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Abstract

We propose a novel solution for unpaired image-to-image
(I2I) translation. To translate complex images with a wide
range of objects to a different domain, recent approaches of-
ten use the object annotations to perform per-class source-to-
target style mapping. However, there remains a point for us to
exploit in the I2I. An object in each class consists of multiple
components, and all the sub-object components have differ-
ent characteristics. For example, a car in CAR class consists
of a car body, tires, windows and head and tail lamps, etc.,
and they should be handled separately for realistic I2I trans-
lation. The simplest solution to the problem will be to use
more detailed annotations with sub-object component annota-
tions than the simple object annotations, but it is not possible.
The key idea of this paper is to bypass the sub-object com-
ponent annotations by leveraging the original style of the in-
put image because the original style will include the informa-
tion about the characteristics of the sub-object components.
Specifically, for each pixel, we use not only the per-class
style gap between the source and target domains but also the
pixel’s original style to determine the target style of a pixel.
To this end, we present Style Harmonization for unpaired I2I
translation (SHUNIT). Our SHUNIT generates a new style
by harmonizing the target domain style retrieved from a class
memory and an original source image style. Instead of direct
source-to-target style mapping, we aim for source and target
styles harmonization. We validate our method with extensive
experiments and achieve state-of-the-art performance on the
latest benchmark sets. The source code is available online:
https://github.com/bluejangbaljang/SHUNIT.

Introduction
Unpaired image-to-image (I2I) translation aims to learn
source-to-target style mapping, where source and target im-
ages are unpaired. It can be applied to data augmenta-
tion (Antoniou, Storkey, and Edwards 2017; Mariani et al.
2018; Huang et al. 2018a; Xie et al. 2020), domain adapta-
tion (Hoffman et al. 2018; Murez et al. 2018) and various im-
age editing applications, such as style transfer (Gatys, Ecker,
and Bethge 2016; Huang and Belongie 2017; Ulyanov,
Vedaldi, and Lempitsky 2017), colorization (Zhang, Isola,
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and Efros 2016; Zhang et al. 2017), and image inpaint-
ing (Iizuka, Simo-Serra, and Ishikawa 2017; Pathak et al.
2016).

In the I2I translation, the biggest problem is how to deal
with the style variations among objects or classes. In other
words, when a global style gap is applied to an entire im-
age as in Fig. 1a, the I2I translation often results in unreal-
istic images because each class has different the style gaps
between the source domain and target domain. Recent ad-
vanced methods (Shen et al. 2019; Bhattacharjee et al. 2020;
Jeong et al. 2021; Kim et al. 2022) addressed the problem
by leveraging additional object annotations. They simplify
the task into class-level I2I translation and then perform per-
class source-to-target style mapping. This enables the net-
works to explicitly estimate class-wise target styles, but it
has a critical limitation: An object in each class consists
of multiple components, and all the sub-object components
might also have different characteristics. Let us consider the
example given in Fig. 1b.

Understandably, when a road image taken on a sunny day
is translated into a night image, head and tail lamps in a car
should be brighter while the rest of the components, such as
car body, tires, and windows, should be darker than before.
Therefore, each component in a car should be handled sep-
arately for realistic I2I translation. However, if the previous
approaches are applied to perform per-class source-to-target
style mapping, they will translate all head and tail lamps into
white lights, making unrealistic images, as shown in Fig. 1b.
Here, one might think that this issue can be addressed by an-
notating more detailed sub-object components than the sim-
ple object categories, but it is actually impossible. A brief
example is as follows. A car consists of body, window, and
tires. A tire consists of wheel and gum. In this way, sub-
object components can be divided endlessly.

To solve the above limitation of the previous class-level
I2I methods, we present Style Harmonization for unpaired
I2I translation (SHUNIT). The key idea of SHUNIT is to by-
pass the sub-object component annotations by leveraging the
original style of the input image because the original style
will include the information about the characteristics of the
sub-object components. Thus, instead of mapping source-
to-target style directly, SHUNIT harmonizes the source and
target styles to realize realistic and practical I2I translation.
As illustrated in Fig. 1c, SHUNIT uses not only the per-
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Figure 1: Illustration of the concepts in unpaired I2I translation. The results are obtained on Cityscapes → ACDC (night) setting.
In the image, many head and tail lamps should be bright at night. (a) Global I2I (Huang et al. 2018b) converts all classes to
bright because it translates the image with a single source-to-target style mapping function. (b) Class-level I2I (Jeong et al.
2021) leverages additional annotations to address the problem of (a) and performs per-class source-to-target style mapping. It
can effectively deal with multiple classes in an image, but loses the original style: All white lights and red lights become white
lights. (c) Style harmonization I2I also performs class-wise style mapping, while adaptively preserving the original styles.

class style gap between the source and target domains but
also the pixel’s original style to determine the target style
of a pixel. To achieve this, we disentangle the target style
into class-aware memory style and image-specific compo-
nent style. The class-aware memory style is stored in a style
memory, and image-specific component style is taken from
the original input image.

The goal of the style memory is to obtain class-wise
source-to-target style gaps and it is motivated by (Jeong et al.
2021). Compared to the memory in (Jeong et al. 2021), our
style memory differs in two aspects. First, the output from
the style memory was used alone as a target style in (Jeong
et al. 2021), but the output from the memory is adaptively
aggregated (=harmonized) in this paper with the style of
the original input image to make a target style. Second, the
memory was simply updated in (Jeong et al. 2021), whereas
our style memory is jointly trained and optimized with the
other parts of SHUNIT. Specifically, the class-aware mem-
ory in (Jeong et al. 2021) was not trained but simply was
updated using the input features during the training, memo-
rizing the style features from the target domain. The gradi-
ent was not propagated to the style memory. Thus, the style
memory in (Jeong et al. 2021) cannot update their param-
eters based on the error of memory. In SHUNIT, however,
we overcome this problem by enabling the memory to learn
through backpropagation. To this end, we train the style
memory from randomly initialized parameters and introduce
style contrastive loss to constrain the memory to learn class-
wise style representations. The backpropagation forces the
style memory to reduce the final loss jointly and effectively
along with the other parts of SHUNIT. To demonstrate the

superiority of our SHUNIT, we conduct extensive experi-
ments on the latest benchmark sets and achieve state-of-the-
art performance.

Overall, the contributions of our work are summarized as
follows:

• We present a novel challenge in I2I translation: an object
might have various styles.

• We propose a new I2I method, style harmonization, that
leverages two distinct styles: class-aware memory style
and image-specific component style. To the best of our
knowledge, the style harmonization is the first method
to estimate the target style in multiple perspectives for
unpaired I2I translation.

• We achieve new state-of-the-art performance on latest
benchmarks and provide extensive experimental results
with analysis.

Related Work
Image-to-image translation. The goal of I2I is to
learn source-to-target style mapping. For I2I translation,
pix2pix (Isola et al. 2017) proposes a general solution us-
ing conditional generative adversarial networks (Mirza and
Osindero 2014). However, it has a significant limitation:
paired training data should be used for training networks.
CycleGAN (Zhu et al. 2017) successfully addresses this
problem with a cycle consistency loss. The loss allows us to
train the networks with unpaired training data by supervis-
ing the reconstructed original image only. Based on Cycle-
GAN, many approaches (Kim et al. 2017; Choi et al. 2018)
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Figure 2: An overview of SHUNIT. (a) From a pair of image Ix and label Lx in source domain X , the two encoders (i.e.,
Ex

c and Ex
s ) extract the content cx and component style sx, respectively. The content retrieves the memory style ŝy . The three

features cx, sx, and ŝy are fed to the target generator Gy , which consists of several Style Harmonization Residual Blocks (SH
ResBlk). The generator Gy outputs the translated image Îy . (b) The input of the SH ResBlk is the content cx for the first layer,
and the output of the previous block is used as input for the remainders. Each SH ResBlk includes two Style Harmonization
Layers (SHL) that transfer target styles, i.e., sx and ŝy .

have been proposed to tackle I2I translation take in an un-
paired manner. UNIT (Liu, Breuel, and Kautz 2017) pro-
poses another unpaired I2I translation solution by mapping
two images in different domains into the same latent code
in a shared-latent space. MUNIT (Huang et al. 2018b) and
DRIT (Lee et al. 2018) introduce a disentangled representa-
tion to achieve diverse and multi-modal I2I translation from
unpaired data. Basically, they perform global I2I translation
which focuses on mapping a global style on all pixels in an
image. Although they work well on object-centric images,
they bring severe artifacts for complex images, such as mul-
tiple objects being presented or large domain gap scenarios,
as illustrated in Fig. 1a. To complement the problem, recent
approaches leverage additional object annotations and per-
form class-level I2I translation.

Class-level image-to-image translation. Recent several
approaches (Mo, Cho, and Shin 2019; Shen et al. 2019;
Bhattacharjee et al. 2020; Jeong et al. 2021; Kim et al.
2022) propose class-level image-to-image translation so-
lutions with object annotations. Specifically, INIT (Shen
et al. 2019) generates instance-wise target domain images.
DUNIT (Bhattacharjee et al. 2020) additionally employs
an object detection network and jointly trains it with the
I2I translation network. MGUIT (Jeong et al. 2021) pro-
poses an approach to store and read class-wise style repre-
sentations with key-value memory networks (Miller et al.
2016). This approach, however, cannot directly supervise
the memory with objective functions for I2I translation. In-
staformer (Kim et al. 2022) proposes a transformer-based
(Vaswani et al. 2017; Dosovitskiy et al. 2021) architec-
ture that mixes instance-aware content and style represen-
tations. The existing methods that leverage object annota-
tions learns the direct class-wise source-to-target style map-

ping, as shown in Fig. 1b. This effectively simplifies the I2I
translation problem into per-class I2I translation, but they
overlook an important point that not all pixels in the same
class should be translated with the same style. Our approach,
style harmonization, addresses this problem by introducing
the component style that facilitates preserving the original
style of the source image, as illustrated in Fig. 1c.

Proposed Method
Definition and Overview
Let X and Y be the visual source and target domains, respec-
tively. Given an image and the corresponding label (=bound-
ing box or segmentation mask) in X domain, our frame-
work generates a new image in Y domain while remain-
ing the semantic information in the given image. We assume
that each domain consists of images and labels denoted by
(Ix, Lx) ∈ X and (Iy, Ly) ∈ Y , and both domains have the
same set of N classes. Our framework contains the source
encoder Ex = {Ex

c , E
x
s }, target generator Gy , and target

style memory My for source-to-target mapping, and the tar-
get encoder Ey = {Ey

c , E
y
s }, source generator Gx, source

style memory Mx for target-to-source mapping. For conve-
nience, we will only describe the source-to-target direction,
and the overview of our framework is depicted in Fig. 2.

Following the previous studies (Huang et al. 2018b; Lee
et al. 2018), we assume that an image can be disentangled
into domain-invariant content and domain-specific style. For
this, we basically follow the MUNIT (Huang et al. 2018b)
architecture. The content encoder Ex

c consists of several
strided convolutional layers and residual blocks (He et al.
2016), and all the convolutional layers are followed by
Instance Normalization (Ulyanov, Vedaldi, and Lempitsky
2016). The content encoder extracts the domain-invariant
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Figure 3: Read operation in style memory. The content fea-
ture cx is separated by the label Lx. For each class, the mem-
ory read is independently performed. After class-wise mem-
ory read, the memory style ŝy is obtained by gathering the
retrieved class-wise values into the original locations.

⊗
de-

notes matrix multiplication.

content feature cx from the image Ix and label Lx. The
style encoder Ex

s also consists of several strided convolu-
tional layers and residual blocks, and it extracts the compo-
nent style feature sx from the image Ix. The memory style
ŝy is read by retrieving from the learnable style memory My

to the content feature cx. The generator Gy consists of sev-
eral style harmonization layers and residual blocks, and it
produces the translated image Îy from cx, sx, and ŝy .

Style Harmonization for Unpaired Image-to-Image
Translation (SHUNIT)
The important point of SHUNIT is that two styles are em-
ployed to determine the target style: One is image-specific
component style, and the other one is class-aware memory
style. We focus on extracting two distinct styles accurately
and then harmonizing them. In what follows, we describe
the detail of each step.

Component style. The style encoder Ex
s takes the im-

age Ix as input and extracts the style feature sx of size
H ×W ×C, where H , W , and C are the height, width, and
number of channels of the feature, respectively. Here, sx ex-
plicitly represents the style of the input image, thus we use
it as image-specific component style. The component style
is used together with the memory style in the style harmo-
nization layer to reduce the artifacts of the generated target
image.

Memory style. The component style is not sufficient to
handle complex scenes with multiple objects. Therefore, we
exploit the class-specific style that leverages an object anno-
tation. To this end, we construct the class-wise style mem-
ory retrieved by the content feature. The target style memory
My consists of N class memories to store class-wise style
representations of the target domain Y . Each class memory
My

n has U key-value pairs (ky, vy) (Jeong et al. 2021), con-
sidering that various styles exist in one class (e.g., different
styles of headlamp and tires in CAR class). The key ky is
used for matching with the content feature and the value vy

has the class-aware style representations. The key and value
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Figure 4: Style harmonization layer. From the component
style sx and memory style ŝy , scale (γx and γy) and shift (βx

and βy) factors are extracted via four convolutional layers.
The alpha mask α̂ is obtained by broadcasting the class-wise
alpha α with the semantic label Lx. We weighted sum the
image and memory styles with the alpha mask, and transfer
it to the input feature. ⊙ denotes Hadamard product.

are learnable vectors, each one of size 1× 1× C.
Fig. 3 shows a detailed implementation of the process of

reading the corresponding memory style ŝy from the mem-
ory My . With the semantic label, we separate the content
feature cx into {cx1 , cx2 , · · · , cxN}, where cxn denotes source
content feature for the n-th class. Let cxn,i be the i-th pixel
of the n-th class source content feature and (kyn,j , v

y
n,j) be

the j-th key-value pair of the n-th class target style memory
My

n . In this work, we aim to read the target memory style
ŝyn,i corresponding to the source content cxn,i using the simi-
larity between the source content and key of target memory.
To this end, we calculate the similarity wx

n,i,j between cxn,i
and kyn,j as:

wx
n,i,j =

exp
(
d(cxn,i, k

y
n,j)
)∑U

u=1 exp
(
d(cxn,i, k

y
n,u)

) (1)

where d(·, ·) is the cosine similarity. We then read the
memory style ŝyn,i corresponding to cxn,i by calculating the
weighted sum of values in n-th class style memory:

ŝyn,i =

U∑
j=1

wx
n,i,jv

y
n,j . (2)

The same process is applied for content features of other
classes, finally extracting spatially varying target memory
style features ŝy of size H ×W × C.

Different from the previous key-value memory net-
works (Jeong et al. 2021) that learn the memory via updating
mechanism, we learn the memory through backpropagation.
The updating mechanism is used to directly store the ex-
ternal input features. However, it has a critical drawback:
The memory cannot be trained with the network jointly with
the same objective function because the gradient should be
stopped at the updated memory. To solve the problem, we
discard the update mechanism and learn the memory with
the loss functions presented in Eq. (7). The effectiveness of
our memory learning strategy is validated in the experiments
section.
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Style harmonization layer. Our goal is harmonizing the
source and target styles instead of mapping source-to-target
style directly. To this end, we propose the style harmoniza-
tion layer to adaptively aggregate the component style and
memory style. The style harmonization layer consists of sev-
eral convolution layers and class-wise alpha parameters, and
it is illustrated in Fig. 4. Here we use three conditional in-
puts: memory style, component style, and label. Convolu-
tional layers are used to compute pixel-wise scale γ and shift
β factors from the two styles. Following (Jiang et al. 2020;
Park et al. 2019; Zhu et al. 2020; Ling et al. 2021), we trans-
fer the harmonized target style by scaling and shifting the
normalized input feature with the computed factors (i.e., γ
and β). In the layer, we additionally set class-wise alpha pa-
rameters (α1, α2, · · · , αN ). It is used to decide which style
has more influence for each class in the generated images.
If the alpha value is large, the component style sx has more
influence, and vice versa.

Let f , of size H × W × C, be the input feature of the
current style harmonization layer in the generator Gy . With
the style harmonizing scale γ and shift β factors, the feature
is denormalized by

γc,h,w
(fc,h,w − µc)

σc
+ βc,h,w (3)

where µc and σc are the mean and standard deviation of the
input feature f at the channel c, respectively. The modula-
tion parameters γc,h,w and βc,h,w are obtained from γx

c,h,w,
γy
c,h,w, βx

c,h,w, and βy
c,h,w, which are the scale and shift fac-

tors of the component style sx and memory style, sy respec-
tively, and they are computed by

γc,h,w = α̂h,wγ
x
c,h,w + (1− α̂h,w)γ

y
c,h,w,

βc,h,w = α̂h,wβ
x
c,h,w + (1− α̂h,w)β

y
c,h,w,

(4)

where α̂ denotes the alpha mask. It is obtained by broadcast-
ing the class-wise alpha parameters to their corresponding
semantic regions of the label Lx. We experimentally demon-
strate that our style harmonization layer adaptively controls
the style of each object well, and the results are given in the
experiments section.

Loss Functions
We leverage standard loss functions used in MUNIT (Huang
et al. 2018b) to generate proper target domain images. It in-
cludes self-reconstruction Lself (Zhu et al. 2017), cycle con-
sistency Lcycle (Zhu et al. 2017), perceptual Lperc (Johnson,
Alahi, and Fei-Fei 2016) and adversarial loss Ladv (Good-
fellow et al. 2014). The detailed explanations of those loss
functions are given in the supplementary material.

In this paper, we propose two advanced loss functions to
facilitate style harmonization: content contrastive loss and
style contrastive loss. It is used with the aforementioned
standard loss functions jointly. In what follows, we intro-
duce the proposed two loss functions.

Content contrastive loss. To extract domain invariant
content features from the content encoder, MUNIT (Huang
et al. 2018b) simply reduces the L1 distances between cx and

ĉy . We replace this with contrastive representation learning
to improve discrimination within a class. For a content fea-
ture ĉyi at pixel i, which is the content feature extracted from
translated target image, we set the positive sample to cxi and
we set the remaining features at the other pixels as negative
samples. The content contrastive loss is defined with the a
form of InfoNCE (Oord, Li, and Vinyals 2018) as:

Lcontent = −
HW∑
i=1

log

(
exp((cxi · ĉyi )/τ)∑HW

j=1 exp((cxj · ĉyi )/τ)

)
(5)

where τ is a temperature parameter. In this equation, the
features in the same class at the pixel i can be considered
as negative samples. This encourages the content encoder
to extract more diverse style representations from the style
memory within the same class. It is also applied to the target-
to-source pipeline with ĉx and cy

Style constrative loss. We propose the style contrastive
loss to allow the style memory to learn class-wise style rep-
resentations. Similar to the content contrastive loss, for a
style feature ŝxi at pixel i, which is the memory style of
target-to-source mapping, we set the positive sample to the
source component style sxi and we set the remaining features
at the other pixels as negative samples. The style constrative
loss is defined as follows:

Lstyle = −
HW∑
i=1

log

(
exp((sxi · ŝxi )/τ)∑HW

j=1 exp((sxj · ŝxi )/τ)

)
(6)

This loss directly supervises the memory style ŝx for the
translated target image. This improves the stability of cycle
consistency learning for reconstructing Ix from Îy . It is also
applied to the target styles, i.e., ŝy and sy

Finally, all loss functions are summarized as follows:
min

(Ex,Ey,Gx,Gy)
max

(Dx,Dy)
L(Ex, Ey, Gx, Gy, Dx, Dy) =

λselfLself + λcycleLcycle + λpercLperc

+λadvLadv + λcontentLcontent + λstyleLstyle

(7)

where Dx and Dy denote the multi-scale discrimina-
tors (Wang et al. 2018) for each visual domain, X and Y .
The details of Lself , Lcycle, Lperc, and Ladv are described
in the supplementary material.

Experiments
In this section, we present extensive experimental results and
analysis. To demonstrate the superiority of our method, we
compare our SHUNIT with state-of-the-art I2I translation
methods. The implementation details of our method are pro-
vided in the supplementary material.

Datasets
We evaluate our SHUNIT on three I2I translation scenar-
ios: Cityscapes (Cordts et al. 2016) → ACDC (Sakaridis,
Dai, and Van Gool 2021) and INIT (Shen et al. 2019),
and KITTI (Geiger et al. 2013) → Cityscapes (Cordts
et al. 2016). In all scenarios, INIT (Shen et al. 2019),
DUNIT (Bhattacharjee et al. 2020), MGUIT (Jeong et al.
2021), InstaFormer (Kim et al. 2022), and our method use
semantic labels provided in each dataset.

2296



Input CycleGAN MUNIT MGUIT SHUNIT (ours) Target domain

Figure 5: Qualitative comparison on Cityscapes (clear) → ACDC (snow/rain/fog/night). From the given clear image (first
column), we generate four adverse condition images using (Zhu et al. 2017; Huang et al. 2018b; Jeong et al. 2021) and SHUNIT.
In the last column, we show a sample of the real image for each adverse condition.

clear → snow clear → rain clear → fog clear → night

cFID ↓ mIoU ↑ cFID ↓ mIoU ↑ cFID ↓ mIoU ↑ cFID ↓ mIoU ↑

CycleGAN (Zhu et al. 2017) 21.88 23.68 20.16 35.96 31.72 13.73 15.26 31.33
UNIT (Liu, Breuel, and Kautz 2017) 13.89 31.24 16.25 39.39 29.36 28.70 12.28 35.29
MUNIT (Huang et al. 2018b) 13.79 33.83 12.62 44.20 29.34 27.44 12.56 37.43
TSIT (Jiang et al. 2020) 10.47 38.08 14.16 46.40 25.16 36.68 11.62 35.92
MGUIT (Jeong et al. 2021) 8.75 33.33 10.76 42.60 24.36 10.22 15.83 31.36
SHUNIT (ours) 6.62 45.15 8.47 48.84 6.53 38.96 14.08 33.66

Table 1: Quantitative comparison on Cityscapes → ACDC. We measure class-wise FID (lower is better) and mIoU (higher is
better). For brevity, class-wise FID is written as cFID.

clear → snow clear → rain clear → fog clear → night

AdaptSegNet (Tsai et al. 2018) 35.3 49.0 31.8 29.7
ADVENT (Vu et al. 2019) 32.1 44.3 32.9 31.7
BDL (Li, Yuan, and Vasconcelos 2019) 36.4 49.7 37.7 33.8
CLAN (Luo et al. 2019) 37.7 44.0 39.0 31.6
FDA (Yang and Soatto 2020) 46.9 53.3 39.5 37.1
SIM (Wang et al. 2020) 33.3 44.5 36.6 28.0
MRNet (Zheng and Yang 2021) 38.7 45.4 38.8 27.9
SHUNIT (ours) 45.2 48.8 39.0 33.7

Table 2: Quantitative Comparison on domain adaptation for semantic segmentation. We report mIoU for Cityscapes → ACDC.

Cityscapes → ACDC Cityscapes (Cordts et al. 2016)
is one of the most popular urban scene dataset. ACDC
(Sakaridis, Dai, and Van Gool 2021) is the latest dataset
with multiple adverse condition images and consists of
four conditions of street scenes: snow, rain, fog, and night.
ACDC dataset provides images with corresponding dense
pixel-level semantic annotations, and it has 19 classes the
same as Cityscapes dataset for all adverse conditions. Fol-
lowing (Sakaridis, Dai, and Van Gool 2021), we leverage
Cityscapes dataset as a clear condition and translate it to the
adverse conditions (i.e., snow, rain, fog, and night) in ACDC
dataset. Therefore, this scenario is challenging because not

only the weather conditions, but also layouts, such as cam-
era model, view, and angle, are different. To train the net-
works, 2975, 400, 400, 400, and 400 images are used for
clear, snow, rain, fog, and night conditions, respectively. For
a fair comparison on this benchmark, we reproduce existing
state-of-the-art methods (Zhu et al. 2017; Liu, Breuel, and
Kautz 2017; Huang et al. 2018b; Jiang et al. 2020; Jeong
et al. 2021) in our system. For fair comparison, we set the
number of key-value pairs for style memory to be the same
as our setting and use segmentation mask for reproducing
(Jeong et al. 2021).
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Input CycleGAN UNIT MUNIT DRIT MGUIT InstaFormer SHUNIT (ours)

Figure 6: Qualitative comparison on INIT dataset. (Top to bottom) sunny→night, night→sunny, cloudy→sunny results. Our
method preserves object details and looks more realistic.

sunny → night night → sunny sunny → rainy sunny → cloudy cloudy → sunny Average

CIS ↑ IS ↑ CIS ↑ IS ↑ CIS ↑ IS ↑ CIS ↑ IS ↑ CIS ↑ IS ↑ CIS ↑ IS ↑

CycleGAN (Zhu et al. 2017) 0.014 1.026 0.012 1.023 0.011 1.073 0.014 1.097 0.090 1.033 0.025 1.057
UNIT (Liu, Breuel, and Kautz 2017) 0.082 1.030 0.027 1.024 0.097 1.075 0.081 1.134 0.219 1.046 0.087 1.055
MUNIT (Huang et al. 2018b) 1.159 1.278 1.036 1.051 1.012 1.146 1.008 1.095 1.026 1.321 1.032 1.166
DRIT (Lee et al. 2018) 1.058 1.224 1.024 1.099 1.007 1.207 1.025 1.104 1.046 1.321 1.031 1.164
INIT (Shen et al. 2019) 1.060 1.118 1.045 1.080 1.036 1.152 1.040 1.142 1.016 1.460 1.043 1.179
DUNIT (Bhattacharjee et al. 2020) 1.166 1.259 1.083 1.108 1.029 1.225 1.033 1.149 1.077 1.472 1.079 1.223
MGUIT (Jeong et al. 2021) 1.176 1.271 1.115 1.130 1.092 1.213 1.052 1.218 1.136 1.489 1.112 1.254
Instaformer (Kim et al. 2022) 1.200 1.404 1.115 1.127 1.158 1.394 1.130 1.257 1.141 1.585 1.149 1.353
SHUNIT (ours) 1.205 1.503 1.308 1.585 1.136 1.609 1.111 1.405 1.085 1.315 1.169 1.483

Table 3: Quantitative Comparison on INIT dataset. We measure CIS and IS (higher is better).

INIT INIT (Shen et al. 2019) is a public benchmark set for
I2I translation. It contains street scenes images including 4
weather categories (i.e., sunny, night, rainy, and cloudy) with
the corresponding bounding box labels. Following (Shen
et al. 2019), we split the 155K images into 85% for train-
ing and 15% for testing. We conduct five translation exper-
iments: sunny ↔ night, sunny ↔ cloudy, sunny → rainy.
In this dataset, we directly copied the results of the existing
methods from (Shen et al. 2019; Bhattacharjee et al. 2020;
Jeong et al. 2021; Kim et al. 2022). Similarly, for fair com-
parison with MGUIT, the number of key-value pairs in style
memory is set equally.

KITTI → Cityscapes KITTI is a public benchmark set
for object detection. It contains 7481 images with bounding
boxes annotations for training and 7518 images for testing.
Following the previous I2I translation methods (Bhattachar-
jee et al. 2020; Jeong et al. 2021; Kim et al. 2022), we select
the common 4 object classes (person, car, truck, bicycle) for
evaluatation.

Qualitative Comparison
Fig. 5 shows qualitative results on Cityscapes → ACDC.
Since our I2I translation setting, Cityscapes → ACDC, is
very challenging as discussed in the datasets section, ex-
isting methods cannot generate realistic images in several
scenarios. Specifically, CycleGAN (Zhu et al. 2017) often

destroys the semantic layout. MUNIT (Huang et al. 2018b)
translates images with a global style, thus it also often gen-
erates artifacts, as shown in the snow, rain, and fog images.
MGUIT (Jeong et al. 2021) also includes artifacts in the car
even though leveraging memory style. It shows the limita-
tion of the updating mechanism for training memory style,
and the limitation is clearly depicted in the challenging sce-
nario. In contrast to them, our SHUNIT accurately generates
images in the target domains without losing the original style
in the input image. In the supplementary material, we further
provide the results of UNIT (Liu, Breuel, and Kautz 2017)
and TSIT (Jiang et al. 2020).

As shown in Fig. 6, which depicts qualitative results on
INIT dataset, our method generates high-quality images in
various scenarios. In the night → sunny scenario (second
row), InstaFormer (Kim et al. 2022) translates the color of
the road lane to yellow. On the other hand, our method keeps
the color of the lane as white and generates a sunny scene by
harmonizing the target domain style retrieved from a style
memory and an image style.

Quantitative Comparison
The quantitative results on Cityscapes → ACDC are pre-
sented in Table 1. To quantify the per-class image-to-image
translation quality, we measure class-wise FID (Shim et al.
2022). We further measure mIoU on ACDC test set. The
mIoU metric is used to validate the results on the practical
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Pers. Car Truc. Bic. mAP

DT (Inoue et al. 2018) 28.5 40.7 25.9 29.7 31.2
DAF (Huang et al. 2018b) 39.2 40.2 25.7 48.9 38.5
DARL (Kim et al. 2019) 46.4 58.7 27.0 49.1 45.3
DAOD (Rodriguez and Mikolajczyk 2019) 47.3 59.1 28.3 49.6 46.1
DUNIT (Bhattacharjee et al. 2020) 60.7 65.1 32.7 57.7 54.1
MGUIT (Jeong et al. 2021) 58.3 68.2 33.4 58.4 54.6
InstaFormer (Kim et al. 2022) 61.8 69.5 35.3 55.3 55.5
SHUNIT (ours) 56.3 74.4 51.9 53.2 59.0

Table 4: Quantitative Comparison on domain adaptation for object detection. We report per-class AP for KITTI → Cityscapes.

clear → snow clear → rain

Mem. Comp. α cFID ↓ mIoU ↑ cFID ↓ mIoU ↑

✓ 12.93 26.33 7.83 39.06
✓ ✓ 8.72 37.20 8.47 38.97
✓ ✓ ✓ 6.62 44.35 8.47 42.77

(a) Style ablation study on SHL.

clear → snow clear → rain

Lcontent Lstyle cFID ↓ mIoU ↑ cFID ↓ mIoU ↑

✓ 11.06 32.43 13.23 38.39
✓ 12.38 30.89 9.33 39.47

✓ ✓ 6.62 44.35 8.47 42.77

(b) Ablation study on loss functions.

clear → snow clear → rain

cFID ↓ mIoU ↑ cFID ↓ mIoU ↑

Updating 10.55 36.70 12.05 38.21
Backprop. 6.62 44.35 8.47 42.77

(c) Style memory training strategies.

clear → snow clear → rain

cFID ↓ mIoU ↑ cFID ↓ mIoU ↑

L1 12.21 38.98 7.72 39.78
Contrastive 6.62 44.35 8.47 42.77

(d) L1 vs. Contrastive loss for style and content
losses.

clear → snow clear → rain

cFID ↓ mIoU ↑ cFID ↓ mIoU ↑

w/o 6.73 44.11 9.03 38.72
w/ 6.62 44.35 8.47 42.77

(e) Experimental results of label input for
content encoder.

Table 5: Ablation Study. We report class-wise FID and mIoU in two scenarios: clear → {snow, rain}.

problem, semantic segmentation. We generate a training set
by Cityscapes → ACDC and then train DeepLabV2 (Chen
et al. 2017) on it. The mIoU score is obtained with the
trained DeepLabV2 by evaluating on ACDC test set. As
shown in Table 1, we surpass the state-of-the-art I2I trans-
lation methods by a significant margin in most scenarios,
demonstrating the superiority of our style harmonization for
unpaired I2I translation. Table 2 shows the quantitative re-
sults of domain adaptation for semantic segmentation with
the state-of-the-art methods. Despite we trained DeepLabV2
with only a simple cross-entropy loss, our SHUNIT achieves
comparable performance with the domain adaptation meth-
ods that were trained DeepLabV2 with additional loss func-
tions and several techniques for boosting the performance of
mIoU score on the target domain.

Table 3 shows another quantitative results on the testing
split of INIT (Shen et al. 2019). To directly compare our
method with the public results, we evaluate our method with
Inception Score (IS) (Salimans et al. 2016) and Conditional
Inception Score (CIS) (Huang et al. 2018b). As shown in
Table 3, we achieve the best performance in most scenarios.

We further evaluate our method on domain adaptation
benchrmark following DUNIT (Bhattacharjee et al. 2020).
We use Faster-RCNN (Ren et al. 2015) trained on the source
domain as a detector. As shown in Table 4, we achieve the
state-of-the-art performance.

Ablation Study
In this section, we study the effectiveness of each component
in our method. We validate on Cityscapes (clear) → ACDC
(snow/rain) scenarios and use ACDC validation set for both
class-wise FID and mIoU1.

Ablation study on style harmonization layer. We ablate
the memory style, component style, and class-wise α in the
style harmonization layer, and they are denoted as “Mem.”,
“Comp.”, and “α” in Table 5a, respectively. As shown in the
table, the memory style-only is far behind the full model.
With component style, we can achieve performance im-
provement on clear → snow while decreasing on clear →
rain. We obtain significant improvement on most scenarios
with class-wise α. The results demonstrate that the exist-
ing approach, which only leverages the memory style, is not
sufficient for I2I translation, and we successfully address the
problem by adaptively harmonizing two styles.

Ablation study on content and style losses. We study the
effectiveness of the proposed two loss functions, Lstyle and
Lcontent, by ablating them step-by-step, and the results are
given in Table 5b. As shown in the table, our model is effec-
tive when two losses are used jointly.

1mIoU on test set should be evaluated on the online server
(Sakaridis, Dai, and Van Gool 2021) and it has a limit on the num-
ber of submissions. Therefore, we use validation set for ablation
study.
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Style memory training strategy. As described in the pro-
posed method section, we opt for backpropagation to train
the style memory rather than updating the mechanism used
in (Jeong et al. 2021). The results are shown in Table 5c. We
surpass the existing updating method by a large margin.

L1 vs. Contrastive loss. Table 5d shows the efficacy of our
contrastive-based approach by replacing Lcontent and Lstyle

with L1 losses as used in MUNIT (Huang et al. 2018b). The
L1 losses are designed to reduce L1 distances within posi-
tive pairs without consideration of negative pairs. As we dis-
cussed in loss functions section, our method effectively en-
courages extracting more diverse style representations, lead-
ing to performance improvement.

Label input for content encoder. Table 5e shows that la-
bel input is not significant but always leads to performance
improvements. Therefore, we have no reason to omit the la-
bel input.

Limitations

Since our framework leverages the component style of the
source image, the generated image’s quality relies on the
source image’s quality. If the source image has a very bright
colors, SHUNIT often generates a relatively bright night im-
age. In Fig. 5, SHUNIT struggles to generate geometrically
distinct lights from the source image. Due to the above prob-
lems, SHUNIT cannot achieve the best performance on clear
→ night scenario in Table. 1. We believe that these problems
can be alleviated by leveraging geometric information such
as depth or camera pose. Additionally, our approach can give
limited benefit to some I2I translation scenarios, such as dog
→ cat, because these tasks need to change the content; how-
ever, we tackle the unpaired I2I translation task under the
condition that the content will not be changed, and only the
style will be changed.

Conclusion

We present a new perspective of the target style: It can
be disentangled into class-aware and image-specific styles.
Furthermore, our SHUNIT effectively harmonizes the two
styles, and its superiority is demonstrated through extensive
experiments. We believe that our proposal has the potential
to break new ground in style-based image editing applica-
tions such as style transfer, colorization, and image inpaint-
ing.
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