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Abstract

Depth images and point clouds are the two most commonly
used data representations for depth-based 3D hand pose es-
timation. Benefiting from the structuring of image data and
the inherent inductive biases of the 2D Convolutional Neural
Network (CNN), image-based methods are highly efficient
and effective. However, treating the depth data as a 2D image
inevitably ignores the 3D nature of depth data. Point cloud-
based methods can better mine the 3D geometric structure
of depth data. However, these methods suffer from the disor-
der and non-structure of point cloud data, which is computa-
tionally inefficient. In this paper, we propose an Image-Point
cloud Network (IPNet) for accurate and robust 3D hand pose
estimation. IPNet utilizes 2D CNN to extract visual represen-
tations in 2D image space and performs iterative correction
in 3D point cloud space to exploit the 3D geometry informa-
tion of depth data. In particular, we propose a sparse anchor-
based “aggregation-interaction-propagation” paradigm to en-
hance point cloud features and refine the hand pose, which
reduces irregular data access. Furthermore, we introduce a
3D hand model to the iterative correction process, which sig-
nificantly improves the robustness of IPNet to occlusion and
depth holes. Experiments show that IPNet outperforms state-
of-the-art methods on three challenging hand datasets.

Introduction
Hands are essential for humans to interact with the world
and convey intent. 3D hand pose estimation is the core tech-
nology of human-computer interaction, virtual reality and
augmented reality. Although great progress has been made
in depth-based 3D hand pose estimation, there are still some
challenging scenarios that are difficult to solve, mainly due
to severe occlusions, including self-occlusion and object-
occlusion, and self-similarity between fingers.

Depth-based 3D hand pose estimation can be broadly cat-
egorized into two classes according to the input data: 2D
image-based methods and 3D data based-methods. The 2D
image-based method (Oberweger and Lepetit 2017; Wan
et al. 2018; Xiong et al. 2019; Ren et al. 2019; Huang et al.
2020b) treats the depth data as a single-channel depth image,
and then uses a 2D Convolutional Neural Network (CNN)
for 3D hand pose estimation. With well-explored network
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structures and inherent inductive biases, 2D CNNs has ad-
vantages in extracting local visual features. Thank to the reg-
ular structure of image and highly parallelized data process-
ing mechanism (sliding window), 2D CNN is computation-
ally efficient on modern hardware. 3D data based-methods
convert depth data into 3D point cloud (Ge et al. 2018a; Ge,
Ren, and Yuan 2018a; Chen et al. 2018, 2019; Huang et al.
2020a) or volumetric representation (Ge et al. 2018b; Moon,
Chang, and Lee 2018; Malik et al. 2021), and use the point
cloud network or 3D CNN for pose estimation. These meth-
ods can avoid information loss due to projection and better
perceive the 3D geometric structure of depth data.

Although both types of methods have made remarkable
progress in 3D hand pose estimation, they both have their
shortcomings. For 2D image-based methods, the learning
process of visual representations ignores the 3D character-
istics of depth data, and is limited by the local receptive
field mechanism of convolution operation, which makes it
challenging to capture long-range dependency. For point-
based methods, due to the disordered, unstructured and non-
uniform nature of point clouds, the popular point cloud net-
work requires densely and dynamically building local neigh-
borhoods and employing sophisticated feature extractors (Qi
et al. 2017; Wang et al. 2019; Thomas et al. 2019; Li et al.
2018). Due to irregular memory access and dynamic kernel
overhead, point cloud networks are computationally expen-
sive. In addition, these methods often require additional pre-
or post-processing to assist the learning of point cloud fea-
tures. For 3D voxel-based methods, the 3D convolution op-
erator is more inefficient and the 3D voxelization requires
a large amount of memory to represent the input data and
the intermediate features, making it memory-prohibitive to
scale up the input resolution and network structure.

In previous methods, depth data is independently regarded
as the 2D image or 3D point cloud, which either ignore
the 3D geometric structure of depth data or consumes huge
computation to extract point-wise features. In this paper, we
propose an Image-Point cloud Network (IPNet) that com-
bines the two data representations to take advantage of their
unique properties. First, our method represents the depth
data as a 2D image and adopts the 2D CNN for visual rep-
resentation learning and initial pose estimation. Then, we
project the 2D image features into the point cloud space and
perform iterative feature enhancement and pose correction
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in the 3D space, which can fully exploit the geometric struc-
ture information of the depth data. In particular, we abandon
the dense local feature extraction and hierarchical network
structure in popular point cloud networks (Qi et al. 2017;
Thomas et al. 2019). Instead, we propose an “aggregation-
interaction-propagation” paradigm based on sparse anchors.
Specifically, we use hand joints as anchors to aggregate the
3D spatial information of local neighborhoods, and then use
Graph Convolution Network (GCN) to perform information
interaction between anchors to capture long-range depen-
dencies between different hand regions. Finally, we prop-
agate the anchor information back to update the point cloud
features and perform point-wise hand pose estimation.

Furthermore, to improve the robustness of IPNet to severe
occlusion and depth holes, we introduce a 3D hand model
during iterative refinement. Specifically, in each refinement
stage, we additionally estimate a 3D hand model (Romero,
Tzionas, and Black 2017). Then, we construct the corre-
sponding semantic features of the point cloud sampled from
the model surface through a 3D-aware re-parameterization.
The point cloud information from the hand model can pro-
vide strong disambiguation cues for subsequent refinement
stages, especially for the hand regions lacking depth infor-
mation due to occlusions and depth holes. Code is available
at https://github.com/PengfeiRen96/IPNet.

We conduct experiments on three challenging hand
datasets (NYU (Tompson et al. 2014), HO-3D (Hampali
et al. 2020), and DexYCB (Chao et al. 2021)). Experiments
show that IPNet outperforms State-Of-The-Art (SOTA)
methods, especially for hand-object interaction scenarios.

Our contributions can be summarized as follows:
• We propose a hybrid network architecture (IPNet) that

utilizes both the 2D depth image and the 3D point cloud
for robust and accurate 3D hand pose estimation.

• We propose a sparse anchor-based iterative correction
paradigm, which can effectively and efficiently exploit
the 3D geometric structure information of depth data.

• IPNet achieves SOTA performance on three challeng-
ing datasets, outperforming previous methods on hand-
object interaction scenarios by a large margin.

Related Work
Depth-based 3D Hand Pose Estimation
In recent years, advances in deep neural networks have fa-
cilitated the development of depth-based 3D hand pose esti-
mation. Prior arts can be roughly divided into two categories,
2D image-based method (Wan et al. 2018; Xiong et al. 2019;
Oberweger and Lepetit 2017; Ren et al. 2019; Huang et al.
2020b; Fang et al. 2020) and 3D data-based method (Ge
et al. 2018a; Ge, Ren, and Yuan 2018a; Ge et al. 2018b;
Moon, Chang, and Lee 2018; Malik et al. 2020; Huang et al.
2020a). 2D image-based methods ignore the 3D geometric
properties of depth data. Thus, some methods propose to
mine the 3D spatial information of the depth data by esti-
mating 3D-aware representations (Huang et al. 2020b; Wan
et al. 2018) or performing multi-view prediction (Ge et al.
2016; Cheng et al. 2022). However, these methods only in-
corporate 3D information in the network prediction phase

2D CNN
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Figure 1: Overview. IPNet utilizes a 2D CNN for visual fea-
ture extraction and initial hand pose estimation. Then, IPNet
obtains the initial point cloud features through a 2D-3D pro-
jection module. Finally, IPNet iteratively updates point fea-
tures and refines hand pose in the 3D point cloud space.

and ignore the 3D structural information of the depth data in
the process of visual feature learning.

3D data-based methods usually represent depth data as 3D
voxel or 3D point cloud. However, 3D voxel-based meth-
ods (Moon, Chang, and Lee 2018; Ge et al. 2018b) use 3D
CNNs to regress 3D hand pose from 3D volumes, which
is computationally inefficient. 3D point cloud, as a natural
and compact representation of depth data, has attracted ex-
tensive attention. However, point cloud networks (Qi et al.
2017; Wang et al. 2019) rely on dense and sophisticated
local geometric extractors and a hierarchical feature learn-
ing paradigm, which suffer from prohibitive computations
and the overhead of memory access. In addition, it is dif-
ficult to improve the performance of point cloud networks
by increasing the depth or width of the network (Ma et al.
2022). Therefore, previous methods have to adopt complex
pre-processing such as surface normal estimation (Ge et al.
2018a) and oriented bounding box calculation (Ge, Ren, and
Yuan 2018a), auxiliary tasks (Chen et al. 2018) or post-
processing such as fingertip refinement (Ge et al. 2018a) to
improve the pose estimation accuracy, which further reduces
the inference speed of the point cloud-based method.

Iterative Correction Mechanism
Iterative correction mechanisms have been extensively ex-
plored in hand and body pose estimation tasks. Some works
propose to use the estimated pose to extract local depth
patches (Oberweger, Wohlhart, and Lepetit 2015) or feature
patches (Chen et al. 2020) in order to regress the refined
pose. However, these methods ignore the 3D properties of
depth data and are prone to fall into local optima. Some
methods (Ren et al. 2019, 2021) re-parameterize the esti-
mated pose as 3D-aware representations and feed it to a sub-
sequent corrector. However, these methods use the 2D CNN
as the corrector and perform pose refinement in 2D feature
space, which still cannot fully utilize the 3D spatial informa-
tion of input depth data. Some human body mesh estimation
methods propose to project the estimated 3D model infor-
mation back to the 1D global feature space (Kanazawa et al.
2018) or the 2D visual feature space (Zhang et al. 2021) for
iterative correction. Our method performs refinement cor-
rection directly in the 3D point cloud space, which can bet-
ter utilize the spatial structure information of the estimated
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Figure 2: Illustration of the projection from 2D visual fea-
tures to 3D point cloud features.

3D hand pose and the 3D hand mesh.

Method
Overview
As shown in Fig. 1, IPNet mainly consists of two parts,
the first part performs 2D visual feature learning and ini-
tial pose estimation based on 2D images, and the second
part performs 3D geometric feature learning and pose re-
finement based on 3D point clouds. In the 2D image space,
we utilize a fully convolutional network to extract semantic
visual features and perform pixel-wise pose regression. In
the 3D point cloud space, we sparsely construct local neigh-
borhoods and extract 3D geometric structure information,
which can iteratively refine the initial hand pose.

Visual Feature and Pose Estimation in 2D Space
Depth data can be represented as a 2D image, where each
pixel value represents the distance from the image plane to
the object surface. Similar to (Huang et al. 2020b; Wan et al.
2018), we adopt an encoder-decoder architecture to keep the
2D spatial structure of visual features and better exploit lo-
cal evidence. We estimate three pixel-level pose representa-
tions from the 2D visual feature F2d ∈ RC×H×W , includ-
ing a 3D heatmap Hpixel ∈ RJ×H×W , a 3D directional
vector field Dpixel ∈ R(3×J)×H×W , and a weight map
Wpixel ∈ RJ×H×W . Here, C, H , W , J represent the num-
ber of channels, the height and the width of the feature map,
and the number of joints. Hpixel and Dpixel represent 3D
Euclidean distance and 3D unit direction from each pixel to
target joint. Wpixel represents the importance of each pixel
to the target joint. Based on these three pixel-level represen-
tations, we can obtain an initial 3D hand pose Jinit ∈ R3×J

by a weighted average algorithm (Ren et al. 2022).

2D-3D Projection
Given the 3D point cloud P ∈ R3×N of the input depth
data, the 2D visual feature map F2d and the initial 3D hand
pose Jinit, we construct the initial point cloud feature F3d ∈
RC×N through a 2D-3D projection module. The 3D point
cloud feature F3d consists of three features, including the
projected 2D visual feature, the re-parameterized hand pose
information and the point position information. As shown in
Fig. 2, in order to obtain projected feature Fproj

p ∈ RC of
the point p, we select K closest elements to p from the 2D
visual feature map F2d and perform interpolation according

Re-parameterization

3D Heatmap
J × N

3D Directional Vector 
(J × 3) × N

Point Cloud
3 × N

Hand Pose
3 × J&

Figure 3: Pose re-parameterization. We only visualize the
3D heatmap and the vector field of one joint. The color bar
represents the relationship between 3D distance and color.

to their 3D Euclidean distance d to the point p:

Fproj
p =

∑K
k=1 dp,k · F2d

k∑K
k=1 dp,k

, (1)

where we set K to 4 by default. We downsample the depth
image to the same size as the visual feature map and calcu-
late the 3D coordinates of each pixel in 3D point cloud space
through the camera intrinsics, which is regarded as the coor-
dinates of each 2D visual feature element in the 3D space.

As shown in Fig. 3, according to the initial hand pose
Jinit, we re-parameterize the coordinates of each 3D point
as the 3D heatmap Hpoint ∈ RJ×N and 3D unit direction
vector Dpoint ∈ R(3×J)×N to each joint j as follows:

Hpoint
j (p) =

{
1− ‖

Pp−Jinit
j ‖2

r

∥∥Pp − Jinit
j

∥∥
2
≤ r,

0 otherwise.
(2)

Dpoint
j (p) =


Pp−Jinit

j

‖Pp−Jinit
j ‖2

∥∥Pp − Jinit
j

∥∥
2
≤ r,

0 otherwise.
, (3)

where r represents the maximum perceived distance of each
point. Since different point features (i.e., 3D coordinate, pro-
jected visual feature, and re-parameterized hand pose) have
different properties and distributions, we equally fuse them
through the channel de-differentiation (Ran, Liu, and Wang
2022), which improves training stability. Each type of fea-
ture is passed through an independent normalization layer:

F3d = ReLU(BN (W0P) + BN
(
W1F

proj
)

+

BN
(
W2

[
Hpoint;Dpoint

])
),

(4)

where W0, W1 and W2 are three learnable parameter ma-
trices for point feature embedding; ReLU and BN repre-
sent ReLU activation function and batch normalization layer
(Ioffe and Szegedy 2015), respectively. Based on the point
cloud features and the estimated joint coordinates, we ag-
gregate the initial anchor features Fanchor according to a
point-wise weight map Wa as follow:
Fanchor = ReLU

(
BN

(
W3J

init
)

+ BN
(
W4F

3dWa
))

,
(5)

where W3 and W4 are two learnable parameter matrices for
anchor feature embedding. The point-wise weight map Wa

can be obtained from the pixel-wise weight map Wpixel by
a similar interpolation process as Fproj .
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Figure 4: Illustration of the “aggregation-interaction-propagation” paradigm. The blue dots represent anchors and the grey dots
represent the point cloud. The gray lines between the anchors represent the bone structure of the hand. For illustration purposes,
we only show local feature aggregation and feature propagation in a single neighborhood.

Iterative Correction in 3D Space

3D geometric information in depth data is important for ac-
curate and robust 3D hand pose estimation. Point cloud,
as a natural representation of depth data, can avoid the in-
formation loss caused by projection or voxelization. How-
ever, popular point cloud networks (Qi et al. 2017; Thomas
et al. 2019; Li et al. 2018) densely construct local neigh-
borhoods by the farthest point sampling algorithm and per-
form sophisticated local feature extraction, greatly increas-
ing the inference time of the network. Meanwhile, these
methods adopt a hierarchical network structure to gradu-
ally increase the receptive field and capture the long-range
dependencies between different point cloud regions, which
also increases the computational complexity. To address
these problems, we propose an anchor-based “aggregation-
interaction-propagation” paradigm to efficiently extract 3D
geometric structure information in 3D point cloud space.

Benefiting from the strong representation of the initial
point cloud features F3d, our method neither needs to per-
form local feature extraction densely nor employ time-
consuming pre-processing. Instead, our method focuses on
capturing fine-grained geometric features of key regions of
the 3D point cloud. As shown in Fig. 4, we use the estimated
hand joints as anchors to build local neighborhoods and ag-
gregate features, which greatly reduce irregular memory ac-
cesses and feature extraction operations. First, we obtain the
K neighbors of each anchor by the ball query. In practice,
we set K to 64 by default. Then, these neighbor features
are transformed through a series of Multi-Layer Perceptrons
(MLPs). A reduction layer (max-pooling) is used to aggre-
gate local features. For the i-th anchor, the local operation
can be formulated as follows:

Fanchor
i = MAX (Φcd (Fi,j ,Pi,j) , |j = 1, · · · ,K)) ,

(6)
where Φcd denotes the feature mapping function with chan-
nel de-differentiation; Fi,j and Pi,j are the j-th neighbor rel-
ative point feature (Fi−Fj) and relative position (Pi−Pj)
of the i-th anchor. The Φcd consists of multiple Fully-
Connected (FC) layer, batch normalization layer, and activa-
tion layer. In particular, the first layer of the feature mapping
function Φcd adopts the channel de-differentiation, which

can be formulated as:

Fanchor,1
i = ReLU (BN (WpPi,j) + BN (WfFi,j))

(7)
Similar to previous work (Qi et al. 2017), we adopted a
multi-scale aggregation approach. Specifically, for each an-
chor, we perform the local feature aggregation in the range
of 0.1, 0.2 and 0.4, and then the multi-scale features are con-
catenated together and embedded as anchor features.

Inspired by CNN, point cloud networks usually adopt a
hierarchical network structure to gradually increase the re-
ceptive field and model long-range dependencies. However,
the hierarchical structure significantly increases the compu-
tational burden of the network and reduces the inference
speed of the network. In our method, according to the bone
structure of the hand, we utilize the SemGCN (Zhao et al.
2019) to perform information passing between anchors in
order to model long-range relationships. Then, similar to (Qi
et al. 2017), for each point, we select the nearest K anchors
to obtain the interpolated features through inverse distance
weighted average, where we set K to 4 by default. The inter-
polated features and the original features are concatenated
together and passed through a point-wise MLP to obtain
the updated point cloud features. Finally, we regress three
point-wise representations from the updated point feature,
including a 3D heatmap Hpoint ∈ RJ×N , a 3D unit direc-
tional vector field Dpoint ∈ R(3×J)×N , and a weight field
Wpoint ∈ RJ×N , from which we can obtain the refined 3D
hand pose the weighted regression.

Incorporating 3D Hand Model
Self-occlusion and object occlusion is one of the most
challenging problems for 3D hand pose estimation. Even
if we fully exploit the local geometry information of the
depth data and perform long-range information interaction,
it is difficult to deal with some severely occluded samples.
Therefore, we introduce a hand model in the iterative correc-
tion, which provide prior structural information of the hand
and strong disambiguation cues for the subsequent network.
As shown in Fig. 4, we adopt a hierarchical GCN (Pool-
GCN) to progressively aggregate the joint features accord-
ing to the hand structure by average pooling and use graph
convolution to perform information interaction on down-
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sampled joints at each level. Then, we regress the param-
eters of a parameterized hand model (Romero, Tzionas, and
Black 2017) through a FC layer. We convert the M ver-
tices of the estimated hand mesh Pmesh ∈ R3×M to a 3D
heatmap Hmesh ∈ RJ×M and a unit direction vector field
Dmesh ∈ R(J×3)×M via pose re-parameterization. Finally,
Pmesh, Hmesh and Dmesh are embedded as vertex features
Fmesh ∈ RJ×M by a point-wise MLP. The vertex features
and point cloud features will be concatenated for hand pose
regression and subsequent iterative correction. Hand model
information can make up for the lack of point cloud infor-
mation due to occlusion and depth holes, which significantly
improves the robustness of our method.

Experiment
Dataset and Evaluation Metrics
Single-Hand dataset NYU (Tompson et al. 2014) con-
tains 72,757 training images and 8,252 testing images. It is
a challenging dataset with a wide coverage of hand poses
and image noise. This dataset provides 3D annotations for
36 joints. Following previous works (Oberweger and Lep-
etit 2017; Moon, Chang, and Lee 2018; Wan et al. 2018),
we selected 14 joints from all annotated joints. In partic-
ular, since NYU dataset does not provide annotations for
MANO, we use an iterative optimization method (Armagan
et al. 2020) to obtain the corresponding MANO parameters
from the joint annotations. It is worth mentioning that, as
mentioned in many recent works (Oberweger et al. 2016;
Ren et al. 2022), many images in ICVL (Tang et al. 2014),
MSRA (Sun et al. 2015), and BigHand2.2M (Yuan et al.
2017) suffer from severe annotation errors. Thus, we do not
evaluate our method on these datasets.

Hand-Object dataset DexYCB (Chao et al. 2021) is a re-
cent real hand-object dataset captured by multiple RGB-D
cameras. It consists of 582,000 image frames with 10 differ-
ent subjects and 20 YCB objects from 8 views. This dataset
has four official dataset split settings, namely S0, S1, S2 and
S3. S0, S1, S2, S3 represent the dataset is split by the se-
quences, subjects, views and objects, respectively. HO-3D
(Hampali et al. 2020) is another challenging dataset that con-
tains precise hand-object pose during the interaction. The
most commonly used version of HO-3D is the HO-3D v2.
It consists of 66,034 training images and 11,524 testing im-
ages from 10 subjects with 10 different objects. Recently,
HO-3D v3 (Hampali, Sarkar, and Lepetit 2021) is released,
which has more accurate annotations and more data includ-
ing 83,325 training images and 20,137 testing images. Eval-
uation for HO-3D v2 and HO-3D v3 are performed through
an online submission website.

We evaluate our method using two widely used metrics:
Mean Per Joint Position Error (MPJPE) and Percentage of
Successful Frames (PSF). MPJPE is the mean 3D Euclidean
distance between the predicted coordinates and the ground-
truth coordinates for each joint. PSF is defined as the pro-
portion of good frames in all testing frames. If the maxi-
mum value of the joints error in a frame is less than a certain
threshold, it will be judged as a good frame.

Method Input MPJPE IFS0 S1 S2 S3 AVG
ResNet-18 Depth 11.20 12.03 11.02 11.70 11.48 4.3

ConvNeXt-T Depth 10.57 11.32 10.29 11.11 10.82 6.4
ConvNeXt-S Depth 10.56 11.30 10.05 11.06 10.74 8.5
ConvNeXt-B Depth 10.67 11.31 10.10 11.03 10.78 8.6
PointNet++ Point 10.02 10.93 11.68 9.78 10.60 9.5
PointMLP Point 9.66 10.83 10.89 9.60 10.25 10.2
PointMLP∗ Point 9.78 11.01 11.19 9.75 10.43 13.7

IPNet-1Stage Depth
&Point 8.43 9.43 9.34 8.48 8.92 10.6

Table 1: Comparisons between different data representations
with different backbone networks. We report the MPJPE
(mm) on DexYCB dataset. The brackets under our method
indicate that we adopt ConvNeXt-T to extract 2D visual fea-
tures. IF represents the inference time (ms). ∗ represents in-
creasing the number of layers and channels of the network.

Implementation Details
We train and evaluate our method with an NVIDIA RTX
3090 GPU. The network is implemented within PyTorch and
trained using AdamW with an initial learning rate of 0.001.
For NYU and HO-3D, the learning rate is divided by 10
at 25-th epochs and the training stops at 30-th epochs. For
DexYCB, the learning rate is divided by 10 at 10-th epochs
and the training stops at 15-th epochs. We crop the input
depth image to 128×128 and sample the number of point
clouds to 1024. The values of the depth image and the 3D
point cloud are normalized to [-1, 1]. We perform data aug-
mentation including rotation ([-180, 180]), random scaling
([0.9, 1.1]) and random translation ([-10, 10]). More details
about network structure and training are provided in the sup-
plementary material.

Ablation Study
Considering that DexYCB has a large amount of data, di-
verse subjects and objects, and multiple splits, we conduct
ablation experiments on DexYCB.

Comparing with Different Data Representation For
image-based pixel-wise regression, we adopt the most fre-
quently used ResNet-18 (He et al. 2016) and the latest pro-
posed ConNeXt (Liu et al. 2022) as the backbone. For point-
based point-wise regression, we adopt the most represen-
tative network structures, PointNet++ (Qi et al. 2017), and
the latest method, PointMLP (Ma et al. 2022), as the back-
bone. In particular, for the fairness of the comparison, the
IPNet only adopts a single correction stage and does not
use the 3D hand model. As shown in Table 1, we mainly
get the following conclusions: 1) Methods based on differ-
ent data representations exhibit different properties. Point
cloud-based methods are better at predicting examples with
unseen objects (S3), and image-based methods are better at
handling examples with unseen viewpoints (S2). 2) Adopt-
ing the well-designed network structure can improve net-
work performance. However, on this basis, simply increas-
ing the width of the network or the number of layers yields a
little of gains. 3) Using both depth images and point clouds
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ID PE HE FE LA GI MC HM MPJPE (mm)
S0 S1 S2 S3 AVG

1 X

X
8.96 9.95 9.79 8.91 9.40

2 X X 8.62 9.63 9.61 8.61 9.12
3 X X 8.50 9.55 9.46 8.81 9.08
4 X X X 8.43 9.43 9.34 8.48 8.92
5 X X 8.75 9.55 9.39 8.90 9.14
6 X 8.67 9.50 9.35 8.65 9.04

7 X X X 8.23 9.25 9.05 8.27 8.71

8 X X X X 8.03 9.01 8.60 7.80 8.36

Table 2: We report the MPJPE on DexYCB dataset. ’PE’,
’HE’, and ’FE’ represent the point position information,
hand pose information and 2D visual features used in the ini-
tial point cloud feature embedding, respectively. ’LA’ repre-
sents adopting the local feature aggregation. ’GI’ represents
performing GCN-based long-range interaction. ’MC’ stands
for multi-stage correction. ’HM’ stands for the hand model.

together performs significantly better than using the images
or point clouds alone. In particular, the framework of pixel-
wise regression (Huang et al. 2020b) and point-wise regres-
sion (Ge, Ren, and Yuan 2018a) is already the previous
SOTA methods and we further adopt the latest backbone
with stronger capabilities. Nonetheless, IPNet still surpasses
them by a large margin with comparable inference speed.

Effect of 2D-3D Projection 2D CNN provides 2D vi-
sual features and 3D hand pose information for the initial
point cloud features, which is important to avoid adopting
dense local feature extraction and complex pre-processing.
As shown in Table 2, adopting the hand pose information
(ID 2) or the projected 2D visual features (ID 3) alone can
significantly improve the performance of the IPNet. Further-
more, when all the information is used together (ID 4), the
performance of the network can be further improved. In the
subsequent experiments, we use all the information by de-
fault to construct the initial point cloud features.

Effect of Components in Iterative Correction We first
verified the role of the local feature aggregation and the
graph-based long-range information interaction. As shown
in Table 2, discarding local feature aggregation (ID 5) or
long-range information interaction (ID 6) can lead to a de-
crease in network performance, which illustrates the impor-
tance of explicitly learning local geometric information and
long-range dependencies. Next, we explore the effect of the
number of correction stages. As shown in Table 2, from
single-stage (ID 4) to three-stage (ID 7), the average MPJPE
decreased by 0.21 mm. Finally, we introduce hand model in-
formation (ID 8). Even though the network with three-stage
correction already has very superior performance, the prior
information of the hand model can improve the robustness
of the network to occlusion and depth holes, so it can still
significantly improve the performance of the network. IPNet
with three-stage runs in real-time at about 30.9 FPS.

Method Input MPJPE
DeepPrior++ (Oberweger et al. 2017) Depth 12.24
Pose-REN (Chen et al. 2020) Depth 11.81
DenseReg (Wan et al. 2018) Depth 10.21
SRN (Ren et al. 2019) Depth 7.79
A2J (Xiong et al. 2019) Depth 8.61
JGR-P2O (Fang et al. 2020) Depth 8.29
AWR (Huang et al. 2020b) Depth 7.48
3DCNN (Ge et al. 2018b) Voxel 10.02
V2V-PoseNet (Moon et al. 2018) Voxel 8.41
HandVoxNet (Malik et al. 2020) Voxel 8.72
SO-HandNet (Chen et al. 2019) Point 11.20
HandPointNet (Ge et al. 2018a) Point 10.54
P2P (Ge, Ren, and Yuan 2018b) Point 9.04
PEL (Li and Lee 2019) Point 8.35
NARHT (Huang et al. 2020a) Point 9.80

IPNet Depth
&Point 7.17

Table 3: Comparison with SOTA methods of the MPJPE
(mm) on NYU (Tompson et al. 2014) dataset.

Figure 5: Comparison with SOTA methods of the PCK under
different thresholds on NYU (Tompson et al. 2014) dataset.

Comparisons with State-of-the-arts
On NYU dataset, We compare our approach with SOTA
depth-based methods. Since some methods do not provide
result files, we cannot draw them in Fig. 5. As shown in Ta-
ble 3 and Fig. 5, our method achieves the lowest MPJPE
and has the best PCK at almost all thresholds. Under a sim-
ilar element-wise regression framework, IPNet achieves the
smallest MPJPE compared to adopting depth images alone
(DenseReg (Wan et al. 2018), AWR (Huang et al. 2020b)
and A2J (Xiong et al. 2019)) or point clouds alone (P2P (Ge,
Ren, and Yuan 2018b) and PEL (Li and Lee 2019)).

On HO3D dataset, some methods only report the MPJPE
after alignment (rotation, scaling and translation are per-
formed according to the annotation information), which
does not meet the requirements of some practical applica-
tion scenarios such as augmented reality (Tang, Wang, and
Fu 2021), and may ignore some model defects. Therefore,
here we focus on MPJPE and compare with those methods
reporting MPJPE. More other metrics are included in our
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Method Input HO3D v2 HO3D v3
Hybrik (Li et al. 2021) RGB 2.89 -
ArtiBoost (Yang et al. 2022) RGB 2.53 2.34
HandOccNet (Park et al. 2022) RGB 2.49 -
HandVoxNet++
(Malik et al. 2021) Voxel 2.46 -

IPNet Depth
&Point 1.81 1.93

Table 4: The comparison with SOTA methods of the MPJPE
(cm) on HO3D v2 and HO3D v3 dataset.

supplementary material. As shown in Table 4, IPNet out-
performs the previous RGB-based methods by a large mar-
gin on both HO3D v2 and HO3D v3, which illustrates the
importance of depth information for 3D hand pose estima-
tion. Furthermore, IPNet also outperforms the depth-based
method, which shows that fully exploiting the 3D spatial in-
formation in depth data is also important.

Method Input MPJPE
S0 S1 S2 S3 AVG

A2J Depth 23.93 25.57 27.65 24.92 25.52
Spurr et al. RGB 17.34 22.26 25.49 18.44 18.44
METRO RGB 15.24 - - - -
Tse et al. RGB 16.05 21.22 27.01 17.93 20.55
HandOccNet RGB 14.04 - - - -

IPNet Depth
&Point 8.03 9.01 8.60 7.80 8.36

Table 5: The comparison with SOTA methods of the MPJPE
(mm) on DexYCB (Chao et al. 2021) dataset.

On the DexYCB dataset, since some methods are evalu-
ated on their own setting, we only compare those methods
that are experimented on the official setting, including A2J
(Xiong et al. 2019), Spurr et al. (Spurr et al. 2020), METRO
(Lin, Wang, and Liu 2021), Tse et al. (Tse et al. 2022) and
HandOccNet (Park et al. 2022). As shown in Table 5, IP-
Net greatly improves the performance on the four setting
compared to previous SOTA methods, which shows the im-
portance of depth information. IPNet outperforms previous
SOTAs in both the single-hand scenario and the more chal-
lenging hand-object interaction scenario.

Qualitative Results
Some qualitative results for NYU, HO3D and DexYCB
datasets are shown in Fig. 6. First, for the fine-grained pose
(1-th row) and the pose that suffer from finger self-similarity
(2-th row), IPNet shows a stronger perception of 3D spatial
information and can more accurately predict the position of
the fingertip. Second, for some complex poses with serious
self-occlusion (3-th row and 4-th row), IPNet is able to deal
with uncertainty caused by self-occlusion well, which ob-
tains more accurate and reasonable poses than other SOTA
methods. Meanwhile, our method is also very robust to the
occlusion caused by objects. First, object occlusion may
cause the collapse of the whole or part of the hand pose. Our
method can produce more reasonable hand pose through the

P2P V2V AWR PointMLP IPNet GTIPNet
(Initial)

Figure 6: Top: Qualitative results for NYU dataset. Each col-
umn shows the estimated hand pose for one method. Bot-
tom: Qualitative results for HO3D and DexYCB datasets.
The first row represents the initial hand pose of IPNet, and
the second row represents the corrected pose of IPNet.

iterative correction (the first four columns). Second, the esti-
mated hand pose may be offset due to the interference of the
object, and IPNet can correct it by exploring local geometric
information (the last three columns).

Conclusion
In this paper, we propose the IPNet for efficient and ro-
bust 3D hand pose estimation. The key insight is to com-
bine the complementary advantages of depth image and 3D
point cloud. We adopt 2D CNN to efficiently extract visual
representations and perform initial pose estimation in image
space. Then, we utilize projected visual features and esti-
mated pose to construct the initial point cloud features and
perform iterative correction in 3D point space. In particular,
we propose a sparse anchor-based “aggregation-interaction-
propagation” paradigm to exploit the 3D geometry structure
of depth data, which significantly reduces irregular data ac-
cess. Furthermore, we introduce a 3D hand model to the iter-
ative correction in order to improve the robustness of IPNet
to occlusion and depth holes. Experiments on the three chal-
lenging hand pose datasets demonstrate the effectiveness of
the IPNet, where IPNet outperforms the previous methods
by a large margin in the hand-object interaction scenario.
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