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Abstract

Domain generalisation (i.e. out-of-distribution generalisation)
is an open problem in machine learning, where the goal is
to train a model via one or more source domains, that will
generalise well to unknown target domains. While the topic
is attracting increasing interest, it has not been studied in
detail in the context of object detection. The established ap-
proaches all operate under the covariate shift assumption,
where the conditional distributions are assumed to be ap-
proximately equal across source domains. This is the first
paper to address domain generalisation in the context of object
detection, with a rigorous mathematical analysis of domain
shift, without the covariate shift assumption. We focus on
improving the generalisation ability of object detection by
proposing new regularisation terms to address the domain
shift that arises due to both classification and bounding box
regression. Also, we include an additional consistency reg-
ularisation term to align the local and global level predic-
tions. The proposed approach is implemented as a Domain
Generalised Faster R-CNN and evaluated using four object
detection datasets which provide domain metadata (GWHD,
Cityscapes, BDD100K, Sim10K) where it exhibits a consis-
tent performance improvement over the baselines. All the
codes for replicating the results in this paper can be found at
https://github.com/karthikiitm87/domain-generalisation.git

Introduction
Object detection is the task of identifying and localising all
instances of a certain object in an image. Benchmark per-
formances have increased significantly using deep learning
approaches (Jocher et al. 2020; Tan, Pang, and Le 2020; Liu
et al. 2016; Ren et al. 2015; Lin et al. 2017; Dai et al. 2016;
Lin et al. 2014). Factors such as viewpoint, background,
weather, and image quality increase the variations in object
appearance (autonomous farming and driving examples in
Fig. 1). The resulting distribution discrepancy between train-
ing and testing data is called domain shift and degrades model
performance at deployment (Recht et al. 2019; Hendrycks
and Dietterich 2019).

Although increasing the amount and diversity of training
data can can alleviate the impact of domain shift in theory,
image annotation remains an expensive and time consuming
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Figure 1: Samples from various training and testing domains
in the Global Wheat Head Detection (GWHD) (a)-(e) and
Cityscapes (f)-(h) datasets used in our experiments.

task, and there can be no guarantee that all deployment sce-
narios will be adequately represented. Domain generalisation
(DG) aims to learn a single, unchanging set of parameters
which are able to perform well on previously unseen domains.
This is achieved by training jointly on several domains and
ensuring that the domain-specific information is suppressed.
Unlike domain adaptation (DA)(Chen et al. 2018; Cai et al.
2021; Saito et al. 2019; Xu et al. 2020a; Li et al. 2020; Hsu
et al. 2020b; Li, Liu, and Yuan 2022; Hsu et al. 2020a; Reza-
eianaran et al. 2021; Wang et al. 2021), DG is useful when
the system needs to be deployed in an unknown setting, as
it addresses domain shift without requiring any additional
training data from the target domain, which often cannot be
obtained in advance even without annotations. In DA, param-
eters of a trained model are adapted by exploiting unlabelled
data from the target domain(s), however, in practice target
domain data is often sparse and unavailable. Despite this,
recent surveys of domain shift (Zhou et al. 2021; Koh et al.
2021) show that DA is still the more common approach for
addressing domain shift in object detection, with very little
work on DG for object detection (Liu, Song, and Ding 2020a;
Lin et al. 2021).

Furthermore, this is the first paper to systematically anal-
yse domain shift for object detection without assuming the
covariate shift case. While the assumption that the condi-
tional distributions are approximately equal was disputed
and addressed in classification (Zhao et al. 2020), techniques
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which improve classification do not directly translate to im-
provements on more complex tasks such as object detection.
We apply this analysis to Faster R-CNN (Ren et al. 2015),
a representative two-stage detector, to propose a Domain
Generalised Faster R-CNN (DGFR-CNN). This is achieved
using a novel loss to assists in aligning both the class and
bounding box conditionals (concept shift), which we show
to be a necessary criteria to bridge the domain shift across
multiple source domains.

Experimental validation has been conducted on four
datasets: Sim10K (Johnson-Roberson et al. 2017),
Cityscapes (Cordts et al. 2016), BDD100K (Yu et al. 2020),
and GWHD (David et al. 2021). GWHD is the only object
detection dataset among a number of established and newly
proposed DG benchmarks (Fang, Xu, and Rockmore 2013;
Koh et al. 2021; Zhou et al. 2021; Saenko et al. 2010;
Torralba and Efros 2011), concerning single-object detection
across multiple target domains. Both multi-object and
single-object detection scenarios are evaluated using the
autonomous driving datasets. In addition to evaluating the
the DGFR-CNN under a variety of domain shifts (Fig. 1), we
also evaluate the reduced version of the proposed architecture
under the DA setting (where the class conditional alignment
is not performed as this information is unavailable during the
DA re-training step).

Related Works
The proposed system builds upon work in object detection,
domain adaptation and domain generalisation. Object de-
tection. Classical approaches to object detection relied on
handcrafted features and formulated object detection as a slid-
ing window classification problem (Dalal and Triggs 2005;
Felzenszwalb et al. 2009; Viola and Jones 2001). The em-
pirical success of convolutional neural networks (CNNs) –
which automatically extract high performing features – (Le-
Cun et al. 1998; Krizhevsky, Sutskever, and Hinton 2012)
has resulted in their widespread adoption. Most CNN-based
approaches to object detection can be categorised as either
single-stage or two-stage. Single-stage approaches perform
localisation and classification simultaneously (Redmon et al.
2016) and have only recently reached the performance of two-
stage approaches (Jocher et al. 2020). Two-stage approaches
developed from the Region-based CNN (R-CNN) family,
and are characterised by a network trained to classify region
proposals selected from the image. Region proposals were
initially selected by a static approach and processed inde-
pendently (Girshick et al. 2014). R-CNN was then extended
to use a shared feature map for the region proposals from
the same image (Girshick 2015). Faster R-CNN (Ren et al.
2015) additionally introduced a Region Proposal Network
(RPN), producing object proposals as well as the feature maps
used for region classification, thus resulting in an end-to-end
trainable system. However, all of these architectures and a
number of follow-up works (Liu et al. 2016; Dai et al. 2016;
Lin et al. 2017) operate under the assumption that the testing
data originates from the same domain and distribution as the
training data and their performance consequently degrades
on out-of-domain (OOD) data.

Domain adaptation. (Chen et al. 2018) proposed an ap-
proach to improve the performance of Faster R-CNN detector
on unlabelled target data, by aligning the image- and instance-
level domain classifiers using a consistency regulariser. How-
ever, their assumption that the instance level classifier is
consistent across domains does not hold when domain shift is
significant (Zhao et al. 2020; Li et al. 2018c; Schölkopf et al.
2012; Janzing and Schölkopf 2010). Subsequent attempts of
DA for object detection (Li et al. 2020; Sindagi et al. 2020)
include using adversarial learning to diminish domain dis-
crepancy (Chen et al. 2018; He and Zhang 2019; Saito et al.
2019; Xu et al. 2020a; Zhu et al. 2019; Wu et al. 2021),
reconstruction-based methods using image style transfer as
an auxiliary task (Hsu et al. 2020b; Rodriguez and Miko-
lajczyk 2019; Gong et al. 2019b), feature disentanglement
approaches whose aim is to suppress domain specific features
and enhance domain invariant features (Lin et al. 2021; Wu
et al. 2021) and self-training methods using pseudolabels to
retrain a model (Khodabandeh et al. 2019; RoyChowdhury
et al. 2019; Cai et al. 2021). Furthermore, the aforementioned
approaches consider a single source and target domain, with
multi-source DA for object detection having been considered
only recently (Yao et al. 2021).

The present study is most closely related to adversarial
approaches which align feature representations of source and
target domains (Chen et al. 2018) which assume covariate
shift alone, although in our case we align features from mul-
tiple source domains by accounting for both covariate and
concept shifts.

Domain generalisation. DG was first studied by Blan-
chard, Lee, and Scott (2011) in the context of medical imag-
ing, while the terminology was introduced later by Muan-
det, Balduzzi, and Schölkopf (2013). Earlier studies have ex-
plored fixed shallow features (Fang, Xu, and Rockmore 2013;
Ghifary et al. 2015; Khosla et al. 2012; Muandet, Balduzzi,
and Schölkopf 2013; Xu et al. 2014), while more recent in-
vestigations design architectures to address domain shift (Li
et al. 2017) or learning algorithms to optimise standard archi-
tectures (Li et al. 2018a; Shankar et al. 2018; Li et al. 2019).
Domain randomisation (Tobin et al. 2017; Yue et al. 2019) is
a complementary approach to DG, which relies on synthet-
ically generated variations of the input data to obtain more
generalisable features. Domain randomisation was applied
to car detection (Khirodkar, Yoo, and Kitani 2019), however,
their approach requires 3D models of the detected objects,
camera parameters and scene geometry. A single-shot YOLO
detector has also been extended with DG components (Liu,
Song, and Ding 2020b,a), however they rely on Invariant
Risk Minimisation (IRM) (Arjovsky et al. 2019) which is
likely to underperform when there is a significant domain
shift (Rosenfeld, Ravikumar, and Risteski 2020). (Lin et al.
2021) proposed a feature disentanglement approach at both
image and instance levels to extract the domain invariant
features across multiple source domains.

The existing DG approaches suffer from the same draw-
back identified in DA, namely the disputed assumption that
the conditional class distributions do not vary across domains
(Zhao et al. 2020; Li et al. 2018c; Hu et al. 2020; Li et al.
2018b). According to recent surveys, the majority of DG
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work has been conducted in the classification setting (Koh
et al. 2021; Zhou et al. 2021). Conversely, the proposed work
addresses domain shift in object detection, relying on en-
tropy based regularisation (Zhao et al. 2020) to achieve class
conditional invariance.

Preliminaries

In this section we describe the details of the mathematical
framework used to describe the DG task for object detection
in the following section.

Let I×C×B×D be the sample space under observation.
Here I ∈ I denotes the images of interest. BI ∈ R4 = B is
the bounding box predictor consisting of a vector of im-
age coordinates (x, y, w, h) corresponding to the objects
detected in image I . CI ∈ {0, . . .K} = C denotes the
integer-valued class label assigned to each of the detected
bounding boxes BI , where K is the total number of object
classes, and DI ∈ D represents the domain of image I .
Let PD

(
I, CI , BI

)
denote the joint distributions defined on

the sample space I×C ×B given domain D. The goal of
this work is to train the DGFR-CNN detector that can learn
domain-invariant features from N source domains which can
be generalised to an unseen target domain (or domains) with-
out compromising the main detection task. This is achieved
via proposed regularisation terms along with the main detec-
tion loss.

Let (θ, ϕ, β) be the parameters for a backbone feature
extractor F (θ), a classifier T (ϕ), and a bounding box pre-
dictor R(β), respectively. Let QT

(ϕ),R(β)

(F (θ)(I), CI , BI)
be the model joint distribution obtained when using all
of these parameters together. In this work, we aim to
optimise θ to transform the input images into feature
vectors F (θ)(I) such that all the domain specific joint
distributions PD(F (θ)(I), CI , BI) converge to the single
best (maximising the fit over ϕ and β) joint distribution
QT

(ϕ),R(β)

(F (θ)(I), CI , BI). This will enable F (θ), T (ϕ)

and R(β) to be optimised for domain invariant object de-
tection. According to Bayes’ theorem, in order to map the
domain specific joint distributions PD(F (θ)(I), CI , BI) to
a common QT

(ϕ),R(β)

(F (θ)(I), CI , BI), we need to map
the domain specific conditionals PD(CI , BI |F (θ)(I)) to a
common QT

(ϕ),R(β)

(CI , BI |F (θ)(I)) and the domain spe-
cific marginals PD(F (θ)) need to be mapped onto a common
Q(F (θ)).

In fact, many of the reported studies in the state-of-the-
art (Chen et al. 2018; Muandet, Balduzzi, and Schölkopf
2013) attribute domain shift to the difference in marginals,
while they assume conditionals to be stable across domains.
The standard approach adopted by (Chen et al. 2018; Mat-
suura and Harada 2020) of equalising the marginals across
domains is through an explicit domain discriminator S(ψ),
which is trained by minimising the following negative dis-
criminator (‘domain adversarial’ or ‘dadv’) loss (Goodfellow

et al. 2014),

min
θ

max
ψ

Ldadv(θ, ψ) =
N∑
D=1

EPD

[
log

(
S(ψ)

(
F (θ)(I)

))]
=

N∑
D=1

MD∑
j=1

dDj . log
(
S(ψ)

(
F (θ)(IDj )

))
(1)

where dj is the one-hot vector encoding of the domain label
of the j-th image sample, and MD is the number of samples
in the D-th domain. The maximisation is conducted with
respect to parameters corresponding to the domain discrim-
inator S(ψ), while the minimisation is with respect to the
feature extractor F (θ). This minmax game enables F (θ) to
learn features whose domain cannot be distinguished by any
S(ψ). This implies that the optimisation in Eq. (1) will lead
to equality in marginals,

Pi(F
(θ)(I)) = Pj(F

(θ)(I)), ∀i, j ∈ {1, . . . , N}
= Q(F (θ)(I))

(2)

However, as pointed out by recent studies (Schölkopf et al.
2012; Janzing and Schölkopf 2010; Li et al. 2018c; Zhao
et al. 2020), the stability of conditionals across domains
cannot be guaranteed. Any method with the goal of achieving
domain invariance needs to compensate for the variation in
conditionals PD(CI , BI |F θ(I)). In other words, the domain
discriminator S(ψ) aids in achieving the invariance on the
sample space I×D but not on I×C×B×D. Moreover,
the techniques proposed in recent studies (Zhao et al. 2020;
Li et al. 2018c) are intended for classification and cannot be
directly used to achieve generalised object detection.

In the next section, we describe the details of the
proposed mathematical framework, to map the domain-
specific conditionals PD(C

I , BI |F (θ)(I)) to a common
QT

(ϕ),R(β)

(CI , BI |F (θ)(I)). Our approach in conjunction
with Eq. (1) leads to domain generalised object detection.

Proposed Method

The overview of the proposed DGFR-CNN is given in Fig. 2,
where the Faster R-CNN is trained in conjunction with two
additional modules related to class-conditional invariance
and bounding box invariance. These modules aid to optimise
the feature extractor so that the input images map onto a
feature space where the detection is consistent across multiple
domains. In this section, we elaborate on these new modules.

In addition to equalising marginals across domains (Eq. 1),
we also aim to transform the domain-specific conditional
distribution in every D-th domain to a common distribution
QT

(ϕ),R(β)

(CI , BI |F θ(I)) which is the main contribution of
this paper. This can be done by minimising the KL divergence
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Figure 2: Overview of the proposed DGFR-CNN approach.

between all of the PD and QT
(ϕ),R(β)

:

min
θ,ϕ,β

N∑
D=1

KL[PD(C,B|F (θ)(I))||QT
(ϕ),R(β)

(C,B|F (θ)(I))]

= min
θ,ϕ,β

N∑
D=1

KL[PD(C|B,F (θ)(I)||QT
(ϕ)

(C|B,F (θ)(I))]

+
N∑
D=1

KL[PD(B|F (θ)(I))||QR
(β)

(B|F (θ)(I))]

(3)

where QT
(ϕ)

(CI |BI , F (θ)(I)) and QR
(β)

(BI |F (θ)(I)) de-
note respectively the distributions associated with the in-
stance level classifier and the bounding box predictor. The
minimisation of the first term in Eq. (3) trains the system to
transform the input images into a feature space where the
domain-specific instance level classifier will be consistent
across the domains. The minimisation of the second term
in Eq. (3) trains the system to transform input images into a
feature space where the bounding box predictor is invariant to
any individual domain. This implies that the optimisation in
Eq. (3) along with Eq. (1) will result in a domain generalised
trained model.

The first term in Eq. (3) can be further modified as:
N∑
D=1

EPD

[
log

PD(C|B,F (θ)(I))

QT (ϕ)(C|B,F (θ)(I))

]

=
N∑
D=1

EPD

[
logPD(C|B,F (θ)(I))

]
−

N∑
D=1

EPD

[
logQT

(ϕ)

(C|B,F (θ)(I))
]

The second term in Eq. (4) denotes the classification loss
Lcls, while the first term is the sum of N negative con-
ditional entropies −HD(C

I |BI , F (θ)(I)) for each domain.
Minimising the negative conditional entropy is equivalent to

maximising the conditional entropy HD(C
I |BI , F (θ)(I)).

This implies that maximising the conditional entropy
HD(C

I |BI , F (θ)(I)) for a specific domain D can increase
the uncertainty in assigning the correct class label for the
objects in the input image I . In order to maximise the con-
ditional entropy HD(C

I |BI , F (θ)(I)) in Eq. (4), we extend
the following theorem from (Zhao et al. 2020) for the object
detection task:

Theorem 1: Assuming all the object classes are equally
likely, maximising HD(C

I |BI , F (θ)(I)) is equivalent to
minimising the Jensen-Shannon divergence between the
conditional distributions PD(BI , F (θ)(I)|C = j)

K

j=1. The
global minimum can be achieved if and only if:

PD(B
I , F (θ)(I)|CI = i) = PD(B

I , F (θ)(I)|CI = j),

∀i, j ∈ {1, . . . ,K} .
(4)

Even though this assumption can fail under a class imbalance
scenario, balance can still be enforced through batch based
biased sampling (proof is given in supplementary material).

The equality in conditionals PD(B,Fθ(I)|C = j) for all
the classes implies that the instance level features extracted
are independent of the class labels. Inspired by Theorem 1
and the minmax game approach proposed in (Goodfellow
et al. 2014; Gong et al. 2019a; Zhao et al. 2020), we introduce
N classifiers, {T ′(ϕ

′
D)

D }D=1...N , each parameterised by a ϕ′D,
and propose the following loss function,

min
θ

max
{ϕ′

D}N
D=1

Lerc(θ, ϕ
′
i)

=
N∑
D=1

EPD

[
logQ

T ′(ϕ
′
D)

D

D (C|B,F (θ)(I))

]
,

(5)

where QT
′(ϕ′

D)

D

D (C|B,F (θ)(I)) is the instance-level class
conditional probability induced by classifier T ′

D correspond-
ing to the D-th domain.

To optimise the second term in Eq. (3), we adopt a strategy
previously used by (Chen et al. 2018) for DA. Minimising
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the KL divergence between the terms PD(B|F (θ)(I)) and
QR

(β)

(B|F (θ)(I)) is equivalent to building a bounding box
predictor independent of the domain label D. Rewriting the
term PD(B|F (θ)(I)) as P (B|D,F (θ)(I)), and using Bayes’
theorem, gives:

P (D|B,F (θ)(I))P (B|F (θ)(I))

= P (B|F (θ)(I), D)P (D|F (θ)(I)),
(6)

where P (D|B,F (θ)(I)) represents the instance level do-
main label predictor, P (B|F (θ)(I), D) is the domain spe-
cific bounding box predictor, and P (D|F (θ)(I)) is the image
level domain label predictor. From Eq. (1), we can observe
that if there is a consistency between the image and instance
level domain label predictor then the bounding box predic-
tor will be invariant to domains, i.e. P (B|D,F (θ)(I)) =
P (B|F (θ)(I)).

The input F (θ)(I[B]) to the instance-level domain clas-
sifier will be the subset of image I features, computed at
locations within the bounding box B by F (θ). The loss func-
tion that is employed at the instance level domain classifier
is:

Ldins =
∑
|B|

E
[
log(P (D|B,F (θ)(I)))

]
, (7)

where |B| denotes the total number of detected bounding
boxes in the image I . As shown in Eq. (6), in order to achieve
invariant bounding box prediction across domains, we need a
consistency regularisation (Chen et al. 2018):

Lcst = ∥ 1

|B|

|B|∑
i=1

(pinsi − pimg)∥2, (8)

where pinsi and pimg denote respectively the probability
scores corresponding to the instance and domain level clas-
sifier outputs. Combining the loss functions defined in
Eqs. 1, 5, 7, 8 results in the following:

min
(θ,ϕ)

max
(ψimg,{ϕ′

D},ψins)
L(θ, ϕ, ψimg, ψins, {ϕ′D}, β)

=Lcls(θ, ϕ) + Lreg(θ, β)

+α1Ldadv(θ, ψimg) + α2Ldins(θ, ψins)

+α3Lcst(θ, β) + α4Lerc(θ, {ϕ′D}),

(9)

where α1, α2, α3, α4 represent the regularisation constants.
It is important to note that the features learned via the

maximisation of the domain specific classification loss Lerc
can have a negative impact on the classifier T (ϕ), and on the
bounding box predictorR(β), and thus can result in instability
during the mini-max optimisation of Eq. (9). To overcome
this drawback, following (Zhao et al. 2020), we introduce N

additional domain-specific classifiers, {T †(ϕ†
D)

D }ND=1, with a

new cross-entropy loss (Lcel):

(10)

min
θ,{ϕD}N

D =1

Lcel(θ, {ϕ†D}
N
D=1)

= −
N∑
D=1

EPD
[logQ

T
†(ϕ†

D
)

D

D (C|B, F̄ (I))]

−
N∑
D=1

∑
j=1,j ̸=D

EPj
[logQT̄D

D (C|B,F (θ)(I))],

where F̄ and T̄D indicate that the parameters are fixed during
training. Since these additional N classifiers are domain-
specific, there is a high likelihood that they can prevent Fθ
from learning domain invariant features, which is against
the goal of our work. But at the same time, the inclusion of
{T †

D} can help in overcoming the instability introduced by
T ′
D. Hence, an effective strategy for training these domain

specific classifiers is of crucial importance. We initially freeze
θ and train each of the classifiers {T †

D} by using data from the
D-th domain. This step will aid {T †

D} to learn only domain
invariant features. In the next step, we fix all theN parameters
ϕ†D and fine tune θ so that a sample ID from theD-th domain
is classified accurately by all {T †

D}D ̸=d.
The final loss function that we use to train the system is:

min
(θ,ϕ,β,{ϕ†

D)}
max

(ψimg,{ϕ′
D},ψins)

L(θ, β, ϕ, ψimg, ψins, {ϕ′D}, {ϕ
†
D})

= Lcls(θ, ϕ) + Lreg(θ, β) + α1Ldadv(θ, ψimg)+

α2Ldins(θ, ψins) + α3Lcst(θ, β) + α4Lerc(θ, {ϕ′D})
+α5Lcel(θ, {ϕ†D}),

(11)

where α5 is the regularisation constant associated with the
additional N domain specific classifiers {T †

D}. The complete
training procedure is described in Algorithm 1, where we
train the main detector in conjunction with additional regu-
larisation terms to achieve domain invariant bounding box
prediction as well as class-conditional invariance.

Experimental Validation
Datasets. We demonstrate the generalisation ability of our
approach on the following four popular multi-source object
detection datasets.

GWHD (David et al. 2021): This dataset comprises of a to-
tal of 6000 images corresponding to wheat heads (resolution:
1024 × 1024 pixels) acquired across 47 different sessions;
with each being restricted to a single domain/farm. The train-
ing set has 18 domains with a total of 2943 images while the
validation set contains samples captured across 8 different
sessions with 1424 images and the test set has data from
21 different sessions with a total of 1434 images. Here we
assume a unique domain label for each of the sessions. A few
of the domains are shown in Fig. 1 illustrating the high level
of domain shift across acquisition locations.
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Algorithm 1: Training strategy for domain generalised object
detection.
Input: {XD}ND=1, N domain training datasets
Input: α1, α2, α3, α4, α5

Output: F,B, T,D,Dins, {TD}ND=1, {T ′
D}ND=1

while iter ≤ MAX_EPOCHS do
while batch ≤ MAX_BATCHES do

Sample random batch of images from training data
Update θ, β, ϕ in Eq. (11)
Using fixed θ, update ψimg and ψins in Eq. (11)
Sample random batch of images from training data
Update θ, β, ϕ in Eq. (11)
Using fixed θ, update {ϕ†D} in Eq. (11) (minimises
first term of Eq. 10)
Sample random batch of images from training data
Update θ, β, ϕ in Eq. (11)
Update θ, {ϕ′D} in Eq. (11)
Sample random batch of images from training data
Update θ, β, ϕ in Eq. (11)
Using fixed {ϕ†D}, update θ in Eq. (11) (minimises
second term of Eq. 10)

end
end

Cityscapes (C), Foggy Cityscapes (FC), Rainy Cityscapes
(RC): Cityscapes (Cordts et al. 2016) deals with the semantic
understanding of urban street scenes. It has a total of 2975
training (from 18 cities) and 500 validation images (from
3 cities). The fog in Foggy Cityscapes (Sakaridis, Dai, and
Van Gool 2018) images is synthetically created using a stan-
dard fog image formation model (Middleton 1957) with an
airlight coefficient of 0.02. Similarly, 36 different patterns of
rain were introduced in 295 images of Cityscapes to create
the Rainy Cityscapes dataset (Hu et al. 2019).

BDD100k (B) (Yu et al. 2020): This dataset has 100K
diverse video clips where each clip is of 40 seconds. The
annotations are collected on six different scene types, six
different weather conditions, three distinct times of the day.
Unlike (Sakaridis, Dai, and Van Gool 2018; Hu et al. 2019),
the fog and rain in the images of BDD100k is real. The train,
validation, and test splits has 70K, 10K, 20K images, respec-
tively. In our experiments, we use only train and validation
splits of this dataset due to the lack of test set annotations.

Sim10k (S) (Johnson-Roberson et al. 2017): This data is
generated by capturing the snapshots of Grand Threft Auto V
(GTA-V) game. There is no official train and validation splits
available for this dataset and hence we randomly split it into
8K images as training set and the rest as validation split. Four
different weather types will appear in this dataset.

Experiments. We evaluate the generalisation abilities of
the proposed DGFR-CNN through the following experi-
ments:

(i) DG (multi-class, single target domain): We evaluate the
generalisation ability of DGFR-CNN when the nature
of domain shift during training and testing is different.
During training, the domain shift comes from the acqui-
sition location in Cityscapes, while shift during testing

on Foggy/Rainy Cityscapes is manifested in the form of
weather conditions.

(ii) DG (single-class, multiple target domains): The GWHD
dataset allows evaluating the generalisation on a sce-
nario with multiple target domains, where the shift in
both the training and target domains comes from the
acquisition location.

(iii) DG (single-class, single target domain): We use all the
autonomous driving datasets together to evaluate Faster
R-CNN when the source domains are related but do not
follow a uniform standard.

(iv) DA (single source and target domains): To analyse
the performance of DGFR-CNN in the DA setting, a
simplified model is used which uses only the bounding
box alignment module. The class conditional alignment
is removed, as only the ulabelled target images are
available during training.

Network Architecture. We use a Faster R-CNN detector
with a ResNet50 backbone initialised with pre-trained Ima-
geNet weights. The output of the backbone network is fed
as input to domain adversarial network (S(ψ)) while the out-
put of ROI Pooling layer is fed as an input to instance level
domain classifier (S(ψ)

ins ), 2N domain specific classifiers (T ′
D

and T †
D). All terms in the loss function described in Eq. (11)

correspond to either a domain or object classifier. We use
cross-entropy to train each of these classifier modules.

Training details. From empirical observations, the regu-
larisation constants were set to α1 = 1, α2 = 0.1, α3 = 1,
α4 = 0.001, and α5 = 0.05. We used early stopping with
a patience of 10 epochs. AdamW (weight decay = 0.0005,
learning rate = 0.001, batchsize=2) has been used as opti-
miser while training with GWHD and Stochastic Gradient
Descent (SGD) (weight decay = 0.0005, momentum=0.9,
learning rate=2× 10−3, batchsize=2) has been used for other
datasets (Cityscapes, BDD100K, Sim10K). The experiments
were implemented using the PyTorch deep learning frame-
work and Torchvision Faster R-CNN library on a NVIDIA
RTX 3090 GPU with 24GB of GPU memory.

Metrics. Following (David et al. 2021), we use weighted
average domain accuracy (WADA) to report the performance
of our approach on the OOD test set of GWHD. For the rest
of the datasets, we use mean average precision (mAP).

Quantitative Analysis
In experiment (i), we present the performance of proposed
approach on Cityscapes dataset (Table 1) where the training
is done using city information as domain label and tested on
Foggy/Rainy Cityscapes. None of the existing DG approaches
for object detection use citylabel as domain label and hence
we limit our comparisons to the methods from which our
approach was inspired from. It can be seen that the proposed
architecture performs the best in majority of object categories
for Foggy Cityscapes while a better overall performance for
Rainy Cityscapes. This signifies the need for compensating
both the covariate and concept shifts in a multi-source domain
scenario.
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Person Rider Car Truck Bus Mcycle Train Bicycle mAP
Cityscapes Foggy

Faster R-CNN 26.9 38.2 35.6 18.3 32.4 25.8 9.6 28.6 26.9
BBA 50.34 43.49 75.93 20.62 28.00 22.37 4.55 42.50 35.97
CCA 45.27 48.90 72.44 23.75 35.11 24.73 6.82 43.41 37.55

DGFR-CNN (ours) 47.17 47.84 77.43 24.79 36.00 19.62 9.09 48.72 38.90
Cityscapes Rainy

Faster R-CNN 42.69 67.62 75.43 19.64 50.19 13.00 4.66 50.54 40.47
BBA 41.45 72.89 69.88 15.08 55.00 22.55 3.17 48.28 41.03
CCA 42.25 69.61 78.53 25.83 60.71 20.00 3.74 52.16 44.22

DGFR-CNN (ours) 42.66 71.64 76.83 29.50 60.02 20.3 2.98 53.43 44.66

Table 1: Results for the Foggy and Rainy Cityscapes datasets. BBA: Bounding Box Alignment. CCA: Class Conditional
Alignment. The best results per class and overall are highlighted in bold.

GWHD (S,C) → B (S, B) → C (B, C) → S Lcls Lreg Ldadv Ldins Lcst Lerc Lcel
Faster R-CNN 53.73 50.52 71.43 61.84 + + - - - - -

BBA 54.48 35.76 70.02 54.30 + + + + + - -
CCA 53.65 38.07 71.27 59.50 + + - - - + +

DGFR-CNN 54.92 52.02 71.78 62.50 + + + + + + +

Table 2: Quantitative analysis for proposed approach in DG setting. The symbol ‘+’ indicates inclusion of loss component while
‘-’ indicates exclusion of loss component. Generalisation performance of the proposed approach across: Sim10K (S), Cityscapes
(C) and BDD100K (B). The left and right sides of −→ indicate the source and target datasets, respectively. The best results are
highlighted in bold.

Person Rider Car Truck Bus Mcycle Train Bicycle mAP
Source-only 26.9 38.2 35.6 18.3 32.4 25.8 9.6 28.6 26.9

GPA (Xu et al. 2020b) 32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5
DIDN (Lin et al. 2021) 38.3 44.4 51.8 28.7 53.3 34.7 32.4 40.4 40.5
DSS (Wang et al. 2021) 42.9 51.2 53.6 33.6 49.2 18.9 36.2 41.8 40.9

SDA (Rezaeianaran et al. 2021) 38.8 45.9 57.2 29.9 50.2 51.9 31.9 40.9 43.3
DGFR-CNN (ours) 53.9 49.6 76.9 23.13 28.67 29.30 9.09 54.14 40.6

Table 3: Performance of proposed approach in DA setting while adapting from Cityscapes to Foggy Cityscapes. The best results
per class and overall are highlighted in bold.

Ablation Study Table 2 (experiments (ii) and (iii)) shows
the quantitative analysis for the official out-of-distribution
(OOD) test split of GWHD. Also, we evaluate the generalisa-
tion ability of our detector to a completely new dataset where
we use two among the datasets from Sim10K, Cityscapes,
BDD100K as source and the target as the other dataset. It can
be seen that our approach outperforms the baseline Faster R-
CNN used in WildS benchmark (Koh et al. 2021). The second
and third rows report the influence of individual components
used in the proposed architecture while the last row indicates
the effect of complete architecture. It can be seen that the
proposed approach improvises over the baseline as well as
when the individual components used alone. This signifies
the need for the additional constraints which regularises the
main detection loss so as to equalise the conditional distri-
butions of class-labels and bounding box detector across the
domains. Also, this highlights the need for addressing both
the concept and covariate shifts rather than covariate shift
alone.

Table 3 (experiment (iv)) shows the performance of pro-

posed approach while adapting from Cityscapes to Foggy
Cityscapes in DA setting. We compare against a number of
representative state-of-the-art DA (Xu et al. 2020b; Wang
et al. 2021; Rezaeianaran et al. 2021) and DG (Lin et al. 2021)
approaches. The proposed DGFR-CNN improves upon the
results of a DG-based approach (Lin et al. 2021) in the DA
setting, and is competitive with or improves upon most other
DA approaches. While we do not reach the performance of
SDA (Rezaeianaran et al. 2021), we note that this is, on one
hand, an approach specifically designed for DA, which has
recently outperformed competing DA approaches by a large
margin. On the other hand, our DGFR-CNN is designed to
handle domain shift using different input data available in the
DG setting, and was simplified by removing class conditional
alignment for the DA experiment.

Qualitative Results
Cityscapes Fig. 3 presents the qualitative analysis of the
proposed approach against the outputs of BBA and CCA
alone as well as the baseline Faster R-CNN. The first two
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(a) (b) (c) (d)

Figure 3: Qualitative Results for Cityscapes. Outputs of: (a) Faster R-CNN, (b) BBA, (c) CCA, and (d) Proposed approach.
(Readers are requested to zoom in to visualise the pictures.). The colour codes used in this figure are indicated in Table 4.

Figure 4: Qualitative Analysis for GWHD. Predictions are
indicated in red colour boxes while the ground truth are
indicated in blue coloured boxes.

Category Colour code
Person
Rider
Car

Truck
Bus

Motorcycle
Bicycle

Table 4: Colour codes for Cityscapes.

rows corresponds to Foggy-Cityscapes while the third and
fourth rows shows the detections on Rainy-Cityscapes. In
the first row of Fig. 3, it can be seen that the Car on the
left of the road has been very well detected by our approach
in spite of the dense fog being present in the scene while
the state-of-the-art approaches fail to detect. Similarly, our
approach robustly detects the Car in the left lane (second row
Fig. 3 (d)). In the third row, the bus on the right hand side of
the image is correctly detected by our approach where as the
baseline or the individual components (BBA, CCA) either
incorrectly detects the bus or multiple labels are assigned
to that specific object. It has to be noted that the car in the
dense fog on the left side of the image is correctly detected
by BBA. However, the cost of incorrectly classifying a larger
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size object is higher than missing a smaller size object. The
bicycles in the last row of Fig. 3 are detected well by using
our proposed approach over the existing techniques. We are
able to accurately localise the objects in-spite of the dense
fog/rain present in the scene. Note that we do not include
foggy or rainy images in the training set. This emphasise
the need and importance of imposing class-conditional and
bounding box invariance across all source domains to enable
robust detection on the unseen target data.

GWHD 2021 Fig. 4 shows the result of wheat head de-
tection by using our proposed approach. It can be seen that
our detection is able to localise the wheat heads accurately
in-spite of the wide visual diversity of the wheat heads and
illumination conditions.

Conclusion
We have proposed a Domain Generalised Faster R-CNN,
which improves the generalisation ability of Faster R-CNN
architecture. To perform consistently across domains, the pro-
posed method does not assume equality between class con-
ditional probabilities, but instead introduces the consistency
regularisation term along with the class entropy regulariser to
align the feature distribution resulting from different domains.
The method has been validated by showing performance im-
provements when used with Faster R-CNN, on four standard
object detection datasets related to autonomous driving and
agriculture.
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