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Abstract

Considerable progress has recently been made in leveraging
CLIP (Contrastive Language-Image Pre-Training) models for
text-guided image manipulation. However, all existing works
rely on additional generative models to ensure the quality
of results, because CLIP alone cannot provide enough guid-
ance information for fine-scale pixel-level changes. In this pa-
per, we introduce CLIPVG, a text-guided image manipulation
framework using differentiable vector graphics, which is also
the first CLIP-based general image manipulation framework
that does not require any additional generative models. We
demonstrate that CLIPVG can not only achieve state-of-art
performance in both semantic correctness and synthesis qual-
ity, but also is flexible enough to support various applications
far beyond the capability of all existing methods.

Introduction

Large-scale vision-language pre-training models like CLIP
(Contrastive Language-Image Pre-Training) significantly fa-
cilitate the task of text-guided image manipulation, whose
goal is to automatically modify images based on given text
prompts. In recent years, various studies (Patashnik et al.
2021; Gal et al. 2022; Kim, Kwon, and Ye 2022; Ramesh
et al. 2022; Dis 2022) have been conducted on utilizing a
pre-trained CLIP model for such purposes.

However, all existing CLIP-based works perform the ma-
nipulation on pixel-level, and thus share the same intrinsic
limitation of raster image based methods, i.e., easily produce
poor results. This is because CLIP cannot provide enough
guidance for fine-scale pixel-level optimization since CLIP
mainly focuses on high-level semantics of an image. As
pointed out by (Gal et al. 2022; Nichol et al. 2022), the CLIP
guided optimization process may be easily trapped in local
optimum or impaired by adversarial solutions.

To mitigate such an issue, existing works typically in-
corporate additional generative models to ensure the syn-
thesis quality (Patashnik et al. 2021; Gal et al. 2022; Kim,
Kwon, and Ye 2022; Dis 2022; Ramesh et al. 2022). These
models not only consume extra resources to train, but limit
the domain of the input images and text prompts. Currently,
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Figure 1: Text-guided manipulation results of CLIPVG and
two baselines, i.e., Disco Diffusion (Dis 2022) and CLIP-
styler (Kwon and Ye 2021).

the only solution that does not rely on additional generative
models is CLIPstyler (Kwon and Ye 2021), which handles
fine-scale features by additionally applying CLIP losses to
a set of randomly sampled patches. However, this solution
is only feasible for local texture style transfer, rather than
general semantic manipulation (see Figure 1).

In this paper, we tackle CLIP-based image manipulation
from a new perspective. Specifically, we vectorize the in-
put raster image into vector graphics using a robust multi-
round vectorization strategy and leverage a differentiable 2D
vector graphics rasterizer (Li et al. 2020b) to optimize the
color and shape of each geometric element (i.e., stroke or
filled curve) so that the CLIP loss between the text prompt(s)
and the corresponding rasterized image can be minimized.
The major difference between this new framework, which
we call CLIPVG, and exiting works is that CLIPVG per-
forms image manipulation in the domain of vector graph-



ics. Since the vector graphical elements naturally function
as some kind of regularization for local shape and color, the
optimization process is significantly more stable when per-
formed on the parameters of vector graphical elements (e.g.,
color, line width, control points, etc.) than on pixels. We sur-
prisingly find that the effectiveness of such regularization in
CLIP-based image manipulation is almost comparable to ad-
ditionally incorporating a large-scale pre-trained generative
model. As illustrated in Figure 1, CLIPVG better conforms
to text semantics and produces fewer visual artifacts than
Disco Diffusion (Dis 2022) which relies on an additional
diffusion model, i.e., (Dhariwal and Nichol 2021), trained
on ImageNet (Deng et al. 2009).

Moreover, as a text-guided image manipulation frame-
work, CLIPVG is much more flexible than existing frame-
works. Firstly, CLIPVG inherits some advantages from vec-
tor graphics, i.e., it, by nature, is resolution-independent and
allows separate manipulations of color and shape of each
vector graphical element. Secondly, CLIPVG supports a
wider range of applications (e.g., face attribute editing, char-
acter design, font design, re-colorization, etc.) since it does
not bound to the domain of any specific pre-trained gener-
ative model. In other words, CLIPVG can fully unleash the
capability of CLIP for image manipulation. It even allows
users to assign different text prompts for different regions of
the image at the same time.

The main contributions of this paper are:

* We propose the first text-guided vector graphic manip-
ulation framework which can achieve state-of-art per-
formance without relying on any additional pre-trained
models other than CLIP.

* We design a robust multi-round vectorization strategy
which enables manipulation of raster images in the do-
main of vector graphics.

* We implement a flexible text-guided image manipulation
system that supports a variety of controls far beyond the
ability of all existing methods, and the source code of this
system will be made publicly available.

Related Works

Text-guided Image Manipulation. Pioneering studies
(Ramesh et al. 2021; Ding et al. 2021; Li et al. 2020a; Jiang
et al. 2021) model the relationship between text and image as
a part of the image generation framework. Recently, the stan-
dalone CLIP models (Radford et al. 2021), pre-trained on
400M text-image pairs, have shown a state-of-the-art perfor-
mance in vision-language tasks. The latest methods (Patash-
nik et al. 2021; Gal et al. 2022; Kim, Kwon, and Ye 2022;
Dis 2022; Ramesh et al. 2022; Sun et al. 2022) typically use
a CLIP model for parsing text-based guidance, and an addi-
tional generative model to constrain the output images. The
generative model can be either trained on a specific category
of images (domain-specific) or on a large database contain-
ing diverse image categories (domain-agnostic).

CLIP is often combined with a domain-specific Style-
GAN (Karras et al. 2020) model for a human face, a cat,
a church, etc. Given a text prompt, StyleCLIP (Patashnik
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et al. 2021) uses CLIP to find the corresponding manipu-
lation direction in the latent space. StyleGAN-NADA (Gal
et al. 2022) adapts an existing StyleGAN model to a related
domain defined by the prompt. It also proposes the direc-
tional CLIP loss to mitigate the mode collapse issue (Metz
et al. 2017). DiffusionCLIP replaces the GAN model with
a diffusion model for image generation. These methods are
generally robust, but their capabilities are tied to the domain
of these pre-trained generative model.

There are also some domain-agnostic methods, most of
which are developed for general-purpose image synthesis.
The text-guided image synthesis methods (Ramesh et al.
2021, 2022; Dis 2022; Nichol et al. 2022; Saharia et al.
2022; Ding et al. 2021, 2022) typically support generating
an image from a text prompt and a random latent code. To
further enable image manipulation, some of these methods
also provide an encoder to convert an input image to a cor-
responding latent code. For example, DALL-E-2 (Ramesh
et al. 2022) and Disco Diffusion (Dis 2022) employ the dif-
fusion process (Dhariwal and Nichol 2021; Song, Meng, and
Ermon 2021) as the encoder. These methods require mas-
sive data to train the general-purposed generative model.
Moreover, additional upsampling models are often required
to synthesize high resolution images (Ramesh et al. 2022;
Saharia et al. 2022; Ding et al. 2022).

Different from the above solutions, CLIPVG does not de-
pend on any additional model other than CLIP. The output
image is constrained by the vector graphic specific regular-
ization rather than a generative or upsampling model.

Recently, a domain-agnostic method CLIPstyler (Kwon
and Ye 2021) is proposed to eliminate the dependency on
the generative model. CLIPstyler applies the CLIP loss to a
set of small randomly cropped patches to stabilize the opti-
mization. The patch level CLIP loss helps to constrain the
low level details of the image, and suppress the adversarial
artifacts. However, since the text prompt is applied to each
small patch, the use case is limited to the low level style
transfer. In contrast, we relax the patch-wise constraints and
support the general semantic manipulation.

Compared to all the raster image based solutions, our vec-
tor graphic based method also has other native benefits such
as the infinite resolution.

Text-guided Vector Graphic Generation. Diffvg (Li
et al. 2020b) proposes a differentiable rasterizer which sup-
ports the raster image based models for the vector graph-
ics, including the CLIP models. The differentiable raster-
izer backpropagates the gradients on pixels to the contin-
uous vector graphic parameters, such as the control points
and the color. The discrete topology, e.g., the number of vec-
tor graphical elements and the connection between the con-
trol points, are not changed. We use this topology preserving
property of Diffvg to regularize our optimization process.

CLIPdraw(Frans, Soros, and Witkowski 2021) combines
CLIP and Diffvg for the first time, and uses CLIP to guide
a set of randomly initialized strokes according to the text
prompt. StyleCLIPdraw(Schaldenbrand, Liu, and Oh 2022)
further controls the style of the generated vector graphic by
a style image. ES-CLIP (Tian and Ha 2021) uses triangles
instead of strokes as the vector graphical elements, and op-
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Figure 2: The overall schematics of CLIPVG. We vectorize the input image with a multi-round vectorization strategy. The
optimization is guided by an ROI CLIP loss. The parameters are decoupled to enable fine-grained control.

timizes the triangles using evolution strategy.

The above methods generate the vector graphics from ran-
domly placed vector graphical elements. In contrast, we fo-
cus on the manipulation of an existing image.

Image Vectorization. Raster image vectorization or im-
age tracing is a well-studied problem in computer graph-
ics. Adobe illustrator, the most advanced commercial vec-
tor graphic design tool, provides an image tracing tool (Ado
2022) with various control modes and options. By default,
Adobe Image Trace (AIT) converts the raster image to a set
of non-overlapping filled curves. The vectorization precision
can be controlled by the number of target colors. The higher
the number of target colors, the higher the precision.

Various other methods are also studied for image vector-
ization. Direct raster-to-vector conversion with neural net-
works are supported for the relatively simple images (Lopes
et al. 2019; Carlier et al. 2020; Reddy et al. 2021). Stroke-
based rendering can be used to fit a complex image with a
sequence of vector strokes (Huang, Heng, and Zhou 2019;
Zou et al. 2021), but the performance is limited by the pre-
defined strokes. Diffvg can also be leveraged to fit an in-
put image with a set of randomly initialized vector graphical
elements. Based on Diffvg, CLIPasso (Vinker et al. 2022)
controls the abstraction level or vectorization precision of
the output by the number of strokes. LIVE (Ma et al. 2022)
further proposes a coarse-to-fine vectorization strategy.

We adopt a decoupled approach that first vectorizes the in-
put image, then manipulates the vectorized graphic accord-
ing to the text prompts. Therefore, all of the above methods
can be used in our framework. However, the further demand
for image manipulation has not been considered by the exist-
ing vectorization methods. We introduce a multi-round vec-
torization strategy that specifically improves the robustness
of image manipulation.

Method

The main schematic of CLIPVG is presented in Figure 2.
We first vectorize the input raster image multiple times with
different vectorization precision. All the vector graphical el-
ements are jointly rasterized back to the pixel space by Dif-
fvg. The rasterized image is the reconstruction of the input
image at the beginning, and is iteratively optimized towards
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the direction of the text prompts. The gradients are derived
from an ROI (Region Of Interest) CLIP loss and backprop-
agated to the shape and color parameters of each vector
graphical elements. The optimization process is shown in
Figure 3. More examples can be found in the supplementary

material.
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Figure 3: An example of the outputs during the iterative op-
timization process. the prompt is ”Jocker, Heath Ledger”.

Vectorization

A vector graphic is defined by a set of vector graphical ele-
ments. The parameters for each element depends on the type
of the element, e.g., a filled curve can be represented as

0= {(1’1, yl)a (x27 y2)’ ) (fl'm, ym)7 79, b7 a}a (1
where (x;,vy;) are the coordinates of the i-th control point.
m is the number of control points. (7, g, b, a) are RGB color
and opacity values respectively. The optimization on the ele-
ment is naturally regularized by the constant connection (se-
quence) of the control points, and the uniform texture within
an element.

For an input image, the existing vectorization methods are
able to generate a set of vector graphical elements which can
be directly optimized by CLIPVG. However, we found sev-
eral problems with this naive solution. First, although the
topology within an element is preserved during optimiza-
tion, there is no inter-element constraint. Two closely con-
nected elements can be torn apart during the optimization,
leaving a gap which is not always desirable. Second, the tar-
get image may require extra elements to represent the se-
mantic of the text prompts. For example, the output of ~a
steampunk style building” should be much more compli-
cated than the input of a cabinet in Figure 1. But the gener-
ation of new vector graphical elements is non-differentiable
and is not supported by the optimization process.



To mitigate the above issues, we propose a multi-round
vectorization strategy which takes into consideration the fur-
ther need of image manipulation. We vectorize the input
raster image multiple times with different vectorization pre-
cision, and derive a unique set of vector graphical elements
from each round of vectorization,

0, = {01,0,...,0% 1, )

where N; is the number of elements, and 9; is the j-th el-
ement for the i-th round of vectorization. We increase the
vectorization precision for each round, which usually results
in more elements, i.e., N; 11 > N;. We can further enhance a
key region, e.g., the human face area in Figure 2, by another
round of vectorization for the specific region.

We combine all the elements by placing the (i + 1)-th
set of elements on top of the ¢-th set of elements. The full
parameter set from n rounds of vectorization is

0 =1{01,0,,...,0,}. 3)

Our multi-round strategy can be used to enhance any ex-
isting vectorization method. The additional vector graphical
elements allow CLIPVG to generate finer details according
to the prompts. Moreover, the gap between the vector graph-
ical elements can be filled by the redundant elements.

Loss Function

Similar to (Gal et al. 2022; Kim, Kwon, and Ye 2022; Kwon
and Ye 2021), we adopt a directional CLIP loss which is
defined to align the latent directions of the text and images,

AT = ET (tp»,s) - ET (tref) )

Al = Er (Igen) — E1 (Lsre) s @)
LdiT(tpr’tref’ Igen,[srC) =1- %a

where t,,, is the text prompt. ¢,. ¢ is a reference text which is
fixed to ”photo” in our implementation. I, is the generated
image which is to be optimized. I, is the source images.
Ep and Ey are the text and image encoders of CLIP. AT
and AT are the latent directions of the text and the images
respectively. We will neglect the fixed ¢,.; and denote the
loss as Lg;r (tpr, Lgen, Isrc) in the following analysis.

We support multiple input text prompts, each associated
with a specific ROI as shown in Figure 2. The ROI CLIP
loss is

Lroi (@7 t;rv

A;) = Lair(t!

pr?

Coa, (R(O)), Ca, (Timit),

| 3)
where A; is the area of the i-th ROI, and t;r is the associ-
ated prompt. R is the differentiable rasterizer. R(0) is the
rasterized image. I;,;; is the input raster image. C4, (1) is
an operation to crop the area A; from the image I.

Our ROI CLIP loss in Eq. 5 is also generalized to support
the random cropping enhancement in CLIPstyler (Kwon and
Ye 2021). In this case, The CLIP loss is applied to a number
of patches which are randomly cropped from the output im-
age. This approach was adopted by CLIPstyler to enhance
the local texture, and is further leveraged by our framework
as an data augmentation method. For each ROI which is di-
rectly associated with an input text prompt, we apply the ran-
dom cropping enhancement to derive a number of patches
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which are associated with the same prompt. We then calcu-
late the ROI CLIP loss for each patch according to Eq. 5.
The total loss of CLIPVG is

h
Ltotal = Z wiLroi(®7 t;ra Ai)7 (6)
i1=1

where w; is the weight of CLIP loss for the i-th region. h is
the total number of regions. A region can be either an ROI,
or a patch which is randomly cropped from an ROI.

Optimization

The set of parameters O is optimized to minimize the total
loss in Eq. 6 using Diffvg (Li et al. 2020b). The shape and
color parameters are naturally decoupled in Eq. 1, where the
shape is defined by the control points, and the color is de-
fined by the RGB and opacity values. Therefore, we can op-
timize the shape and color parameters independently with
two different learning rates. This is especially useful to keep
either the shape or the color unchanged.

We can also edit only a subset of the vector graphical ele-
ments. The subset is usually defined by the elements which
initially intersect with a certain subregion. Our framework
generally allows the editable elements to move partially or
fully outside the subregion during the iterative optimization
process, leading to a seamless connection between the sub-
region and the rest of the image.

Experiments
Experiment Setup

Implementation. The multi-round vectorization strategy of
CLIPVG requires an arbitrary vectorization tool, e.g., AIT
(Ado 2022), Diffvg (Li et al. 2020b), LIVE (Ma et al. 2022),
etc. We use AIT (Ado 2022) as the default tool, since it gives
the most accurate reconstruction results in our experiments.
We adopt two rounds of vectorization by default. The first
round is done by N, = 10, and the second round is done by
N, = 30, where N, is the number of target colors in AIT.
We add another round of vectorization for the area of human
face with N, = 30.

We apply random cropping to obtain Ny, = 64 patches
from each ROI. The patches are randomly cropped in each
iteration. The default CLIP loss weight is 30.0 for a text
prompt associated ROI, and is 80.0/Npqcn, for each ran-
domly cropped patch. The patch size is always set to 80%
the longer edge of the ROI region, e.g., 400 x 400 for a
500 x 300 ROI, and zero-padding is adopted when neces-
sary. Similar to CLIPstyler (Kwon and Ye 2021), we also
apply the random perspective augmentation to the patches.

Similar to (Kwon and Ye 2021; Patashnik et al. 2021),
we use the ViT-B/32 CLIP model (Radford et al. 2021). We
employ the Adam (Kingma and Ba 2014) optimizer with a
learning rate of 0.2 for the shape parameters, and 0.01 for
the color parameters by default. The number of iterations is
set to 150. The running time information is included in the
supplementary material.

Baseline Methods. There is no existing text-guided ma-
nipulation method for the vector graphics. So we mainly
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Figure 4: Image vectorization and manipulation results with
and without the multi-round strategy.

compare to the state-of-the-art raster image based meth-
ods. We consider two domain-agnostic baselines, Disco
Diffusion v5.6 (Dis 2022) and CLIPstyler (Kwon and Ye
2021). Disco Diffusion is a popular open-source project
based on a general diffusion model. CLIPstyler is a CLIP-
guided style transfer method which does not rely on any
generative model. We also compare CLIPVG to three do-
main specific methods, including StyleCLIP (Patashnik et al.
2021), StyleGAN-NADA (Gal et al. 2022) and Diffusion-
CLIP (Kim, Kwon, and Ye 2022). The first two are based on
the StyleGAN models, while the last one is diffusion model
based. We run all the baseline methods with the official code
base and the default configuration. We use images with a res-
olution of 512 x 512 as the inputs.

Ablation

Multi-Round Vectorization. We compare our multi-round
vectorization strategy to the one-shot methods in Figure 4.
The one-shot vectorization is done by AIT with N, = 10
and N, = 30 respectively. The multi-round vectorized im-
age consists of all the elements from the one-shot cases, plus
an additional set of elements for the face part of the image.
It can be seen from Figure 4a that the multi-round vectoriza-
tion strategy achieves the best reconstruction precision due
to the availability of more vector graphical elements. After
the image manipulation, some undesirable white spaces ap-
pear in the one-shot cases, since these areas are not covered
by any elements. The white space issue is greatly alleviated
by the multi-round strategy as shown in Figure 4b. Further-
more, the manipulated image of the multi-round case also
has richer details than the one-shot cases.

Random Cropping Enhancement. We also evaluate the
effect of different random cropping configurations in Fig-
ure 5. We try the patch size of 128 x 128, 224 x 224, 410 x
410, or no random cropping. Note that CILPstyler (Kwon
and Ye 2021) has done a similar study and chosen 128 x 128
as the default patch size. We revisit the experiment here for
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(a) CLIPVG results with different patch configurations.
224x224 410x410 No Patch
2 {

(b) CLIPstyler results with different patch configurations.

Figure 5: CLIPVG and CLIPstyler results with different
patch size configurations for the random cropping enhance-
ment. The prompt is “Doctor Strange”.

two purposes. First, the text prompts used by CLIPstyler are
generally related to the low level texture, e.g., ”a cubism
style painting”. But we consider the prompts which require
high-level semantic manipulation, e.g., ”Doctor Strange” in
Figure 5. Second, the low level texture can be constrained
by the vector graphic specific regularization instead of the
patch-wise loss in our case.

We show the results of CLIPVG in Figure 5a, and the re-
sults of CLIPstyler in Figure 5b as a reference. The original
image is the same as the first row in Figure 1. When the patch
size is relatively small, i.e., 128 x 128 or 224 x 224, We can
see some obvious local artifacts with Doctor Strange’s clas-
sic red-and-blue color scheme for both CLIPVG and CLIP-
styler. The artifacts indicate that a small patch size is not
feasible for the high-level semantic manipulation tasks.

The local artifacts are suppressed by using a large patch
size or disabling the random cropping. CLIPVG with a patch
size of 410 x 410 can effectively change the hairstyle and the
identity of the face according to the prompt. CLIPVG with-
out random cropping suffers from less accurate semantic
change and blurry details, indicating that the random crop-
ping enhancement is still beneficial for the overall quality.
On the other hand, there is little meaningful semantic change
for CLIPstyler even if the patch is enlarged or disabled. It
only achieves limited skin color or local texture change, im-
plying that the optimization is stuck in a local optimum due
to the lack of low level constraints.

In conclusion, a large patch size can be adopted by our
vector graphic based optimization process to achieve robust
high-level semantic manipulation. As a result, we relax the
constraints on the small patches, and select a larger default
patch size than CLIPstyler, i.e., 410 x 410 for the region of
512 x 512.

Comparisons

Domain-Agnostic Methods. We compare CLIPVG to
Disco Diffusion and CLIPstyler in Figure 6. CLIPVG gen-
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Figure 6: Comparison with the domain-agnostic methods.

erally delivers the desired semantic transfer. It is the only
method which achieves both identity and texture change in
the ”Self-Portrait of Vincent van Gogh” case, while the other
methods only address one aspect. It also manages to modify
the number and shape of petals according to ”Gypsophila”.
The results of Disco Diffusion are relatively unstable, e.g.,
the position of head is incorrect in the “Joker, Heath Ledger”
case. It also generates a head of the Mustang Horse in the
”A Ford Mustang” case, which can be taken as a local opti-
mal solution from the pixel-level manipulation. The results
indicate that domain agnostic image manipulation is a very
challenging problem even with the help of a large-scale pre-
trained generative model. CLIPstyler is always limited to
the local texture and color change due to the strict patch-
wise constraints. Compared to the raster image based meth-
ods, CLIPVG can focus on the global semantic and suppress
the over-editing of the local area by leveraging the vector
graphic specific regularization.

Domain-Specific Methods. We compare CLIPVG to
StyleCLIP, StyleGAN-NADA and DiffusionCLIP in Fig-
ure 7. Similar to the domain-agnostic case, the results of
CLIPVG correctly reflect the semantics of the text prompts.
StyleCLIP generally fails to match the text prompt when
the desired change is out of the domain of the original
StyleGAN model. StyleGAN-NADA and DiffusionCLIP
can better change the semantics by finetuning the generative
model according to the prompts. The semantic manipulation
of CLIPVG is sometimes more thorough than StyleGAN-
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Figure 7: Comparison with the domain-specific Methods.

NADA and DiffusionCLIP, e.g., the color of cloth is changed
more accurately according to the "Doctor Strange” prompt.
This can be explained as StyleGAN-NADA and Diffusion-
CLIP tend to produce results based on some general domain
knowledge learned from a set of images, not respecting each
individual input image as mush as CLIPVG does.

Quantitative Results. We conduct a pilot study for quan-
titative comparison. The users are asked to compare different
methods from two perspectives, the semantic correctness,
i.e., how well do the output image and the prompt fit to-
gether, and the image quality. The details can be found in
the supplementary document.

The domain-agnostic and domain-specific results are
shown in Figure 8a and 8b respectively. CLIPVG outper-
forms Disco Diffusion and CLIPstyler for both the se-
mantic correctness and the image quality in Figure 8a,
and achieves comparable performance as the state-of-the-art
domain-specific methods in Figure 8b. The pilot study con-
firms the strong semantic manipulation capability and the
robustness of CLIPVG, which come from the vector graphic
specific regularization and the multi-round vectorization.

Notice that, compared with other domain-specific meth-
ods, StyleCLIP tends to produce results of higher quality but
of weaker semantic connections with the given text prompts.
This is because StyleCLIP strictly constrains the output to be

2
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(a) Domain-agnostic. (b) Domain-specific.

Figure 8: Average user ratings of different methods in the
pilot study.



(a) The original image and the ROIs.

(b) Output with all the ROI prompts.

(c) Output with the global prompt only.

Figure 9: Text-guided manipulation results with and without the ROI prompts. The prompts are: 1. "Justice League Six”, 2.
”Aquaman”, 3. ”Superman”, 4. ”Wonder Woman”, 5. ”’Cyborg”, 6. ”Flash, DC Superhero” and 7. ”Batman”. The areas of each
ROI are shown as Al to A7 in (a). The global prompt of (c) is the concatenation of all the prompts.

Terminator, complex

Original . Original Vase and sunflowers
mechanical texture
(a) Subregion editing.
Original English word, Original Chinese character,
maple leaves steampunk
(b) Font stylization.
Original Violet Original Taj Mahal under

the moon light

(c) Re-colorization.

Figure 10: Separate control of parameters. (a) optimizes the
parameters of a specific subregion. The target subregion is
shown in the bottom right corner of the input. (b) optimizes
the shape parameters. (c) optimizes the color parameters.

within the domain of the pre-trained StyleGAN model. The
performances of StyleGAN-NADA and DiffusionCLIP are
more balanced because they finetune the models based on
input text prompts, while CLIPVG naturally achieves such
balance without additional efforts.

In addition to the pilot study, we also present the quanti-
tative results of CLIP score (Nichol et al. 2022; Kim, Kwon,
and Ye 2022; Kwon and Ye 2021) in the supplementary ma-
terial for the further evaluation of the semantic correctness.
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Fine-Grained Control

Our flexible framework supports a set of fine-grained control
methods, including the ROI specific prompts and the sepa-
rate control of parameters. These methods can be applied to
various applications on a needed basis.

ROI Prompts. CLIPVG is domain-agnostic and is not re-
stricted by any generative model. It can be potentially lever-
aged to manipulate a complicated image containing multiple
objects. The ROI CLIP guidance allows us to define different
targets for the different objects. An example is shown in Fig-
ure 9, where each character is assigned a different prompt. It
can be seen from Figure 9b that when ROI prompts are en-
abled, each character in the output image has a clear corre-
spondence with its associated prompt. In contrast, the iden-
tity of each character becomes very ambiguous if a global
prompt is used instead of the ROI prompts, as shown in
Figure 9c. It is worth noting that transforming each charac-
ter separately by a domain-specific method is not practical,
since the ROIs are overlapping in this example.

Separate Control. CLIPVG optimizes the shape and
color of all the vector graphical elements simultaneously by
default. But it is sometimes desirable to edit a certain sub-
region or a certain aspect of the image. We can define a tar-
get subregion by a mask, and optimize the vector graphical
elements within the subregion as shown in Figure 10a. We
stylize the fonts in Figure 10b by editing the shape of the el-
ements and keeping the color unchanged. Re-colorization is
done in Figure 10c by optimizing only the color parameters.

Conclusion

We introduce CLIPVG, the first vector graphic based solu-
tion for text-guided image manipulation. The optimization
process is greatly stabilized by the vector graphic specific
regularization. We eliminate the dependency on additional
pre-trained models, and support domain-agnostic image ma-
nipulation. We develop a robust multi-round vectorization
strategy, and a set of fine-grained control methods which en-
ables a wide range of applications. Extensive experiments
and human evaluation confirm the superior semantic transfer
performance and robustness of our method over the existing
baselines.
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