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Abstract
Face reenactment and reconstruction benefit various applica-
tions in self-media, VR, etc. Recent face reenactment meth-
ods use 2D facial landmarks to implicitly retarget facial ex-
pressions and poses from driving videos to source images,
while they suffer from pose and expression preservation is-
sues for cross-identity scenarios, i.e., when the source and
the driving subjects are different. Current self-supervised face
reconstruction methods also demonstrate impressive results.
However, these methods do not handle large expressions well,
since their training data lacks samples of large expressions,
and 2D facial attributes are inaccurate on such samples. To
mitigate the above problems, we propose to explore the in-
ner connection between the two tasks, i.e., using face re-
construction to provide sufficient 3D information for reen-
actment, and synthesizing videos paired with captured face
model parameters through face reenactment to enhance the
expression module of face reconstruction. In particular, we
propose a novel cascade framework named JR2Net for Joint
Face Reconstruction and Reenactment, which begins with the
training of a coarse reconstruction network, followed by a
3D-aware face reenactment network based on the coarse re-
construction results. In the end, we train an expression track-
ing network based on our synthesized videos composed by
image-face model parameter pairs. Such an expression track-
ing network can further enhance the coarse face reconstruc-
tion. Extensive experiments show that our JR2Net outper-
forms the state-of-the-art methods on several face reconstruc-
tion and reenactment benchmarks.

Introduction
Face reenactment is the task of transferring the expressions
and poses from driving video frames to a source image. Re-
cent face reenactment methods usually adopt a deep gen-
erative approach (e.g., Conditional Generative Adversarial
Networks (CGANs)), which is driven by either 2D facial
landmarks (Siarohin et al. 2019; Zhang et al. 2020; Ha et al.
2020; Zakharov et al. 2019, 2020; Burkov et al. 2020; Wu
et al. 2018; Pumarola et al. 2018) or 3D face models (Kim
et al. 2018; Yao et al. 2020; Thies et al. 2016). Such methods
leverage facial landmark motion, rendered 3D Morphable
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Figure 1: Left: Our reenactment pipeline (DCNet) achieves
better pose and expression on the cross-identity setting than
FOM (Siarohin et al. 2019). Right: Our final face recon-
struction procedure (RecAugNet) reconstructs the facial ex-
pression in an input image more faithfully than our coarse
method (RecNet), MGCNet (Shang et al. 2020) and DECA
(Feng et al. 2021).

Models (Paysan et al. 2009; Cao et al. 2013; Li et al. 2017;
Ploumpis et al. 2020; Tewari et al. 2021; Mo et al. 2022;
Zeng et al. 2020; Ha et al. 2020) (3DMMs) or optical flow as
guidance for their generation modules. However, such rep-
resentations are insufficient to preserve the expression, pose,
and illumination of driving frames since they do not formu-
late the expression and pose individually, as illustrated in
Figure 1 (see the results by FOM (Siarohin et al. 2019)). Be-
sides, the entanglement of face shape, expression, and pose
also limit the accuracy of face reenactment.

During the construction of face reenactment, face recon-
struction methods are employed to recover 3D facial geom-
etry and appearance from a monocular image (Feng et al.
2021; Shang et al. 2020; Deng et al. 2019; Tewari et al.
2019, 2018; Tran and Liu 2018; Tewari et al. 2017) or video
frames (Wu et al. 2019; Tewari et al. 2019). In this task,
3DMMs are commonly used as a solid face prior and a lin-
ear expression basis parameterized by shape and expres-
sion coefficients. To benefit from the 3DMMs, the above
self-supervised face reconstruction methods have been pro-
posed to regress 3DMM coefficients by minimizing 2D-
based losses, e.g., landmark and rendering losses. However,
such 2D-based losses suffer from depth ambiguity and the
entangling of face shape and expression. Large expression
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Figure 2: The pipeline of our method. We first reconstruct 3DMM shape and expression coefficients, poses, and SH coefficients
as 3D results from a source image Is and a driving video {Iid} by our RecNet. Such results are used to train our DCNet.
Furthermore, we use the expression coefficients βm from animators as input to DCNet. Then, we synthesize image-expression
coefficient pairs {Iigen, βi

m} , and use them to train ETNet. Finally, we utilize the trained ETNet to enhance our RecNet to get
RecAugNet.

cases are significantly affected (see the results by RecNet,
MGCNet (Shang et al. 2020), and DECA (Feng et al. 2021)
in Figure 1), since the detected facial landmarks are usually
inaccurate on such cases and the proportion of large expres-
sion samples in the training dataset is small.

To alleviate these problems, we explore the inner connec-
tion between face reconstruction and reenactment to tackle
both tasks together in a unified system. Hence, we pro-
pose a novel cascade framework named JR2Net for Joint
Face Reconstruction and Reenactment, which uses face re-
construction to provide sufficient 3D information for reen-
actment, and synthesizes videos paired with captured face
model parameters through face reenactment to enhance the
expression module of face reconstruction.

Firstly, we train a monocular face Reconstruction Net-
work called RecNet as a coarse reconstruction network fol-
lowing (Deng et al. 2019; Shang et al. 2020) (Figure 2). To
provide more robust guidance/conditions for face reenact-
ment, we reconstruct 3DMM coefficients, face poses and
Spherical Harmonics (SH) coefficients for the source im-
age and each frame of a driving video. Different from previ-
ous methods, we recombine and render these reconstruction
results to normal maps, light maps, masks, and image fea-
tures, since such dense pixel-level representations about face
shape, texture, pose, and illumination provide more detailed
and specific conditions for the face reenactment. In particu-
lar, we propose a view synthesis module to warp images/im-
age features from source image space to driving frame space,
making such pixel-level conditions aligned with driving face
pose. According to such dense conditions, our 3D-aware
face reenactment network is called Dense Conditional face
reenactment Network (DCNet) (Figure 2-I).

Secondly, we use 3DMM expression parameters captured
from 3D animators to guide the reenactment results. In this
way, the synthesized video frames are paired with 3DMM
expression coefficients; hence, we can use these pairs as the
training data to train an Expression Tracking Network (ET-
Net) (Figure 2-II). Finally, we use such an ETNet to replace
the facial expression module of our RecNet, which upgrades

the RecNet to RecAugNet. In this way, we use face recon-
struction results to push the improvement of face reenact-
ment, and use reenactment results in turn to enhance our
coarse reconstruction method on the facial expression.

In summary, our contributions are as follows: Firstly, we
explore the inner connection of monocular 3D face recon-
struction and face reenactment and propose a novel cas-
cade training pipeline. Secondly, we build a face reenact-
ment network DCNet, which benefits from dense pixel-
level conditions. Thirdly, our RecAugNet upgrades cur-
rent face reconstruction methods on facial expression (Fig-
ure 1-RecAugNet). Finally, our pipeline JR2Net shows ob-
vious improvements over the state-of-the-art methods on
several face reconstruction benchmarks (Cao et al. 2013;
Phillips et al. 2005) and the challenging face reenactment
datasets (Chung, Nagrani, and Zisserman 2018).

Related Work
Face Reconstruction
Various real-time self-supervised face reconstruction solu-
tions have been proposed (Feng et al. 2021; Shang et al.
2020; Deng et al. 2019; Tewari et al. 2018; Tran and Liu
2018; Tewari et al. 2017; Wang et al. 2022; Daněček, Black,
and Bolkart 2022). While they achieve impressive results,
they often do not perform well in large expression cases
(e.g., mouth pucker). One reason is that these methods suf-
fer from the geometry ambiguity problem, since they rely
only on the supervision of 2D attributes, e.g., landmark er-
ror (between the 2D landmarks projected from the predicted
3DMMs and the ground-truth 2D landmarks). Another rea-
son is that the ratio of large expression images in training
data is often low. To tackle this issue, Wang et al. (2022)
propose an emotion refinement operation. The approach of
(Daněček, Black, and Bolkart 2022) leverages expression
features to supervise a self-supervised face reconstruction
pipeline. Although the above two mentioned methods im-
prove expression results, they still fail on large expression
cases, since their training data mostly contain neutral ex-
pressions only. Hence, our cascade training pipeline JR2Net
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leverages image-expression coefficient pairs from DCNet to
provide solid expression supervision and enough train sam-
ples to facilitate the face reconstruction training strategy
while preserving the robustness of the self-supervised train-
ing strategy.

Face Reenactment
Recent face reenactment methods (Pumarola et al. 2018;
Siarohin et al. 2019; Hsu, Tsai, and Wu 2022; Peng et al.
2021; Wang, Mallya, and Liu 2021) usually leverage 2D fa-
cial landmarks or boundaries to represent transformations
from source to driving. For example, Ganimation (Pumarola
et al. 2018) introduces a GAN conditioning scheme based
on Action Units (AUs) annotations to generate reenacted
face images driven by predicted AUs of driving faces. FOM
(Siarohin et al. 2019) feeds a source image and a frame of
a driving video to a keypoint detector learned in an unsu-
pervised manner to predict sparse keypoints and local trans-
formations, and another dense motion network accepts these
intermediate representations and outputs optical flow fields
to generate reenacted images. Since such methods lever-
age facial landmarks to construct transformations from the
source image and driving frames to reenacted images im-
plicitly, they do not formulate the shape and expression of
source and driving faces individually. Hence, these methods
suffer from the cross-identity problem since the relationship
learned from the same person cases is difficult to adapt to
different person cases.

As same as facial landmarks, several works (Thies et al.
2016; Kim et al. 2018; Yao et al. 2020; Masi et al. 2019;
Nirkin, Keller, and Hassner 2019) have resorted to predict-
ing 3DMMs for source image and driving frames and re-
combining them. For example, Thies et al. (2016) propose
an online reenactment setup. It estimates the 3DMM pa-
rameters of input faces by optimizing facial landmarks and
photo-consistency losses, and re-renders the final faces with
a mouth region retrieved from the driving face sequences.
Kim et al. (2018) regress 3DMM coefficients for the source
image and driving frames, and render the corporation of
them as the conditional input to a rendering-to-video transla-
tion network. However, their simple conditions cannot pre-
serve the source identity and texture detail.

Our JR2Net system also leverages 3DMMs as a bridge
but differs from (Kim et al. 2018; Thies et al. 2016), which
only provide driving view rendering images or re-renders as
the guidance. We argue that our conditional input of warped
image features, normal maps, and light maps plays an im-
portant role in neural synthesis, since such guidance forms
essential parts of the physical rendering pipeline. In addi-
tion, in order to obtain a one-shot face reenactment module,
the source image’s information is very important. Hence, we
design a view synthesis module (Zhou et al. 2017) to warp
the guidance from the source image to the driving image to
make the multi-modal conditional input pixel-aligned with
generated images (Chen et al. 2019).

Methodology
As illustrated in Figure 2, we present a novel cascade system
for joint reconstruction and reenactment. In the following

sections, we first introduce the face, camera, and light mod-
els. Then we propose the face reconstruction, reenactment,
and expression tracking networks respectively.

Model
Face Model. We use the 3D Morphable Model (3DMM)
proposed by (Paysan et al. 2009) as face shape prior. In pur-
suit of a controllable expression, we apply Blendshape from
Polywink as our expression basis, which is manually pro-
cessed to the same topology as (Paysan et al. 2009). Specif-
ically, the 3DMM encodes both face shape and texture as

v = ŝ+ bid · α+ bexp · β, c = ĉ+ bc · γ, (1)

where ŝ and ĉ denote the mean shape and the mean albedo,
respectively. bid, bexp, and bc are the PCA basis of identity,
expression, and albedo, respectively. α ∈ R80, β ∈ R51,
and γ ∈ R64 correspond to the 3DMM coefficients to be
estimated.
Camera Model. We employ the pinhole camera model to
define the projected 2D vertex as vproj = K · (R · v + t),
where the face pose is represented by an Euler angle rotation
R ∈ SO(3) and translation t ∈ R3, and the K is the intrinsic
matrix.
Illumination Model. To acquire realistically rendered face
images, we model the scene illumination by Spherical Har-
monics (SH) (Ramamoorthi and Hanrahan 2001a,b) as
SH(Nl, c|θb) = c ∗

∑B2

b=1 θbHb, where Nl is the vertex
normal of a face mesh, and θb ∈ R27 is the coefficient.
Hb : R3 → R are SH basis functions and B2 = 9 (B =
3 is the number of bands) parameterizes the colored illumi-
nation in red, green and blue channels.

Face Reconstruction
As the beginning of our JR2Net, our coarse RecNet is
trained in a self-supervised manner following (Shang et al.
2020; Deng et al. 2019). RecNet regresses the 3DMM co-
efficients, camera poses, and SH coefficients given an RGB
image. We use the ResNet-50 network (He et al. 2016) as the
backbone of our RecNet to regress the above coefficients.
Then we calculate the projected 2D landmarks and rendered
images from the above parameters and utilize several loss
functions as previous methods (Shang et al. 2020; Deng et al.
2019), e.g., the render loss Lrender, landmark loss LK , iden-
tity loss Lid, and regularization loss Lreg . Detailed losses
can be found in the suppl. material.

Face Reenactment
Our face reenactment module consists of RecNet and DC-
Net. Given a source image Is, the corresponding normal map
Ns and light image Ls from RecNet are provided to DC-
Net, and we do the same for driving video frames {Id}. DC-
Net aims to synthesize an output image Igen with the same
texture as the source image and the same pose and expres-
sion as the driving frames. Figure 3 shows the architecture
of our DCNet. It consists of a face texture encoder, a context
encoder, and a conditional generator. We briefly introduce
each module as follows.
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Figure 3: The training pipeline of DCNet. We first recon-
struct 3DMM shape and expression coefficients α, β, 6-DoF
poses p, and SH coefficients θ as 3D results from the source
image Is and driving video {Iid} by our RecNet. To build
the generator input, we input the source image to the context
encoder, and input the source image, light map, and normal
map to the texture encoder. The features from the encoders
are then put into the generator as input. For the condition
input, we recombine the source and driving reconstruction
results and render them as the light and normal maps. Then
we use view synthesis to warp the source image and mask to
the driving view. Finally, we fuse these intermediate results
together as the condition input.

Encoders. Our DCNet has two parallel encoders: a face tex-
ture encoder and a context encoder. The face texture en-
coder takes the source image, the corresponding light im-
age and the normal map as input, aiming to remove the il-
lumination effect from the source image and learn a pure
texture representation. We design a view synthesis module
to warp the face region of the texture feature to the driving
frame It using the dense correspondence obtained between
the source and driving reconstruction results. The primary
step is to build the pixel correspondences between source-
driving pairs (Is, It). Given a pixel coordinate pt in It, we
compute the pixel value ps by bilinear-sampling (Jaderberg
et al. 2015):

ps ∼ Ks[P
rel
t→s]Dt(pt)K

−1
t pt, (2)

where ∼ represents the equality in the homogeneous coor-
dinates; Ks and Kt are the intrinsic matrices of the source
and driving poses, respectively; Prel

t→s is the projection ma-
trix from the target view to the source view; Dt is the ren-
dered depth map of the target view; Dt(pt) is the depth for
this particular pixel pt in Dt. The non-face region of the
feature maps is set to zero. In this way, the warped texture
features are encoded with the driving geometry, and thus it
is pixel-aligned with driving frames, thus greatly benefiting
the subsequent synthesis task.

The context encoder takes a source image as input and
aims to encode the global context of the input image. We use
dilated convolution layers and more down sampling opera-
tions to enlarge the receptive field. We upsample the context
features using interpolation and concatenate them with the
warped texture features. The output of the context encoder

is used as the input of the generation network as shown in
Figure 3.
Conditional Generator. Although our encoders provide
features containing geometry and texture information, there
are still two issues: (1) by compressing the source image into
more compact texture features, some detailed information is
lost; (2) a source image often does not contain the full tex-
ture of the face, i.e., there are some invisible areas under the
source pose and expression.

Hence, on the one hand, to compensate for the missing
detail information, we carefully design our conditional input
for the generator: we warp the source image to the driving
view by the view synthesis module as Equation 2. On the
other hand, to help the generator better hallucinate the miss-
ing information caused by view differences, we introduce a
co-visible mask C, which encodes the validity of elements
in the warped images. It is a map of the same size as the
input image, with each element Cij = 1 indicating the cor-
responding pixel in the driving view is visible in the source
view and Cij = 0, otherwise. In order to explicitly high-
light the illumination of the driving frame, we concatenate
the co-visible mask and the warped source image with the
light and normal maps whose 3D geometry is composed by
the 3D reconstruction results of the source image and driv-
ing frame. This concatenation is the conditional input of the
generator. Inspired by the recent advance of deep genera-
tive models (Park et al. 2019; Karras et al. 2020; Karras,
Laine, and Aila 2019), we transform the conditional input
into modulation parameters that are multiplied and added to
the normalized activation element-wise at each scale of the
generator.
Losses. In order to generate reasonable face images, we ap-
ply the L1 loss between the generated image and the ground-
truth image (driving image).

L1 = |Igen − It|. (3)

We also use the perceptual loss, which calculates the L1

distance between activation maps of the pre-trained VGG-19
network Θ, which can be written as:

Lvgg = |Θ(Igen)−Θ(It)|. (4)

We use the adversarial loss to encourage the generator to
synthesize visually realistic results:

Ladv = ReLU[1−D(Igen)], (5)

where D represents the PatchGAN (Isola et al. 2017) dis-
criminator. The loss for the discriminator is as follows,

LD = ReLU(1−D(It)) + ReLU(1 +D(Igen)). (6)

Expression Tracking
In this section, we aim to improve the expression module of
RecNet, since RecNet fails to reconstruct large expressions.
Our key idea is to generate image-3DMM expression coef-
ficient pairs by our DGNet as training data for expression
prediction. Then we propose the training procedure of our
ETNet and a baseline, which represents a training strategy
used in our initial experiments.
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Expression-specific Image Generation. We generate
image-3DMM expression coefficient pairs by our DCNet. In
particular, the input to DCNet is different from face reenact-
ment, since the source image and its reconstruction results
are as the same as ones in face reenactment. For the driv-
ing frames, we replace the shape, pose, and illumination in
the driving frame reconstruction results by the source image
ones. In this way, we can generate large expression images
without changing the shape, pose, and illumination of the
source image, thus decreasing the artifacts of cGAN.

The 3DMM expression coefficients of the driving frames
are captured by our 3D animators, i.e., Facial Motion Cap-
ture , as shown in Figure 2-II. In this way, we synthesize the
images from the source image with only different expres-
sions.

Tracking Network. Given image-3DMM expression coef-
ficient pairs, we train an expression tracking network (ET-
Net). In detail, firstly, our ETNet predicts expression co-
efficients from a ResNet34 (He et al. 2016), and the co-
efficients are supervised by an activation loss as Lexp =
max(β, βgt) ∗ (β − βgt), where βgt is the ground-truth ex-
pression coefficients. Since the L1 loss is difficult to balance
the variance of each dimension of expression coefficients,
we apply the activated loss. Then, we use the ETNet to re-
place the expression predictor in RecNet, and call the up-
graded face reconstruction method as RecAugNet.

Baseline. Given image-3DMM expression coefficient pairs,
there is another direction to improve the face reconstruction,
i.e., upgrading the self-supervised training strategy of Rec-
Net to semi-supervised training. In detail, we add the above
pairs to the training data of RecNet, and add the expres-
sion loss on such pairs with the original losses; hence, such
pairs can provide expression coefficients supervision, which
may mitigate the entanglement of face shape and expres-
sion. However, through our initial experiments, we found
that the ground-truth expression coefficients would conflict
with the inaccurate facial landmark ground-truth, leading
to even worse results than RecNet (please see the ablation
study).

FOM Ganimation BilayerDriving frameSource image Ours

Figure 4: Qualitative comparisons of different methods on
the Voxceleb2 dataset (Chung, Nagrani, and Zisserman
2018) under different person reenactment.

Experiment
Implementation Details
Training Data. To train our RecNet, we combine multiple
datasets, including 300W-LP (Zhu et al. 2016), CelebA (Liu
et al. 2015), LS3D (Bulat and Tzimiropoulos 2017), and
Voxelceleb2 (Chung, Nagrani, and Zisserman 2018), which
provide diversified illumination and background for train-
ing. We use Voxelceleb2 (Chung, Nagrani, and Zisserman
2018) to train DCNet, and pick source images from this
dataset to generate the 3DMM-images pairs. Detailed net-
work construction and data processing can be found in the
suppl. material.

Method EFL ↓ FID ↓
Bilayer 2.88 55.10
FOM 17.29 41.48

GANimation 10.89 47.36
Ours 2.50 37.45

Table 1: Quantitative results on the Voxceleb2 dataset with
cross-identity reenactment.

Method L1 ↓ PSNR ↑ SSIM ↑ FID ↓
Bilayer 0.1486 13.32 0.543 67.20
FOM 0.0604 21.28 0.713 19.57

GANimation 0.0999 17.02 0.512 24.89
Dual-G 0.1123 18.82 0.573 43.38

Ours 0.0418 23.01 0.7798 19.25

Table 2: Quantitative results on the Voxceleb2 dataset with
same-identity reenactment.

Evaluation Datasets and Metrics
FaceWarehouse. To better evaluate the improvement
brought by the expression enhancement, we use FaceWare-
house as the evaluation dataset. FaceWarehouse (Cao et al.
2013) is a dataset containing 20 different expressions for
150 persons. To fairly compare with the existing methods,
we crop ground-truth meshes to 85 mm around the nose tip.
For the alignment, we first apply similarity transformation
from the ground-truth mesh to the predicted mesh through
3D landmarks, and then use the iterative closest point (ICP)
algorithm (Besl and McKay 1992) to achieve fine rigid
alignment. We adopt the following evaluation metrics with
the unit being mm: point-to-plane root-mean-square error
(RMSE), the standard deviation (STD) of RMSE, the me-
dian of RMSE, and the largest 80% of RMSE.
FRGC v2.0. We crop each ground-truth mesh to 95mm
around the nose tip for proper alignment with all the com-
pared methods. The alignment method used here is the same
as that for processing the FaceWarehouse dataset. Further-
more, we adopt mean average error (MAE) following (Chen
et al. 2020) and the STD of MAE as the evaluation metrics.
VoxCeleb2. VoxCeleb2 (Chung, Nagrani, and Zisserman
2018) is a face dataset that contains 1M videos of different
celebrities. We follow the training and test split strategies
proposed in their paper. We evaluate the face reenactment
under two conditions: same-identity reenactment, where the
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FOM Ganimation BilayerDriving frameSource image Ours

Figure 5: Qualitative comparisons on the Voxceleb2
dataset (Chung, Nagrani, and Zisserman 2018) under same-
identity reenactment.

driving and source images are of the same persons, and
cross-identity reenactment, where the driving and source im-
ages are of different persons.
Cross-identity Evaluation. For same-identity reenactment,
the driving frames can be seen as the ground-truth, and
thus the performance can be evaluated by directly measur-
ing errors like L1 error, PSNR, and SSIM. However, since
there is no ground-truth available for cross-identity reen-
actment, we resort to indirect evaluation. We measure the
RMSE of Facial Landmarks (EFL) of generated and driv-
ing images to reflect the difference between the transferred
pose/expression and ones from driving frames. As face reen-
actment should retain the identity of the source image, we
measure the cosine similarity between the face embedding
of the reenactment results and the source images by FID
scores (Obukhov and Krasnyanskiy 2020)

Comparison with State-of-the-art Methods
We compare the face reenactment results of our approach
with those by three state-of-the-art methods, including FOM
(Siarohin et al. 2019), Bilayer (Zakharov et al. 2020), GAN-
imation (Pumarola et al. 2018), and Dual-G (Hsu, Tsai, and
Wu 2022).
Cross-identity Reenactment. Figure 4 shows the results for
cross-identity reenactment. Benefiting from using 3D recon-
struction results as the input and conditional input for the
generator, our DCNet can transfer the poses and expressions
of the driving frames while keeping the subject’s identity in
each source image. As seen in the first and second rows of
Figure 4, our method can transfer the target motion accu-
rately. In comparison, limited by using the facial landmarks
as the representation of facial motion, FOM and Ganima-
tion fail to reenact pose and expression when there is a large
difference between the source and target poses/expressions
and they end up copying the source images, as shown in the
first and second rows of Figure 4. The third row of Figure
4 shows that our method preserves the white beard and the
identity of the source face, and extracts the evil smile from

the driving image, but Bilayer’s result cannot retain the char-
acteristics and identity of the source image.

Table 1 reports the quantitative results with cross-identity
reenactment. Our results gain the lowest FID and EFL, since
our DCNet benefits significantly from face reconstruction
results and the dense pixel-level conditions, and avoids the
entanglement of face shape and expression.
Same-identity Reenactment. Figure 5 shows the results for
same-identity reenactment. As seen in the first and the sec-
ond rows, our method generates more realistic images while
still preserving the original identity, face detail, and vivid
expression thanks to our disentangled guidance. In the third
row, our method preserves the face details (forehead wrin-
kles) as part of the face identity, while other methods gen-
erate blurry or distorted results. As shown in the fourth row,
previous approaches rarely consider the illumination change
caused by the head pose variation, and thus fail to gener-
ate visually realistic results. In contrast, based on the dense
pixel-level conditions, our method can extract the right light
from the driving images, generate more realistic images with
better face texture and more reasonable light (e.g., shadow
under the hat and highlight on the nose).

Table 2 reports the quantitative results with the same-
identity reenactment. It can be seen that our method out-
performs the competing methods on all metrics. In contrast,
the artifacts of Ganimation and the missing texture details of
Bilayer lead to large errors.

PRN MGCNet DECA3DDFAInput Ours

Figure 6: Qualitative comparisons of face reconstruction on
the in-the-wild dataset. We overlay each result of the com-
pared methods on the input image.

Method MAE ↓ STD ↓
3DDFA 2.32 0.75
PRNet 2.35 0.67

MGCNet 1.94 0.67
DECA 1.93 0.59
MICA 2.12 0.61
Ours 1.85 0.56

Table 3: Quantitative reconstruction results on the FRGC
v2.0 dataset.

Face Reconstruction. We compare our method with the
state-of-the-art methods, including 3DDFA (Zhu et al.
2016), PRNet (Feng et al. 2018), MGCNet (Shang et al.
2020), DECA (Feng et al. 2021). We evaluate the qualita-

2205



tive results of the compared methods on the AFLW20003D
(Zhu et al. 2016) dataset, as shown in Figure 6. Our pre-
dicted 3DMM coefficients produce more vivid expressions
than the other methods, e.g., the closed eyes in the first row
and the open mouth in the second row. Besides, since our
RecAugNet/ETNet benefits from the ground-truth expres-
sion coefficients, our method does only rely on the accuracy
of facial landmarks, and thus it achieves more expressive po-
tentials than the other methods.

On the FRGC v2.0 dataset, Table 3 shows that our method
outperforms the state-of-the-art methods. Our RecAugNet
achieves higher fidelity and more robust variance, due to
the combined advantages of unsupervised learning and ex-
pression coefficients supervision. On the FaceWarehouse
dataset, as shown in Table 4, our RecAugNet also gains the
best performance. It indicates that compared with the other
methods or even RecNet, the paired training dataset gener-
ated from the face reenactment module can mitigate depth
ambiguity and achieve better results.

Method RMSE ↓ STD ↓ Med ↓ 80% ↓ Time
3DDFA 2.24 0.44 2.22 2.60 4ms
PRNet 2.48 0.44 2.46 2.85 4ms

MGCNet 1.97 0.39 1.96 2.27 20ms
DECA 1.90 0.36 1.86 2.18 20ms
RecNet 1.90 0.40 1.85 2.24 20ms
Baseline 1.98 0.42 1.97 2.35 20ms

RecCopyNet 1.89 0.34 1.73 2.04 20ms
RecDataNet 1.92 0.35 1.74 2.14 20ms
RecAugNet 1.78 0.35 1.74 2.08 20ms

Table 4: Quantitative reconstruction results on the Face-
Warehouse dataset.

Method L1 ↓ PSNR ↑ SSIM ↑
Ours-R 0.044 22.31 0.772
Ours-P 0.045 22.38 0.773
Ours-L 0.048 22.11 0.761
Ours 0.042 23.01 0.779

Table 5: Quantitative results on the Voxceleb2 dataset with
same-identity.

Ablation Study
Reenactment. (1) Dense pixel-level conditions: Previous
studies (Yao et al. 2020; Kim et al. 2018) have explored
3DMM-based face reenactment by using rendered face im-
ages as conditional input (Kim et al. 2018). We argue that
our dense pixel-level conditions are more effective since
they explain the image generation process and provide more
flexibility to the generator network. To demonstrate the ad-
vantage of the dense pixel-level conditions, we compare the
CGANs conditioned by rendered images (Ours-R) and our
dense pixel-level conditions (Ours-P) in Table 5. It can be
seen that the model with dense pixel-level conditions yields
better quantitative results. As discussed in the previous sec-
tions, the change of illumination conditions in which face
pose and expression variation affect is also an important fac-
tor, which is rarely considered by previous approaches. We
present the quantitative evaluation results of the model with

and without light control (Ours-L) in Table 5. We can see
that removing light control leads to significantly worse re-
sults. (2) Image warping: the last row of Table 5 reports our
final results with both dense pixel-level conditions and the
warped image as the conditional input. By comparing the
second and the last rows of Table 5, we can see that includ-
ing warped images can further improve the results.

RecAugNetRecNetInput RecAugNetRecNetInput

Figure 7: Qualitative comparisons for the ablation study of
face reconstruction on the FaceWarehouse dataset.

Face Reconstruction. (1) RecAugNet: As shown in Fig-
ure 7, we show the improvement gains by the RecAugNet
qualitatively over RecNet. Furthermore, from Figure 8, the
expression (left eye) is not accurate on the expression part
but on the identity part, while our RecAugNet outputs the
correct expression part and achieves better final results. (2)
Baseline: We add the image-3DMM expression coefficient
pairs and activation expression loss to the RecNet directly
and train it under a semi-supervised strategy, but the best re-
sult of this baseline is even worse than the original RecNet,
shown as “Baseline” in Table 4. (3) RecCopyNet: To elimi-
nate the improvement from the ETNet itself, we evaluate the
performance of “RecCopyNet” in Table 4, which is trained
as the same as RecAugNet but uses an empty ‘ETNet’ to pre-
dict expressions. (4) RecDataNet: To eliminate the improve-
ment of the ETNet training data itself, we add this data to the
training data of RecNet to train “RecDataNet”. As shown in
Table 4, such data does not directly improve the RecNet,
since the landmark detector almost fails at reenacted large
expression images, thus affecting the training procedure.

  

RecNetRecAugNet

Input image ExpressionIdentity Overlay ExpressionIdentity Overlay

Figure 8: Visualization of the face shape and expression dis-
entangling.

Conclusion
We have presented a novel framework for joint face recon-
struction and face reenactment. Our key insight is to explore
the inner connection between the two tasks, and we find that
these two tasks can benefit each other. We show that using
our RecNet to provide dense pixel-level conditions improves
the face reenactment performance. Then, the DCNet pays
back by providing paired 3DMMs-images training data to
train the ETNet, which further enhances the expression mod-
ule of RecNet to get RecAugNet. Hence, our JR2Net can
handle large expressions and disentangle face shape and ex-
pression for face reconstruction.
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