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Abstract

Overparameterized deep neural networks have redundant
neurons that do not contribute to the network’s accuracy. In
this paper, we introduce a novel channel regeneration tech-
nique that reinvigorates these redundant channels of efficient
architectures by re-initializing its batch normalization scaling
factor γ. This re-initialization of BN γ of these channels pro-
motes regular weight updates during training. Furthermore,
we show that channel regeneration encourages the channels
to contribute equally to the learned representation and further
boosts the generalization accuracy. We apply our technique
at regular intervals of the training cycle to improve channel
utilization. The solutions proposed in previous works either
raise the total computational cost or increase the model com-
plexity. Integrating the channel regeneration technique into
the training methodology of efficient architectures requires
minimal effort and comes at no additional cost in size or
memory. Extensive experiments on several image classifica-
tion benchmarks and on semantic segmentation task demon-
strate the effectiveness of applying the channel regeneration
technique to compact architectures.

1 Introduction
The recent success of large deep neural networks in funda-
mental computer vision tasks (Redmon and Farhadi 2017;
Ren et al. 2017; Chen et al. 2018; He et al. 2016; Simonyan
and Zisserman 2015) has accelerated the demand for deploy-
ing them commercially. However, overparameterized deep
neural networks(DNN) have a large number of redundant
neurons that do not contribute to the network output. Con-
temporary works have addressed this issue by pruning these
ineffective neurons/channels from the network (Liu et al.
2017; Lin et al. 2020; He et al. 2018; Li et al. 2020). How-
ever, pruning results in an overall drop in accuracy. Another
approach is to revitalize these irrelevant channels (Shao et al.
2020). Increasing channel utilization encourages more chan-
nels to contribute to boosting accuracy and improving gen-
eralization. In this work, we focus on the latter.

Previous works on improving the resource utilization of
DNNs have proposed solutions that modify the conventional
CNN building blocks such as convolutional layers and opti-
mizers (Qiao et al. 2019) or add a self-organizing map in
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Figure 1: The graph plots the average gradient update of
an inhibited channel with and without channel regenera-
tion(RG). Under the standard training routine, the channel
has no weight update after the 15th epoch as the average
gradient drops to zero. This limits the contribution of the
corresponding filter to the network output. To address this
problem of under utilization of network resources, chan-
nel regeneration restores inhibited (inactive) channels/filters
and thereby ensuring a consistent gradient update for all the
channels.

the training pipeline for increasing channel utilization (Bad-
dar et al. 2021). Another line of work investigates the effect
of the standard batch normalization(BN) layer on channels
participation to the learned feature representations (Shao
et al. 2020; Huang et al. 2019). However, these works either
increase the total training computational cost (Shao et al.
2020; Huang et al. 2019; Baddar et al. 2021) or require mod-
ifying existing off-the-shelf network models limiting their
usage (Shao et al. 2020; Huang et al. 2019; Qiao et al. 2019).
We improve the channel utilization of compact DNNs at no
additional computational cost during training or at inference.

A trained deep neural network suffers from the phe-
nomenon of filter level sparsity wherein a large number of
feature channels are inactive and always produce small val-
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ues (Mehta, Kim, and Theobalt 2019). Specifically, a chan-
nel is considered inactive if the BN γ values of the channel
is below |10−2|. These inhibited channels (Shao et al. 2020)
contribute little to the final performance of the network. The
graph in Figure 1 shows the average gradient of an inhib-
ited channel from the second layer of a trained MobileNetv2
network (Sandler et al. 2018) on CIFAR-100 during train-
ing. It can be observed that the average gradient value falls
to zero quickly and remains zero for the remaining training
epochs. Consequently, this inhibited channel undergoes no
weight update and, therefore, has little or no impact on the
final learned representation. The network would suffer from
poor generalization performance if it relies only on few in-
dividual selective channels/filters (Morcos et al. 2018). This
under-utilization of network resources is a cause for concern
of pruned models and efficient architectures. This naturally
raises the following question: Is it possible to recover these
inhibited channels and ensure better utilization of resources
in edge environments without increasing the computational
training cost?

In this paper, we present a novel technique channel re-
generation for compact models that regenerates inhibited
channels by re-initializing the batch normalization scaling
factor of all the inhibited channels in the network. This is
shown in Fig 2. The key insight to our technique is that the
BN γ of a channel plays an important role in determining
the weight update δw of its corresponding filter during back
propagation. We empirically show that the gradient update
of a channel is zero or close to zero when the channel’s BN
γ is low. Re-initializing the BN γ of an inhibited channel in-
creases the gradient and encourages weight update δw. Fig-
ure 1 shows that the average gradient of an inhibited chan-
nel rises after we apply our channel regeneration technique
at 20th epoch. Consequently, this makes the channel rele-
vant and improves the overall network baseline capacity. Our
technique offers two advantages over previous methods on
improving channel utilization: (i) First, the total computa-
tional cost during training and at inference remains the same.
Our technique is computationally efficient to execute and
furthermore it does not increase the total network parame-
ters, and (ii) Second, channel regeneration can be integrated
with off-the-shelf models from the popular deep learning li-
braries. We apply channel regeneration at regular intervals
while training commonly used compact neural networks to
improve network accuracy and resource utilization.

Our contributions can be summarized as follows:

• We introduce a novel technique named channel regen-
eration that restores inhibited channels by re-initializing
their batch normalization scaling factor.

• We conduct extensive experiments to show that channel
regeneration increases channel utilization and boosts the
generalization accuracy of the model.

• We demonstrate the effectiveness of our novel chan-
nel regeneration technique on classification and semantic
segmentation tasks across several compact architectures
and datasets.

Figure 2: Channel Regeneration. Inhibited channels with
low BN scaling factor γ are regenerated by re-initializing
their γ to γnew (regenerated channels seen in green). The
value of γnew is calculated at every regeneration epoch and
is discussed in details in section 3.

Method ∆Param ∆TT OTS

ITN (Huang et al. 2019) No Increase No
CE (Shao et al. 2020) Increase Increase No
NR (Qiao et al. 2019) No No No
SRR (Baddar et al. 2021) Increase Increase No

Ours No No Yes

Table 1: Comparison of Channel Regeneration with other
works. (TT: Training Time, OFS: Off-the-Shelf)

2 Related Works
Improving Model Capacity: The filter reinitialization
method in Qiao et al. (2019) enforces L1 penalty on all
filters to increase sparsity. Moreover, the weights/parame-
ters of rejuvenated filters are randomly re-initialized. In ad-
dition, the method modifies the conventional CNN build-
ing blocks such as convolutional layers and optimizers for
its application. In contrast, our proposed channel regener-
ation technique is straightforward since it only resets the
BN scaling term of channels after regular intervals with-
out reinitializing the filter weights. In Baddar et al. (2021),
class activation maps are used to train self-organizing maps
for re-organization purposes. Following this, they perform
the channel rejuvenation step to revive neurons to increase
model capacity. Compared to (Qiao et al. 2019; Baddar
et al. 2021), our technique applies to any off-the-shelf CNN
model at no additional training computational cost.
Normalizing Techniques: Shao et al. (2020) encourages
channels to contribute equally by introducing an additional
neural block after every BN layer in the network. This block
performs batch decorrelation and instance reweighting for
the batch of mini samples at every training iteration. DBN
(Huang et al. 2018) applies ZCA whitening on the acti-
vations along with scaling to achieve better performance
and generalization ability than the standard BN. However,
the method performs eigenvalue decomposition, which is
computationally expensive and increases the total training
time. Iterative normalization (Huang et al. 2019) describes a
methodology to perform ZCA whitening without computing
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Figure 3: This graph shows the influence of BN γ on the av-
erage gradient update of an inhibited channel. Lower γ value
results in no weight update of the corresponding filter. Thus,
this network channel has no contribution to the network out-
put, which results in poor channel/resource utilization.

the eigenvalue decomposition. All these normalizing meth-
ods described significantly increase the training time and do
not apply to the off-the-shelf models available in popular li-
braries. Table 1 compares our proposed channel regeneration
technique with previous works.
Efficient Architectures: MobileNetv2 (Sandler et al. 2018)
consists of inverted residual blocks as building blocks to de-
sign a light-weight network topology. These blocks are com-
posed of inverted residuals and depthwise separable convo-
lutions to improve the efficiency of the network. Shuffle-
Net (Zhang et al. 2018) consists of a shuffle unit which is
made up of 1x1 group convolution with channel shuffle op-
eration followed by 3x3 depthwise convolution and another
1x1 group convolution. Tan and Le (2019) introduces a com-
pound coefficient method to uniformly scale across dimen-
sions and leverage neural architecture search to construct a
family of networks, EfficientNets which are computationally
efficient and provide better performance than networks with
a similar computational budget.
Channel Pruning: Channel pruning involves removing
unimportant channels across the network based on saliency
criteria. Liu et al. (2017) channel-level regularization is en-
forced on scaling factors from batch normalization layers.
Peng et al. (2019) examines the dependency between chan-
nels by using a novel loss function based on Taylor expan-
sion. In (Luo, Wu, and Lin 2017), filters are pruned based on
statistical information from immediately subsequent layers.
(He et al. 2020) introduces a learnable differentiable pruning
criteria sampler to find the appropriate pruning criteria for
each layer. Lin et al. (2020) prunes the filters with low-rank
feature maps as these maps contain less information. Unlike
pruning, our technique aims to rehabilitate these redundant
network channels and improve the network accuracy.

3 Method

We begin by establishing the relationship between the gra-
dient update of a channel/filter and its corresponding BN γ.
Then, we introduce our channel regeneration technique and
its effect on the gradient update of all channels in a network.
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Figure 4: The graph plots the normalized gamma values of
an inhibited and an active channel during training. The γ
value of the inhibited channel falls drastically in the initial
epochs and never recover even after several training epochs.
In contrast, the γ value of the active channel has the γ value
close to the median value during the early epochs and rises
to a very high value in the later training epochs.

Network BL Median Mean 0.2 Max

MobileNetv2 69.10 71.90 71.50 71.25 71.81
ShuffleNetv2 70.18 72.90 72.02 71.99 72.54

Table 2: Accuracy for different values of γnew on CIFAR-
100

3.1 Background
Consider the conventional Conv-BN-ReLU building block of
a CNN model. During training, the weight update of the con-
vulational filter F in the block is:

Fupdate = F + LR ∗ ∂L
∂F

;
∂L
∂F

=
∂L
∂O

.
∂O

∂F
(1)

where L is the training loss, LR is the learning rate and O
is the CNN filter output. The gradient to update the filter ∂L

∂F
is the product of the loss gradient from the BN layer of the
building block ∂L

∂O and the local gradient ∂O
∂F . The BN layer

transforms the CNN filter output O with its affine learn-
able parameters in the following manner (Ioffe and Szegedy
2015):

BNout = γÔ + β; Ô =
O − µ√
σ2 + ϵ

(2)

where γ and β are the BN scaling and shifting parameters;
µ and σ are the mean and standard deviation values of input
activations over the mini-batch B respectively. To establish
the dependency of the filter update ∂L

∂F on BN γ, we must
show that the value of ∂L

∂O is dependent on γ . From (Ioffe
and Szegedy 2015), we know that:

∂L
∂O

=
∂L
∂Ô

1√
σ2 + ϵ

+
∂L
∂σ2

2(O − µ)

B
+

1

B

∂L
∂µ

(3)
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Figure 5: The graph reports the accuracy under different re-
generation settings.

Also, the gradients ∂L
∂σ2 and ∂L

∂µ can be found by using the
∂L
∂Ô

in the following manner:

∂L
∂σ2

=
∑ ∂L

∂Ô
. (O − µ) .

−1

2
(σ2 + ϵ)

−3
2 (4)

∂L
∂µ

= (
∑ ∂L

∂Ô

−1√
σ2 + ϵ

) +
∂L
∂σ2

.

∑−2(O − µ)

B
(5)

Finally, the loss gradient ∂L
∂Ô

is:

∂L
∂Ô

=
∂L

∂BNout
. γ (6)

From equations [1-6], we notice that the value of γ has an
important role to play in determining the gradient update of
the filter F .

To empirically verify the influence of γ on ∂L
∂F , we train

a MobileNetv2 model on CIFAR-100 and plot the average
gradient update of an inhibited channel and its correspond-
ing γ value for the entire training in Fig 3. The initial value
of BN γ is 1.0. From the figure, we make an important ob-
servation that the average gradient weight update and BN γ
value of an inhibited channel falls to zero only after a few
training epochs. A lower value of γ impedes the learning
of the channel/filter, which results in no contribution to the
final learned representation of the network.

3.2 Channel Regeneration
Channel regeneration works by re-initializing the BN scale
factor value γ of inhibited channels to a new value γnew.
In section 3.1, we establish that the a lower value of a
channel’s BN γ value leads to no gradient weight update
of its corresponding filter. Increasing the BN γ value of an
inhibited channel boosts its importance to the network, and
further improving the network baseline capacity.
New γ value of inhibited channels. We plot the optimiza-
tion trajectory of normalized BN scaling factor values of
an inhibited channel and an active channel from the second
layer of a trained MobileNetv2 model in Figure 4. As
expected, the γ value of the inhibited channel drops to zero

Algorithm 1: Channel Regeneration
Input: randomly initialized network, Training epochs TE , re-

generation epochs ERG, total number of channels C
1: Train the model
2: for t← 1 to TE do
3: L = LCE (output, label) ▷ Cross entropy loss
4: γall = {}
5: if t = ERG then ▷ Regeneration Epoch
6: for k ← 1 to C do
7: γall.append(γk)
8: end for
9: γmed = Median(Sort(γall)) ▷ Threshold γ

10: for k ← 1 to C do
11: if γk ≤ γmed then
12: γk = γmed ▷ Channel Regeneration
13: end if
14: end for
15: end if
16: end for

Output: Trained network

by 10th epoch. The active channel has the γ value close
to the mean γ value around the 30th epoch. However, the
active channel’s γ rises to a very high-value mid-way during
training. We hypothesize that a channel with a γ value
close to the mean or higher would receive regular gradient
updates. We evaluate this hypothesis by training a network
with the channel regeneration technique. We report results
on different values of γnew in Table 2. Training with our
technique achieves better accuracy than the baseline for all
values of γnew. This result concurs with our rationale that
increasing the γ value of inhibited channels above a small
threshold would result in higher network accuracy. The
models achieve the best accuracy when the value of γnew is
greater than equal to the median. For all our experiments,
we re-initialize the γ of inhibited channels to γmed of the
network.

When to apply channel regeneration. To ensure better
channel utilization, we must address the following question:
how often should we employ channel regeneration? To
answer this question, we train a MobileNetv2 model on the
CIFAR-100 dataset and report the results in Figure 5. We
investigate two different settings: (i) apply channel regen-
eration only one time at different epochs = {5, 10, 20, 50}
(ii) apply it at regular intervals of {5, 10, 20, 50} epochs.
From the figure, we notice that applying our technique at
regular intervals achieves significantly higher accuracy.
This result suggests that the restoration of a few inhibited
channels may be momentary when we employ channel
regeneration only once. The regular use of our technique
aids in the proper restoration of inhibited channels and
consequently improves the final performance. We define
a hyper-parameter regeneration epoch ERG- the interval
of epochs at which we regenerate channels in an iterative
manner during training. From the Figure 5, we note that
our technique is robust to the ERG value as we increase the
accuracy by over 2% over the baseline for different values
of ERG.
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CIFAR-100 CIFAR-10
RG Epoch (ERG) RG Epoch (ERG)

Model w/o 5 10 15 20 25 w/o 5 10 15 20 25

MobileNetv2 69.10 71.90 71.40 71.65 71.08 71.47 90.74 92.24 92.42 92.18 92.56 92.42
ShuffleNetv2 70.18 72.90 73.07 72.32 72.41 72.91 91.88 93.20 92.92 92.89 92.67 92.75
ResNet-18 76.20 77.18 76.99 76.90 76.96 76.41 94.90 95.14 95.14 95.04 94.98 95.06
ResNet-34 77.31 78.14 77.97 77.84 77.97 77.84 95.28 95.37 95.24 95.53 95.60 95.69

Table 3: Performance of compact models on CIFAR-10/100 when trained with and without Channel Regeneration

Algorithm. We describe the Channel Regeneration in Al-
gorithm 1. During regeneration epochs ERG, we first iden-
tify inhibited channels in every layer with scaling factor val-
ues lesser than γmed. Then, we regenerate these channels by
re-initializing their scaling factor values to γmed.

4 Experiments and Results
4.1 Datasets
CIFAR-10/100: The CIFAR datasets consist of natural color
images with 32 x 32 dimensions. The datasets contain
50, 000 images for training and 10, 000 images for valida-
tion. With regards to the classification problem, we follow
the training routine described in (Devries and Taylor 2017),
which is initial LR = 0.1 divided by 5 at 60th, 120th, 160th
epochs, train for 200 epochs with batch size 128 and weight
decay 5e-4, Nesterov momentum of 0.9.

Tiny-ImageNet: Tiny-ImageNet is a subset of the full
ImageNet dataset and essentially a downsampled version
of the dataset. Tiny-ImageNet contains images from 200
classes and each image is of spatial resolution 64 x 64. Each
class has 500 for training and 50 images for validation. We
follow the same training routine for classification. We apply
random horizontal flipping, rotation and normalize images
during training for data augmentation. The batch size is 32
for all architectures reported on this dataset. We train for
90 epochs and decrease the learning rate by 0.1 at [30, 60]
epochs.

ImageNet: The ImageNet dataset contains 1.2 million
training images and 50,000 validation images of 1000
classes. We train a MobileNetv2 model for 150 epochs
with an initial learning rate = 0.05 and, we follow a cosine
scheduling policy. We set the batch size to 256, and weight
decay is 4e−5. We report the single-center-crop validation
error of the final model.

4.2 Image Classification
Results on Efficient Architectures In this section, we
demonstrate the effectiveness of channel regeneration tech-
nique on efficient architectures such as MobileNetv2 (San-
dler et al. 2018), ShuffleNetv2 (Ma et al. 2018), Mnas-Net
(Tan et al. 2019), ResNets-18/34 (He et al. 2016), RegNet
(Radosavovic et al. 2020), Efficient-Net (Tan and Le 2019),
ResNext-50 (Xie et al. 2017). We adopt a ”plug and play”
approach in our experimental setup, where in we apply chan-
nel regeneration at regular intervals during training on these

RG Epoch (ERG)

Model w/o 5 10 15 20

MobileNetv2 41.87 46.40 45.92 45.31 45.53
ShuffleNetv2 44.50 47.62 46.50 47.94 47.65
Mnas-net 39.06 45.40 44.82 43.57 43.13
MobileNet3-small 33.34 40.10 39.10 40.22 37.97
EfficientNet-B0 42.10 45.46 46.04 46.16 44.48
RegNet 50.08 51.49 51.82 51.29 51.49

Table 4: Results on Tiny-ImageNet Dataset

RG Epoch
Model w/o 5 10 20

MobileNetv2 71.70 72.02 72.08 72.04
ShuffleNetv2 67.89 67.98 68.11 68.01
ResNet-50 75.58 75.86 75.61 75.60
ResNeXt-50 76.53 76.91 76.72 76.73

Table 5: Results on ImageNet

efficient architectures.
Results on CIFAR-10/100: Here, we train different in-
stances of a specific architecture, such as MobileNetv2, with
and without applying channel regeneration. The value of
ERG determines when we re-initialize channels with γmed

during training. We report the results of different architec-
tures in Table 3. We observe that the application of the chan-
nel regeneration technique offers a significant improvement
in the accuracy of all networks at different values of ERG.
The technique boosts the accuracy by over 2% at different
ERG values for MobileNetv2 and ShuffleNetv2 networks.
The result demonstrates that channel regeneration promotes
resource utilization by reinvigorating less influential chan-
nels and, thereby increasing model capacity. Moreover, we
show that our technique applies to diverse architectures by
achieving higher accuracy on ResNet-18/34 models than the
performance obtained without channel regeneration.

Results on Tiny-ImageNet: We report the results on the
Tiny-ImageNet dataset in Table 4. The accuracy of models
trained with the channel regeneration technique is signifi-
cantly higher than the baseline. This result emphasizes the
effective utilization of channels on several architectures by
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RG Epoch (ERG)

Dataset Model w/o 5 10

MobileNetv2 68.9 71.81 71.33
CIFAR-100 ShuffleNetv2 69.71 72.33 72.88

MobileNetv2 41.53 45.56 45.71
Tiny-ImageNet ShuffleNetv2 45.05 47.80 47.13

EfficientNet 43.20 46.61 46.31
ResNext-50 56.99 58.01 57.92

ImageNet MobileNetv2 71.00 71.38 71.41

Table 6: Results on Quantized Networks

our method when compared with the vanilla training proto-
col. The technique boosts the accuracy by at least 3% for
different ERG values on MobileNetv2, ShuffleNetv2 and
EfficientNet-B0. We outperform the baseline by over 5% on
Mnas-net and MobileNet3-small.
Results on ImageNet: We report the performance of Mo-
bileNetv2, ShuffleNetv2, ResNet-50 and ResNeXt-50 on
ImageNet dataset in Table 5. As shown in the table, train-
ing a model with the channel regeneration technique results
in better performance. In particular, network trained with
ERG = 5 records the best accuracy on ResNeXt model when
compared model trained without the technique. For all the
other architectures, we achieve the best performance when
the regeneration epoch is set to 10 epochs. This improve-
ment comes with no additional increase in model complexity
or FLOP computation, which further establishes the efficacy
of the technique.

Results on Quantized DNNs We assess the effectiveness
of the channel regeneration technique on quantized neural
networks. We adopt the mixed-precision approach for train-
ing these networks as this methodology is well-developed
and accessible on existing frameworks. We evaluate three
different architectures and report the results in Table 6. The
results show that training with channel regeneration raise
the accuracy of all quantized networks reported on three
different datasets. On CIFAR-100, we boost the accuracy by
2% and 3% on MobileNetv2 and ShuffleNetv2 respectively.
On some architectures, quantization has increased the
accuracy of models when compared with non-quantized
instances of architectures in Table 4 on TinyImage-Net.
Channel regeneration improves the final accuracy by 4%,
2% and 3% on MobileNetv2, ShuffleNetv2 and EfficientNet
respectively. On ImageNet, we increase the accuracy by
over 0.4% with respect to the baseline.

Results on Pruned Models Here, we evaluate the chan-
nel regeneration technique on pruned models. We use the
pruning methods described in NS (Liu et al. 2017), FPGM
(He et al. 2019) and EB (You et al. 2020) to prune an orig-
inal model to attain a pruned model. We integrate the chan-
nel regeneration technique on a pruned network during the
finetuning step of the pruning pipeline and report the results
in Table 7. We also provide the accuracy achieved without

RG Epoch (ERG)

Dataset Model Method BL 3 5

CIFAR-100 Res-56 FPGM 69.00 69.42 69.33

NS 66.28 66.57 66.53
ImageNet Res-18 EB 67.15 67.26 67.39

FPGM 66.11 66.38 66.35

Table 7: Results on Pruned Models

Backbone Baseline ERG=1 ERG=2

MobileNetv2 69.69 70.64 (0.95↑) 70.82 (1.13↑)
ResNet-18 56.06 58.12 (2.06↑) 56.89 (0.83↑)
ResNet-50 65.15 67.23 (2.08↑) 65.93 (0.78↑)

Table 8: Semantic segmentation results on ADE20K dataset

the integration of our technique in these methods (noted as
BL in Table 7). On CIFAR-100, we observe that channel re-
generation improves the accuracy attained with the FPGM
method by 0.42. Similarly, our technique improves upon the
accuracy attained by FPGM, NS, and EB on the ImageNet
dataset.

4.3 Results on Semantic Segmentation
In this section, we assess the generalization of our channel
regeneration technique on the semantic segmentation task.
Similar to our previous approach to efficient architectures,
we adopt a ”plug and play” methodology in our experimen-
tal setup, where we apply channel regeneration at regular in-
tervals during training. We follow the training and evaluation
protocols described in (Zhou et al. 2016). We evaluate three
different backbone architectures on the ADE20K dataset and
report the results in Table 8. Each backbone network is pre-
trained on ImageNet. We train all the models for 20 epochs
on the semantic segmentation task. The results show that our
proposed technique can consistently improve performance.
We report our results for for different values of ERG.

4.4 Comparing Channel Regeneration with
normalizing techniques

We compare our work with CE (Shao et al. 2020) and ITN
(Huang et al. 2019) and report the results in Table 1. For
our experiment, the baseline method implements the stan-
dard BN layer in the network. The methods CE and ITN are
not applicable for off-the-shelf popular DNN configurations
available on existing frameworks as these methods need to
be reimplemented. We run the experiment for MobileNetv2
architecture on CIFAR-100 on our own and compute the ac-
curacy. We report a higher accuracy with no increase in the
total training time(TT).

5 Analysis
Channel regeneration increases channel utilization. We
conduct experiments to demonstrate the efficacy of our tech-
nique by ablating channels and report on the network’s
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Method BL Acc Parameters TT
ITN 68.29 68.72 1x 5x
CE 68.29 68.86 1.2x 3x
Ours 68.29 71.90 1x 1x

Table 9: Comparison with normalizing techniques on Mo-
bileNetv2 on CIFAR-100 dataset [TT: Total Training Time]
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Figure 6: The graph plots the generalization accuracy against
the number of top-k channels ablated with and without chan-
nel regeneration. Channel regeneration reports gradual drop
in generalization accuracy and thus encouraging channels to
contribute more equally to the network output.

generalization accuracy. The generalization accuracy is the
classification accuracy reported on a held-out validation
dataset (Zhou et al. 2015). Here, we consider a middle con-
volutional layer of size 96 of a trained MobileNetv2 model.
First, we sort the channels from the convolutional layer ac-
cording to their BN γ values. Then, we ablate the top-K
channels by setting the weight and biases to 0, thus these
ablated channels will not contribute to the prediction of any
input image. We pass the images into the network and then
compute the generalization accuracy. Figure 6 plots the gen-
eralization accuracy against the number of top-k channels
ablated with and without channel regeneration. Under ideal
conditions, the drop in generalization accuracy should be
gradual as we increase the number of top-k channels ab-
lated. Without channel regeneration, we notice that the ac-
curacy drop is significant when we ablate any channels from
the top-20 channels. In contrast, the channel regeneration
achieves a gradual fall in accuracy. This indicates that our
technique encourages all channels to contribute equally and
be less reliant on a few selective channels.
Channel Regeneration improves average gradient statis-
tics. Figure 7 plots the average gradient update of channels
from the first layer of the MobileNetv2 network. Without
channel regeneration, we note that the gradient update for
several channels is zero for a large duration of training after
the initial epochs. From the left graph, we observe that a few

Figure 7: We show the average gradient statistics of all the
channels from the first layer of the Mobilenetv2 network
during training without and with channel regeneration (CR).
In the left graph, we observe several inhibited channels after
a few training epochs as their average gradient value drop to
zero. From the plot on the right, we note that more channels
receive regular gradient updates during training.

selective channels are chosen early to receive regular gra-
dient updates and continue to do so throughout the training
scheme. However, 50% of the channels receive no update,
which limits their contribution to the final learned repre-
sentation. The right graph plots the average gradient update
when we apply channel regeneration at ERG = 5 epoch. We
note that more channels get a regular update during training,
indicating that more channels would contribute to the net-
work output. The percentage of inhibited channels is only
10% of the layer channels. Channel regeneration enforces
the network to reduce the reliance on a few channels.

6 Conclusion
In this paper, we focus on revitalizing inhibited channels of
compact architectures. To this end, we propose the channel
regeneration technique that restores inhibited channels by
re-initializing its batch normalization scaling factor. Channel
regeneration increases model accuracy without increasing
the total parameters or altering the structure of standard lay-
ers. Furthermore, we show that our novel channel regener-
ation technique increases channel contribution by reducing
the reliance of a network on a few selective channels. Exper-
imental results show that our technique improves the classi-
fication accuracy of various lightweight networks, quantized
networks, and pruned models. Moreover, our channel regen-
eration exhibits good generalization ability in semantic seg-
mentation tasks. Channel regeneration is easy to implement
and can work with existing deep neural networks and hard-
ware accelerators.
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