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Abstract

In this paper, we propose a Text-Degradation Invariant
Auto Encoder (Text-DIAE), a self-supervised model de-
signed to tackle two tasks, text recognition (handwritten or
scene-text) and document image enhancement. We employ
a transformer-based architecture that incorporates three pre-
text tasks as learning objectives to be optimized during pre-
training without the usage of labelled data. Each of the pre-
text objectives is tailored for the final downstream tasks. We
conduct several ablation experiments that confirm the design
choice of the selected pretext tasks. Importantly, the proposed
model does not exhibit limitations of previous state-of-the-art
methods based on contrastive losses, while at the same time
requiring substantially fewer data samples to converge. Fi-
nally, we demonstrate that our method surpasses the state-of-
the-art in existing supervised and self-supervised settings in
handwritten and scene text recognition and document image
enhancement. Our code and trained models will be made pub-
licly available at https://github.com/dali92002/SSL-OCR.

1 Introduction
In recent times, self-supervised learning paradigms have
gained a lot of attention due to its ability of benefiting from
massive unlabelled data which is easily accessible from dif-
ferent sources. However, applying these approaches remain
quite limited in the domains of optical character recognition
(OCR), handwritten text recognition (HTR) and document
image enhancement, which motivate us to tackle the prob-
lem in this study.

Common computer vision pipelines using self-supervised
frameworks employ a pretext-task (e.g. relative position pre-
diction of patches (Doersch, Gupta, and Efros 2015), con-
trastive views (Chen et al. 2020), image inpainting (Pathak
et al. 2016), etc.) to learn visual representations for solving
down-stream tasks like classification, object detection and
so on. Current self-supervised paradigms (Caron et al. 2021;
Chen et al. 2020; Chen, Xie, and He 2021) have adapted
transformers (Vaswani et al. 2017) to learn visual repre-
sentations from unlabelled images which are semantically
meaningful. More recently, generative self-supervised ap-
proaches (He et al. 2021; Bao, Dong, and Wei 2021; Dong
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et al. 2021) using auto-encoders have been used to learn rep-
resentations in the feature space through image patches and
visual tokens.

Closely related to our work, some contributions in vi-
sual representation learning were addressing text recog-
nition (HTR) (Aberdam et al. 2021; Bhunia et al. 2021;
Liu et al. 2022) and Scene-Text Recognition (STR) (Aber-
dam et al. 2021; Zhang et al. 2022)) and image enhance-
ment (Liang et al. 2022). Despite the performance gains,
there are some drawbacks of such models: (1) independent
sequences of tokens are treated as single data points, which
can cause misalignment of similar sequences among a batch,
(2) considerable batch size requirements to define negative
contrastive pairs, (3) considerably slow convergence rates.

For humans, reading text in noisy scenarios is possible be-
cause of the ability or reconstructing the degraded regions
and predicting the missing/blurry content (Howard et al.
1998; Dehaene 2014). Incorporating such an ability in a
model could immensely help in restoration, recognition and
understanding of characters and symbols, considering that
text carries rich linguistic information that allow humans to
reason explicitly according to context. In order to endow this
human-specific skill to our models, we present in this paper
a new self-supervised framework called Text-Degradation
Invariant Auto-Encoders (Text-DIAE) inspired by the prin-
ciple of denoising autoencoders (Vincent et al. 2008). Our
model focuses on exploring the dynamics of learning rep-
resentations under different degradation scenarios. Specif-
ically, we propose the usage of a robust self-supervised
auto-encoder along with customized pretext tasks (mask-
ing, blur and background noise) that are designed to specifi-
cally tackle two different downstream tasks: text recognition
(HTR and STR) and document image enhancement (docu-
ment binarization, document deblurring). As a consequence,
the choice of the proxy tasks have been realized to learn
useful representations for solving these specific downstream
tasks using unlabeled data.

The benefits of employing such approach are: we do not
define sequences at the feature level. Rather, by employ-
ing a transformer-based (Vaswani et al. 2017) approach,
similar to BERT (Devlin et al. 2018) we utilize the self-
attention layers to attend among patches which does not
require big batches of negative samples. Also, the combi-
nation of these pre-training tasks result in a significantly
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faster convergence compared to previous approaches. The
resulting representations are evaluated by a scenario that
resembles the linear probing evaluation often used in self-
supervision (Kolesnikov, Zhai, and Beyer 2019; Zhang,
Isola, and Efros 2016) and follows the scheme of (Aber-
dam et al. 2021) in text recognition task. By this assess-
ment, we find that our method outperforms previous self and
semi supervised pipelines. Furthermore, by employing Text-
DIAE, we achieve state-of-the-art in handwritten text recog-
nition and document image enhancement, while outperform-
ing scene text recognition under self-supervision settings.
The essential findings and novelties of our work are based
on the following interesting deductions:
• The impact and combination of pretext tasks depends on

the downstream task.
• The closer the association between a pretext task and a

downstream task, the better is the model performance.
• By employing Text-DIAE, we achieve faster conver-

gence and use order of magnitude lesser data during pre-
training than the contrastive-learning based approaches.

To add on top of this, this is the first work to our knowl-
edge that investigates different self-supervised pretext tasks
for multiple significant downstream tasks in text recognition
(HTR-word level, STR) and document image enhancement
(document binarization, deblurring) while achieving state-
of-the-art performance with 43 and 45 times lesser data for
HTR and STR, respectively.

2 Related Work
Self-Supervised Learning. Due to extensive efforts on la-
belled data requirements of supervised models, this learn-
ing paradigm emerges as a way of exploiting the structured
information contained in data itself. Self-Supervised learn-
ing aims to obtain rich representations of an input modal-
ity by designing pretext tasks that are used as auxiliary
signals that are informative for a given downstream task.
Initial approaches relied on auto-encoders (Vincent et al.
2008) trained to remove artificially added noise from an im-
age. Later, several approaches introduced other pretext tasks
that provide rich signals to train a network as a feature ex-
tractor. Some pretext tasks employed were image coloriza-
tion (Zhang, Isola, and Efros 2016), jigsaw puzzle solv-
ing (Noroozi and Favaro 2016), patch ordering (Doersch,
Gupta, and Efros 2015), rotation prediction (Gidaris, Singh,
and Komodakis 2018) among others. Recent approaches rely
on extensive image augmentation to maximize the agree-
ment among paired samples and contrast with all possible
negative samples (Chen et al. 2020; He et al. 2020; Zbontar
et al. 2021; Caron et al. 2021).

More recently, generative approaches like Masked Auto-
encoders (MAE) (He et al. 2021) are introduced to predict a
masked latent representation of patches. Similar ideas have
been also explored in other recent works like BEiT (Bao,
Dong, and Wei 2021) and PeCo (Dong et al. 2021) which
adopt a discrete variational autoencoder (VAE) to generate
discrete visual tokens from the original image. Motivated by
these works, we expand this generative learning framework
to tackle text recognition and document enhancement tasks.

Text Recognition. Ample research in text recognition has
been conducted, resulting in handwritten (HTR) (Sonkusare
and Sahu 2016; Memon et al. 2020) and scene-text
(STR) (Shi, Bai, and Yao 2016; Long, He, and Yao 2021;
Chen et al. 2021) recognition pipelines. Most common
approaches that tackle text recognition are using super-
vised methodologies that employ an encoder-decoder mech-
anism (Cheng et al. 2017; Shi, Bai, and Yao 2016; Shi et al.
2016; Litman et al. 2020; Kang et al. 2020a) based on a
Connectionist Temporal Classification (CTC) (Graves et al.
2006) network or an Attention-based (Cheng et al. 2017;
Shi et al. 2016) decoder. Recently, approaches that focus on
semi-supervised and self-supervised learning have been ex-
plored (Souibgui et al. 2021) with domain adaptation tech-
niques on STR (Kang et al. 2020b) and HTR (Zhang et al.
2019). Under the unsupervised paradigm, (Gupta, Vedaldi,
and Zisserman 2018) formulate text recognition as a task
to align the conditional distribution of strings predicted
with lexically correct strings sampled from a text database.
Closely related to our work, (Aberdam et al. 2021) proposes
a self-supervised sequence-to-sequence model that separates
consecutive text features to be later used in a contrastive loss
similar to (Chen et al. 2020). Analogously, (Zhang et al.
2022) and (Liu et al. 2022) improve the features obtained
from a contrastive loss by concatenating characters and by
perceiving spatial strokes respectively. Nevertheless, these
methods require large batches, and rely on a sequential def-
inition of features that can produce misaligned characters or
n-grams contained in different words.
Document Image Enhancement. Many approaches have
been proposed to address the enhancement of documents
(both handwritten and machine-printed) which suffer sev-
eral kinds of artefacts/defects such as bleed-through, show-
through, faint characters, contrast variations and so on.
The work from (Calvo-Zaragoza and Gallego 2019; Kang,
Iwana, and Uchida 2021) maps images from the degraded
domain to the enhanced one using end-to-end CNN-based
autoencoders. Other techniques (Souibgui and Kessentini
2020; Souibgui, Kessentini, and Fornés 2020; Jemni et al.
2022) used conditional-Generative Adversarial Network (c-
GAN) based approaches to design a generator which pro-
duces the enhanced version of the document while the
discriminator assesses the quality of binarization. Lately,
an end-to-end ViT autoencoder was proposed in (Souibgui
et al. 2022) to capture high-level global features using
self-attention for binarizing degraded documents. Regard-
ing document deblurring, a benchmark was formulated
by (Hradiš et al. 2015) where a CNN was trained to re-
construct enhanced images from blurry inputs that consist
of a combination of camera-driven motion blurred and de-
focused images of text documents. Lately, (Souibgui and
Kessentini 2020) improved the baseline performance using
a similar c-GAN based approach in a binarization task.

3 Method
In this section, we present our proposed method for text im-
age recognition and enhancement by describing its building
blocks. Our approach uses two steps: a pre-training stage to

2331



Multi-Head 
Attention

Feed Forward

× N

Linear
Linear

Linear

Multi-Head 
Attention

Feed Forward

Linear
Linear

Linear× N

Add Masking

Add Background Noise

Add Blur

Recovered

Cleaned

Deblurred

input

Masking / recovering Task Background Noising / Cleaning Task Blurring  / Deblurring Task
Transformer DecoderTransformer Encoder

Positional Encoding

Projection of flattened patches to tokens Projection of tokens to vectors of pixels

Lm

Ln

Lb

Masking

Blur

Bg Noise

    

Lmask

Lnoise

Lblur

MHA

FFN

MHA

FFN

Encoder Decoder

Handwritten Text

Scene-Text

Document Image

Representation

    

Unmasked Images

Deblurred Images

Denoised Images

x L x L

Figure 1: Pre-training pipeline. Text-DIAE aims to learn degradation invariant representations. These are later used to recon-
struct the input image with a specific learning objective for each degradation type.

learn useful representations from unlabeled data, and a su-
pervised fine-tuning phase for the desired downstream task.

3.1 Pre-Training Module

The overall pre-training pipeline of Text-DIAE is shown in
Fig. 1. For each task, given an unlabeled image I (eg. a
cropped handwritten text, cropped scene text or a scanned
document image), we use a function ϕ to map I to a de-
graded form. The function ϕ takes as parameters the original
image I and the degradation type T ∈ {mask, blur, noise}
where we denote a degraded image by Id = ϕ(I, T ).

Our model is composed of an encoder E and a decoder
D with learnable parameters θE , θD respectively. The pre-
training pipeline trains an encoder function E that maps the
degraded image Id to a latent representation zT in a multi
task fashion (unmasking, deblurring and denoising) and then
learning a decoder D to reconstruct the original image I
from the representation zT :

zT = E(ϕ(I, T ); θE)

Ir = D(zT ; θD)
(1)

The learned visual representations from the latent subspace
should be invariant to the applied degradation T .

Encoder. The encoder architecture consists of a vanilla
ViT (Dosovitskiy et al. 2021) backbone. Given an input im-
age Id, it is first split into a set of N patches, Ipd = {Ip1

d , Ip2

d ,
..., IpN

d }. Then, these patches are embedded with a trainable
linear projection layer E. Text-DIAE uses a distinct linear
projection layer for every defined pre-text task. These to-
kens are later concatenated with their 2-D positional infor-
mation embedded with Epos and fed to L transformer blocks
to map these tokens to the encoded latent representation zl.
These blocks are composed of L layers of Multi-head Self-
Attention (MSA) and a feedforward Multi-Layered Percep-
tron (MLP) as depicted in Figure 1. Each of these blocks
are preceded by a LayerNorm (LN) (Ba, Kiros, and Hinton

2016) and followed by a residual connection:

z0 = E(Ipd ) + Epos

z′l = MSA(LN(zl−1)) + zl−1, l = 1, . . . L

zl = MLP(LN(z′l)) + z′l, l = 1, . . . L
zT = LN(zL)

(2)

Decoder. The decoder composed of transformer blocks fol-
lowing the same structure and number of layers as the
encoder. The decoder input is the output of encoder zT .
The output of the decoder is a set of vectors Ir =
{Ip1

r , Ip2
r , ..., IpN

r } where each of which corresponds to a
flattened patch in the predicted (reconstructed) image. Same
as before, a distinct linear layer is used for each pre-text task.

z′l = MSA(LN(zl−1)) + zl−1 , l = 1, . . . L

zl = MLP(LN(z′l)) + z′l , l = 1, . . . L
Ir = Linear(zL)

(3)

3.2 Fine-Tuning
Our fine tuning process is illustrated in Fig. 2 where we per-
form two different downstream tasks; text recognition and
document image enhancement.
Text Recognition. Text recognition aims to transform an
image into a sequence of characters. Let I be a cropped
text image and C = {c

1
, c

2
, ..., c

N
} its ground truth label

which corresponds to a sequence of characters, where N is
the length of the text. The training is done by passing I to
an encoder function E to produce a latent representation z.
Then, z is later fed to a decoder function D′ to produce a
sequence of characters Cp = {cp1 , cp2 , ..., cpN

} that should
match the ground truth label sequence.

We initialize the encoder with the pre-trained weights θE
while we employ a sequential transformer decoder (Vaswani
et al. 2017) as seen in Fig. 2-Left. The decoder is initialized
randomly and composed of L transformer blocks of MSA,
MLP and Masked-MSA layers preceded by LN layers, and
followed by a residual connection. The output of the decoder
is a sequence of characters where at each time step t, the pre-
dicted character is formed by attending to the representation
z and previous character embeddings until t− 1.
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Figure 2: Fine-tuning pipeline. We start from a pretrained encoder as initial weights to solve a specific downstream task. Explicit
decoders are used for text recognition (left) and document image enhancement (right).

Document Image Enhancement. Document enhancement
consists of mapping a degraded document into a clean form.
Let Id be a degraded image and Ic its clean version, then
the goal is to learn an encoder function E that maps Id to a
representation z with the same way as in Eqn 2. E weights
are initialized from the pre-training stage. The decoder D′′

generates the clean image Ic from z as in Eqn 3.

3.3 Learning Objectives
Our model makes use of different sets of losses for each
phase. During pre-training, we use three different losses.
Each one is dedicated to a particular pre-text task: Lmask,
Lblur and Lnoise. Each of these losses is a mean squared
error (MSE) between the reconstructed image Ir (from the
masked, blurred or noisy image) and its ground-truth version
Igt. Thus, the overall loss for our pre-training stage is:

Lpt = λ1Lm (Ir, Igt) + λ2Lb (Ir, Igt) + λ3Ln (Ir, Igt)
(4)

During our experimentation, the best results were obtained
with setting λ1 = λ2 = λ3 = 1.

While fine-tuning on text recognition, we use a cross-
entropy loss between the predicted sequence of characters
Cp and C. For document image enhancement fine tuning,
we used an MSE loss between the cleaned image Ic and I .

4 Experiments
In this section we describe the studied scenarios and ex-
periments performed for text recognition and document en-
hancement respectively. We ask the reader to refer to the
supplementary material for specific implementation details.

4.1 Text Recognition
Evaluating Representations. In order to evaluate the qual-
ity of the learned representations, and extending commonly

used linear-probing settings (Zhang, Isola, and Efros 2016),
we employ a similar approach as introduced by (Aberdam
et al. 2021). As a first step, the encoder is pre-trained with
unlabeled data as described in Section 3.1. After that, the en-
coder’s weights are frozen and a new decoder is trained on
top of it with all the labeled data. The decoder, as we detailed
above, generates the predicted characters in a time-step man-
ner. Since the encoder remains frozen, this scenario is a good
proxy that represents the expressivity of the learned visual
representations. To this end, Table 1 shows the results of
our proposed approach. We compare among self-supervised
methods specifically designed for the text recognition task.
Better performance. As it can be seen from Table 1, the
seqCLR method presented by (Aberdam et al. 2021) im-
proves significantly a self-supervised baseline inspired by
SimCLR (Chen et al. 2020). In the recently released ap-
proach PerSec by (Liu et al. 2022), they slightly improve
over the seqCLR. It is evident that our Text-DIAE model
greatly outperforms all the aforementioned state-of-the-art
approaches regarding the representation quality obtained,
both in handwritten and scene-text. The improvements in
term of the accuracy in a handwritten text dataset, IAM, is
close to +20 points. Moreover, a bigger improvement gap
is obtained when evaluating scene-text. An average gain of
+30 points is accomplished in IIIT5K and ICDAR13, prov-
ing the generalization of our method to different domains.
In our model, the great expressivity of features achieved by
the encoder is mainly due to two factors. Firstly, by masking
image patches, the encoder learns a strong unigram charac-
ter distribution (refer to Figure 3), which is not leveraged
in previous methods. Secondly, by distorting and recovering
the image, we make the model learn richer representations
to detect and recover the text into a clean and readable state.
Thus, the model is learning the most valuable features that
lead to the best recognition performance.
Faster convergence. One of the most important outcomes
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Method Encoder Decoder
Handwritten Text Scene-Text

IAM CVL IIIT5K IC13
Acc ED1 Seen Acc ED1 Seen Acc ED1 Seen Acc ED1 Seen

simCLR (Chen et al. 2020)
CNN CTC

4.0 16.0 205.8 1.8 11.1 205.8 0.3 3.1 409.6 0.3 5.0 409.6
seqCLR (Aberdam et al. 2021) 39.7 63.3 205.8 66.7 77.0 205.8 35.7 62.0 409.6 43.5 67.9 409.6
PerSec (Liu et al. 2022) – – – – – – 37.9 – – 46.4 – –
PerSec (Liu et al. 2022) ViT – – – – – – 38.4 – – 46.7 – –
simCLR (Chen et al. 2020)

CNN Attn.

16.0 21.2 205.8 26.7 30.6 205.8 2.4 3.6 409.6 3.1 4.9 409.6
seqCLR (Aberdam et al. 2021) 51.9 65.0 205.8 74.5 77.1 205.8 49.2 68.6 409.6 59.3 77.1 409.6
PerSec (Liu et al. 2022) – – – – – – 50.7 – – 61.1 – –
PerSec (Liu et al. 2022) ViT – – – – – – 52.3 – – 62.3 – –
Ours ViT Transf. 71.0 82.1 4.7 78.1 81.5 1.2 77.1 87.8 9.1 92.6 95.6 18.2

Table 1: Representation quality. We evaluate the encoder capability of learning visual representations. This scenario is analogous
as the linear probing in self-supervised models. We train a decoder with labelled data on top of a frozen encoder pre-trained
on the proposed degradation. The column Seen refers to the number of samples in millions seen during pre-training. Word
prediction in terms of Accuracy (Acc) and single edit distance (ED1) in handwritten and text recognition.

Method Encoder Decoder
Handwritten Text Scene-Text

IAM CVL IIIT5K IC13
5% 10% 100% 5% 10% 100% 100% 100%

Supervised (Aberdam et al. 2021)

CNN CTC

21.4 33.6 75.2 48.7 63.6 75.6 76.1 84.3
simCLR (Chen et al. 2020) 15.4 21.8 65.0 52.1 62.0 74.1 69.1 79.4
seqCLR (Aberdam et al. 2021) 31.2 44.9 76.7 66.0 71.0 77.0 80.9 86.3
PerSec (Liu et al. 2022) – – 77.9 – – 78.1 82.2 87.9
PerSec (Liu et al. 2022) ViT – – 78.0 – – 78.8 83.7 89.7

Supervised (Aberdam et al. 2021)

CNN Attn.

25.7 42.5 77.8 64.0 72.1 77.2 83.8 88.1
simCLR (Chen et al. 2020) 22.7 32.2 70.7 59.0 65.6 75.7 77.8 84.9
seqCLR (Aberdam et al. 2021) 40.3 52.3 79.9 73.1 74.8 77.8 82.9 87.9
PerSec (Liu et al. 2022) – – 80.8 – – 80.2 84.2 88.9
PerSec (Liu et al. 2022) ViT – – 81.8 – – 80.8 85.2 89.2

Supervised (Ours) ViT Transf. 22.8 25.3 71.7 17.9 19.8 71.9 75.7 91.9
Ours 49.6 58.7 80.0 47.9 68.5 87.3 86.1 92.0

Table 2: Semi-supervised learning results. Accuracy obtained by fine-tuning a pre-trained model with varying percentages of the
labeled dataset. Under this setting, we back-propagate the gradients through the specific decoder and the pre-trained encoder.

by employing our method, is that a paramount improve-
ment in convergence is achieved during pre-training. Table 1
shows this effect under the column labelled as “Seen”. It de-
picts the total number of seen samples that each model re-
quires during the pre-training stage. It is worth highlighting
that during pre-training the encoder of our model requires
43 and 166 times lesser data in IAM and CVL respectively
when compared to the seqCLR and simCLR. In scene-text,
our model employs only 18.2M samples to yield powerful
representations compared to the 409M samples required by
previous self-supervised approaches.

Fine-Tuning. In this stage, we evaluate our model consid-
ering a semi-supervised setting where the obtained results
are depicted in Table 2. Here we use the self-supervised pre-
trained encoder as a backbone and train a transformer-based
decoder from scratch that predicts the characters in a sequen-
tial manner, as illustrated in Fig. 2-Left. In this scenario,
the gradients are back-propagated not only to the decoder
but also to the encoder. Following the previous work (Aber-
dam et al. 2021), we use 5% and 10% of the labeled dataset

by randomly selecting the training samples. As suggested
in (Chen et al. 2020) we perform fine-tuning on all the la-
belled dataset. In order to compare with (Aberdam et al.
2021) and since scene-text dataset is synthetic, we evaluate
with the complete labeled dataset.

Higher performance in fine-tuning settings. Our model
exploits data in a more efficient manner than previous self-
supervised methods in fine-tuning setting. We infer that the
set of degradations proposed yields rich signals, helping the
encoder to adapt to the downstream task more efficiently.
Our model achieves state-of-the-art in all scenarios when all
the labelled datasets are used except in IAM where the Per-
Sec is slightly better. Under semi-supervised settings, our
model performs better at the IAM dataset when employ-
ing 5% and 10% of the labels than simCLR and seqCLR.
Since CVL contains substantially fewer data samples than
IAM, SeqCLR still outperforms our approach in the CVL
dataset. However, while employing the full labels of CVL,
Text-DIAE outperforms all the methods by a large margin.

More efficient than a supervised baseline. From table 2,
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Method CER↓ WER↓ Avg.

Bluche et al. (Bluche 2015) 7.3 24.7 16.00
Bluche et al. (Bluche 2016) 7.9 24.6 16.25
Sueiras et al. (Sueiras et al. 2018) 8.8 23.8 16.30
ScrabbleGAN (Fogel et al. 2020) - 23.6 -
SSDAN (Zhang et al. 2019) 8.5 22.2 15.35
SeqCLR (Aberdam et al. 2021) 9.5 20.1 14.80
PerSec (Liu et al. 2022) - 18.2 -
Ours 9.3 20.0 14.65

Table 3: SOTA results. Quantitative evaluation with state-of-
the-art methods on the IAM word level dataset.

Lmask Lblur Lnoise
IAM IC13

CER↓ WER↓ Avg. CER↓ WER↓ Avg.

✓ ✗ ✗ 9.3 20.0 14.65 4.5 8.0 6.25
✓ ✓ ✗ 12.3 24.8 18.5 4.2 8.0 6.10
✓ ✗ ✓ 11.1 23.3 17.2 4.8 8.6 6.70
✓ ✓ ✓ 11.4 23.8 17.6 5.1 9.3 7.20

Table 4: Ablations of the pre-training objectives. Results
in handwritten and scene-text recognition obtained by each
pretext task. The performance is measured in terms of Word
and Character error rates (WER and CER).

we can also notice the superiority of pre-training our archi-
tecture compared to a fully supervised model starting from
scratch. This suggest that the self-supervised pre-training
of such transformer-based architectures is essential to ob-
tain better results, and beneficial especially in small labeled
datasets scenarios.
The effect of fine-tuning after pre-training. By proposing
the degradation invariant optimization at pre-training, our
model achieves a significant gain in recognition on hand-
written text datasets. An average of 10 points of accuracy
are gained after fine-tuning (refer to Table 1 and 2). Finally,
it is important to note that our model reaches state-of-the-art
in the handwritten text recognition task, even comparing to
specifically designed supervised approaches. The results on
the IAM dataset are shown in Table 3, which measures the
performance of a model in terms of word and character error
rate, WER and CER respectively.
Ablation Studies. The results of experimentation regarding
the effect of each degradation as pretext task at pre-training
is given in Table 4. Firstly, among the three proposed degra-
dations, masking is the most crucial to be applied in both
tasks, handwritten and scene text recognition. When an input
word is masked, and in order to properly reconstruct it, the
model has to learn a character level distribution. Addition-
ally, adding blur in scene-text imagery improves the repre-
sentations learned by the model shown by the results. Lastly,
adding noise does not result in an improvement in text recog-
nition tasks. However, as it is shown in the next section, the
combination of the 3 degradation produce a richer encoder
in document enhancement. Therefore, we can safely assume
that each degradation has a task-dependent impact on the
representations learned depending on the similarity of them

Figure 3: Qualitative results of pre-training samples with
handwritten text (left) and scene-text (right). The original,
masked and reconstructed images are depicted sequentially.

when compared to the final downstream task and input data
distribution.
Qualitative Results. In Figure 3 we show the reconstructed
images at pre-training stage for handwritten and scene-text
samples. It is important to note the complexity of the recon-
struction task even for humans. Even though high masking
percentages are employed (75%), our model learns to prop-
erly adapt to handwritten styles and fonts found in scene-
text. As can be appreciated, although sometimes our model’s
reconstruction does not match with the ground truth images,
it can still reconstruct the most probable and plausible En-
glish words (e.g. see “school” vs “sand” in 4th row in hand-
written examples). Another interesting outcome is also no-
ticed for scene-text example where “xperia” is reconstructed
correctly while the last character “a” is selected from an-
other font, demonstrating the model’s capability. Minor re-
construction errors are found such as that the model eventu-
ally learns to overcome at fine-tuning stage.

4.2 Document Image Enhancement
Performance Analysis on Binarization. As shown in Ta-
ble 5, the Text-DIAE outperforms the previous state-of-the-
art approaches on majority of the standard metrics for doc-
ument binarization task. Specifically, the quantitative com-
parison of results demonstrate that Text-DIAE achieves an
optimal gain in PSNR, FM, Fps and DRD performance sur-
passing the all previous arts. The largest performance im-
provement is obtained over the H-DIBCO 2012 while the
least performance gain is obtained in the H-DIBCO 2018.
One of the major concerns which degraded historical docu-
ments face is the show-through effect, which appears when
ink impressions from one side of the document start appear-
ing on the other side, making it almost impossible to read
as shown in Appendix. The enhanced Text-DIAE output il-
lustrates that it not only resolves the show-through but also
sharpens and smoothens the edges of the foreground text ap-
proximately to the ground-truth level.
Performance Analysis on Deblurring. In Table 6 we show
a quantitative comparison and superiority of Text-DIAE
over supervised techniques (Hradiš et al. 2015; Wang
et al. 2018; Souibgui and Kessentini 2020; Souibgui et al.
2022) on the document deblurring benchmark. A substan-
tial gain in PSNR by +2 points on a logarithmic scale
is obtained over DocEnTr (Souibgui et al. 2022), which
signifies the greater quality of deblurred images generated
by Text-DIAE. There are two different kinds of blurring
which appear in documents: motion blur owing to the sud-

2335



Method
DIBCO Benchmarks

2012 2017 2018
PSNR↑ FM↑ Fps↑ DRD↓ PSNR↑ FM↑ Fps↑ DRD↓ PSNR↑ FM↑ Fps↑ DRD↓

(Sauvola and Pietikäinen 2000) 16.71 82.89 87.95 6.59 14.25 77.11 84.1 8.85 13.78 67.81 74.08 17.69
(Kang, Iwana, and Uchida 2021) 21.37 95.16 96.44 1.13 15.85 91.57 93.55 2.92 19.39 89.71 91.62 2.51
(Zhao et al. 2019) 21.91 94.96 96.15 1.55 17.83 90.73 92.58 3.58 18.37 87.73 90.60 4.58
(Souibgui et al. 2022) 22.29 95.31 96.29 1.60 19.11 92.53 95.15 2.37 19.46 90.59 93.97 3.35
Ours 23.66 96.52 97.04 1.10 19.64 93.84 95.71 1.93 19.95 91.32 94.44 3.21

Table 5: SOTA results. Comparison of the proposed Text-DIAE compared to previous state-of-the-art approaches on the differ-
ent DIBCO and H-DIBCO Benchmarks

Original Input DocEnTr (Souibgui et al. 2022) Ours Ground Truth

OCR output: "Mae yw spaniedod'» 
if MA AAPAIMAAPE dosh anelf, 

Awanaisnn A dnnmoupil 1 Mie 

Myrtle dial cell sagos Alo Wie 

sascled saesye dias,"

OCR output: "the parameters 

of Ure conmnnon del iticif, 

because it mecensartly r the 

hypotictical wealth shares 

ndoed the model worn truc."

OCR output: "the parameters 

of the common del ituelf, 

because it necessarit r the 

hypothetical wealth shares 

rdeed the model were true."

OCR output: "the parameters 

of the common del itself, 

because it necessarily r the 

hypothetical wealth shares 

ndeed the model were true:"

CER: 78.86 CER: 18.51 CER: 8.94 CER: 4.88

Figure 4: Qualitative results of deblurred samples and their OCR recognition performance. The correctly predicted OCR output
is shown in "Green" font while the inaccurate ones are depicted in "Red" and recognition performance in terms of CER.

Method PSNR
CNN-Baseline (Hradiš et al. 2015) 19.36
Pix2Pix-HD (Wang et al. 2018) 19.89
DE-GAN (Souibgui and Kessentini 2020) 20.37
DocEnTr (Souibgui et al. 2022) 21.28
Ours 23.58

Table 6: SOTA results: Quantitative evaluation with state-of-
the-art methods on the deblurring dataset.

den rapid camera movement and out-of-focus blur which
emerges when light fails to converge in the image. In Fig. 4,
we show an interesting qualitative case study of a motion
blurred document image. We assess the performance of de-
blurring by running the Tesseract-OCR engine (Smith 2007)
over the blurred, ground-truth, DocEnTr prediction and the
Text-DIAE output. Qualitative results show that Text-DIAE
significantly decreases the CER, showing vast improvement
in OCR performance as depicted in green font.
Ablation Studies. An interesting ablation on the task of
document image binarization for DIBCO 2018 benchmark
is shown in Table 7. We infer that any pre-training task is
beneficial while the denoising task is the most crucial to be
applied when each pre-text task is applied separately. The
aforementioned result explains that denoising is much closer
to the downstream binarization task. Also, it demonstrates
that Text-DIAE performs the best for document enhance-
ment tasks when the model learns all the possible degrada-
tion (masking, blurring and adding noise) together.

Lmask Lblur Lnoise PSNR
✗ ✗ ✗ 18.75
✓ ✗ ✗ 19.65
✗ ✓ ✗ 18.98
✗ ✗ ✓ 19.82
✗ ✓ ✓ 19.34
✓ ✗ ✓ 19.45
✓ ✓ ✓ 19.95

Table 7: Ablations of the degradations as pre-training ob-
jectives. Results in document image binarization on DIBCO
2018 obtained by each pretext task in terms of PSNR.

5 Conclusion
This work demonstrates the capability of learning richer
representations through pretext degradation tasks. Self-
supervised learning can immensely boost the performance
of text recognition and document image enhancement with-
out labeled data. Notably, we show that Text-DIAE does not
share the limitations of contrastive or sequential approaches
and is more effective at learning rich representations while
seeing significantly fewer data points. We hypothesize that
Text-DIAE performs complex variable reconstructions dur-
ing pre-training, which helps to learn meaningful visual con-
cepts from the latent representation space. We also provide
the community the following insights to work on : 1) De-
signing new pretext tasks that are similar to downstream
tasks. 2) The effect/trade-off of combination of various pre-
text tasks on the downstream tasks. 3) A need for a holistic
approach to combine all the tasks into a single model.
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