticKITTI. Ltrain denotes training loss of
models. All scores are in [%].

4.3 Main Results
Results on SemanticKITTI As shown in Table 1 and
2, we surpass all existing methods in PQ of both test set
and validation set, and show significant advantages in the
performance of thing classes. As for test set, we improve
PQ of Panoptic-PHNet (Li et al. 2022b) from 61.5% to
62.2% and achieve a gain of 1.9% in PQTh. As for vali-
dation set, we outperform GP-S3Net (Razani et al. 2021)
by a margin of 1.1% in PQ and 2.8% in PQTh. Compared
with clustering-based methods DS-Net (Hong et al. 2021),
and Panoptic-PolarNet (Zhou, Zhang, and Foroosh 2021)
in addition to Panoptic-PHNet and GP-S3Net, our method
achieve an increase of over 6% in PQ of test set. With
respect to range-image-based method EfficientLPS (Sirohi
et al. 2021), PUPS outperforms by 4.8% in PQ of test set.

The results of combined methods (row 1 and row 2) pre-
sented in the tables are obtained by training a detection head
and semantic head as stated in the dataset. Moreover, follow-
ing Panoptic-PHNet, we report results of model ensemble
and test-time augmentation. Additionally, we provide class-
wise performance of PUPS in supplementary material.

Results on nuScenes In this section, we compare the re-
sults of PUPS on nuScenes with results of previous methods.
As listed in Table 3, our method achieves state-of-the-art re-
sults on validation set.

4.4 Ablation Study
Ablation on Network Components To verify the effec-
tiveness of PUPS, we gradually apply our proposed compo-
nents to a vanilla network. As shown in Table 5, M1 refers
to a vanilla network with no refinement on the classifier or
CutMix augmentation. M2 is trained with classifier refine-
ment and M3 is trained with context-aware CutMix. The
performance of M4 shows that both classifier refinement and
context-aware CutMix contribute to the high performance.

Ablation on Number of Stages As shown in Table 4, tri-
als with different number of stages reveals that PUPS with 3
stages achieves the best result. We observe that there exists
over-fitting concerning the decrease of training loss as the
number of stages increase. It suggests that models for larger
datasets may benefit from more stages.
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Model Context-aware Classifier PQ PQ† SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

Variant CutMix Refinement (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

M1 44.5 49.3 68.0 54.4 40.5 74.6 47.0 47.4 63.2 59.7
M2 ✓ 50.9 55.1 74.2 60.5 43.6 76.5 49.5 56.2 72.5 56.2
M3 ✓ 55.9 60.7 75.1 66.2 64.4 90.5 71.8 49.7 63.9 62.1
M4 ✓ ✓ 64.4 68.6 81.5 74.1 73.0 92.6 79.3 58.1 73.5 70.4

Table 5: Ablation study on proposed components of PUPS. The results are reported on the SemanticKITTI validation set.

Ablation on Number of Classifiers Table 6 contains re-
sult from different number of classifiers. It shows that 100
classifiers achieve the best result. On the one hand, insuf-
ficient number of classifiers is harmful to performance on
both thing classes and stuff classes since bipartite assign-
ment may assign the classifiers to inconsistent semantic.
On the other hand, excessive number of classifiers benefit
from consistency in assignment and perform better in thing
classes. However, since the number of classifiers for back-
ground classes is fixed, excessive instance classifiers may
lead to under-segmented background.

# of Classifiers PQ SQ RQ PQTh PQSt

50 63.3 80.0 73.0 69.8 56.2
100 64.4 81.5 74.1 73.0 58.1
150 63.7 81.0 73.6 73.7 56.3
200 63.8 81.0 73.9 73.9 56.5

Table 6: Ablation study of number of classifiers on valida-
tion set of SemanticKITTI. All scores are in [%].

Ablation on CutMix Strategies In addition to our pro-
posed context-aware CutMix, there is another CutMix strat-
egy in point cloud object detection and segmentation: ran-
dom CutMix (Yan, Mao, and Li 2018; Xu et al. 2021; Li
et al. 2022b). They alleviate class imbalance by randomly
mixing the sampled instances in the current scan. To validate
the effectiveness of our context-aware CutMix, we compare
performance by applying the strategies on M1 in Table 7. As
shown in Table 7, our context-aware CutMix achieve a gain
of 5.1% in PQ and outperform by a large margin on thing
classes. It verifies our design on preserving context informa-
tion of instances to enhance performance.

CutMix Type PQ SQ RQ PQTh SQTh RQTh

Random 50.8 72.8 61.7 57.5 86.4 66.4
Context-aware 55.9 75.1 66.2 64.4 90.5 71.8

Table 7: Ablation study of cutmix strategy on validation set
of SemanticKITTI. All scores are in [%].

4.5 Analysis and Visualization
Spatial Distributions of Predictions As stated in Sec-
tion 3.3 and 3.4, our classifiers are able to distinguish be-

tween instances, hence being capable of predicting panop-
tic segmentation results directly. Considering that the pre-
dictions are in 3D space, it is better to present an illustra-
tion more intuitively. Therefore, we plot the centers of the
predictions in bird-eye view (BEV). As shown in Figure 3,
each subplot stands for the spatial distribution of a classi-
fier’s predictions on car in a 100m × 100m square. The dis-
tributions follow certain patterns: 1) the arc-shaped patterns
reveal accordance with the rotation of LiDAR sensors. 2) the
positions where dense predictions located demonstrate spa-
tial spacing, verifying the ability of the classifiers to predict
exclusive instances.

Figure 3: Spatial distributions of predictions by classifiers.
The centers are projected into a 100m × 100m x-y plane.
Results are obtained from SemanticKITTI test set.

5 Conclusion
In this paper, we develop a unified panoptic segmentation
framework, dubbed PUPS, for point cloud data, which is
capable to exclusively predict panoptic results without any
hand-crafted post-processing and achieves state-of-the-art
performance. PUPS allocates a set of classifiers to learn
how to group coherent points directly and introduces bipar-
tite matching to enable end-to-end training. Moreover, PUPS
employs a transformer decoder to refine the groupings and
resolve class imbalance problem by designing a context-
aware cutmix augmentation. PUPS is the first to provide
a holistic and end-to-end solution for point cloud panop-
tic segmentation. We hope that PUPS can inspire more re-
searchers to delve into the development of unified segmen-
tation for point cloud in autonomous driving.
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Sirohi, K.; Mohan, R.; Büscher, D.; Burgard, W.; and Val-
ada, A. 2021. EfficientLPS: Efficient LiDAR Panoptic Seg-
mentation. CoRR, abs/2102.08009.
Thomas, H.; Qi, C. R.; Deschaud, J.; Marcotegui, B.;
Goulette, F.; and Guibas, L. J. 2019. KPConv: Flexible and
Deformable Convolution for Point Clouds. In ICCV, 6410–
6419.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In NeurIPS, 5998–6008.
Wang, H.; Zhu, Y.; Adam, H.; Yuille, A.; and Chen, L.-C.
2021. MaX-DeepLab: End-to-End Panoptic Segmentation
With Mask Transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 5463–5474.
Xu, J.; Zhang, R.; Dou, J.; Zhu, Y.; Sun, J.; and Pu, S. 2021.
RPVNet: A Deep and Efficient Range-Point-Voxel Fusion
Network for LiDAR Point Cloud Segmentation. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), 16024–16033.
Yan, Y.; Mao, Y.; and Li, B. 2018. SECOND: Sparsely Em-
bedded Convolutional Detection. Sensors, 3337.
Zhang, W.; Pang, J.; Chen, K.; and Loy, C. C. 2021. K-Net:
Towards Unified Image Segmentation. In NeurIPS.
Zhou, Z.; Zhang, Y.; and Foroosh, H. 2021. Panoptic-
PolarNet: Proposal-Free LiDAR Point Cloud Panoptic Seg-
mentation. In CVPR, 13194–13203.

2347


