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Abstract

Self-supervised space-time correspondence learning is emerg-
ing as a promising way of leveraging unlabeled video. Cur-
rently, most methods adapt contrastive learning with min-
ing negative samples or reconstruction adapted from the im-
age domain, which requires dense affinity across multiple
frames or optical flow constraints. Moreover, video corre-
spondence predictive models require mining more inherent
properties in videos, such as structural information. In this
work, we propose the VideoHiGraph, a space-time correspon-
dence framework based on a learnable graph kernel. Con-
cerning the video as the spatial-temporal graph, the learning
objectives of VideoHiGraph are emanated in a self-supervised
manner for predicting unobserved hidden graphs via graph
kernel manner. We learn a representation of the temporal co-
herence across frames in which pairwise similarity defines
the structured hidden graph, such that a biased random walk
graph kernel along the sub-graph can predict long-range cor-
respondence. Then, we learn a refined representation across
frames on the node-level via a dense graph kernel. The self-
supervision of the model training is formed by the struc-
tural and temporal consistency of the graph. VideoHiGraph
achieves superior performance and demonstrates its robust-
ness across the benchmark of label propagation tasks involving
objects, semantic parts, keypoints, and instances. Our algo-
rithm implementations have been made publicly available at
https://github.com/zyqin19/VideoHiGraph.

Introduction
Self-supervised learning (SSL) paradigm seeks to mine su-
pervisory information from the unsupervised data and design
functional pretext learning tasks. Guided by the idea of SSL,
self-supervised representation learning based on still images
has made a flurry of advances, especially using contrastive
learning (Chen et al. 2020; Xie, Wang, and Ji 2020), yet
this has rarely translated to the field of video understand-
ing (Wang et al. 2021a).

Video is often understood as a variant in that the image ex-
tends the time dimension, which limits the progress of video
understanding (Feichtenhofer et al. 2019; Jabri, Owens, and
Efros 2020; Araslanov, Schaub-Meyer, and Roth 2021)—ex-
tending contrastive learning to videos bringing a huge com-
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putation burden and unsatisfying performance, especially
for label propagation tasks that require fine-grained local-
ization ability in each frame. One potential solution resorts
to mining temporal correspondence (i.e., cycle-consistency)
across the video as temporal supervision (Vondrick et al.
2017; Wang et al. 2018; Lai and Xie 2019; Wang, Jabri, and
Efros 2019; Wang et al. 2021b; Xu and Wang 2021; Wang
et al. 2021a). On account of the hypothesis about intrinsic
slow feature changing properties (Turner and Sahani 2007;
Wiskott and Sejnowski 2002; Lu et al. 2020a), these methods
have achieved promising performance across several label
propagation tasks, such as video object segmentation (Lu et al.
Jun. 2019,A; Wang et al. 2022), pose tracking (Li et al. 2019),
and semantic part propagation (Zhou et al. 2018). Neverthe-
less, these methods depend on repeatedly applying complex
greedy tracking and adjacent frame sampling training over
time that may be trapped in local optimality.

Jabri, Owens, and Efros (2020) recently argued that video
temporal correspondences are implicit supervision, and ex-
ploit directed graph view to represent the video. This way,
the temporal correspondence can be comprehended as patch-
level similarity learning. While this is a promising direction,
the proposed method needs dense affinity computation among
multiple frames and neglects the underlying structural infor-
mation in the video (Narayanan and Mitter 2010).

In this paper, we develop an SSL framework via hidden
graph prediction for space-time correspondence learning of
video data, termed as VideoHiGraph (See Fig. 1). Firstly, we
construct a spatial-temporal graph to describe a video, where
each image patch is formulated as a node and the similarity
among the intra-frame and inter-frame as the edge. A good
correspondence for the label propagation task implies that
the nodes inside each frame should automatically cluster
into their respective semantic part (sub-graph); meanwhile,
sub-graphs in adjacent frames share a similar motion trend.
With this spirit, we employ graph kernels to capture spatial
and temporal structure in the video and take the structural
consistency to guide correspondence learning.

We first employ hidden graphs to incorporate reliable
nodes in the spatial graph and build the target-related sub-
graph automatically. Then, we connect the sub-graphs across
different frames via a random walk graph kernel. Considering
the missing annotations in the videos, we additionally utilize
the idea of temporal consistency as node-level supervision.
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Figure 1: Illustration of the main idea. We learn video space-time correspondence in an unsupervised manner by (i) the structural
consistency and (ii) the temporal consistency. Through the structural consistency, we can learn the sub-graph representation of the
spatial graph (the green rectangular box) and then capture the spatio-temporal structure of the video. The temporal consistency is
treated as supervised to provide good node-level representation.

In this way, our solution can suppress the adverse impact of
ambiguous matches. The effectiveness of VideoHiGraph on
graph-level and node-level representation learning is demon-
strated on various label propagation tasks.

To summarise, our contributions are as follows:

• We propose a new self-supervised space-time correspon-
dence learning framework, VideoHiGraph, which is a
complementary scheme to exploit video supervision from
the graph and node-level perspectives.

• We involve the biased graph kernel to produce structural
representations during model learning. This kernel allows
our model to mine more free supervision via learnable
hidden graphs without any heuristics.

• We demonstrate the model’s high transparency on video
correspondence tasks, i.e., video object segmentation, se-
mantic part propagation, pose tracking and video instance
segmentation. On these downstream tasks, our model even
outperforms task-specific fully-supervised ones.

Related Work
Temporal Correspondence. In video understanding and
analysis, temporal correspondence is a crucial factor in
learning motion states and inevitably moving trajectories
of objects. Traditional approaches tend to formulate a
self-supervised learning paradigm as a colorization proxy
task (Vondrick et al. 2017; Lai and Xie 2019; Li et al. 2019;
Wang, Jabri, and Efros 2019; Lai, Lu, and Xie 2020) by re-
covering the color correspondence of pixels. However, the
underlying assumption of color consistency (i.e., the corre-
sponding pixels have similar colors) is invalid for lighting
change or deformation. Other methods (Janai et al. 2018;
Yin and Shi 2018; Meister, Hur, and Roth 2018; Wang et al.
2019; Wang, Jabri, and Efros 2019; Jabri, Owens, and Efros
2020; Son 2022) use contrastive cycle-consistency in time to
supervise model training.

Recent approaches (Wang, Zhou, and Li 2021; Lu et al.
2020c; Xu and Wang 2021; Zhao, Jin, and Heng 2021; Xu and

Wang 2021; Lu et al. 2021; Li et al. 2022) take a step further
with surrogate video classes, pre-aligned patch pairs, video
frame-level similarity, or neighboring views to exploit the
inter-video context. While these methods are impressive, they
lack a crucial element for robust correspondence: structure
correspondence of inter-video. In response, we employ the
hidden graph better to capture spatial and temporal structure
among the video to learn correspondence.

Self-supervised Representation Learning. For static
image-based self-supervised learning, the solutions based
on contrastive learning reduce the performance gap to a su-
pervised counterpart (Chen et al. 2020; Grill et al. 2020;
He et al. 2020). For video sources, several previous stud-
ies (Asano, Rupprecht, and Vedaldi 2020; Feichtenhofer et al.
2021) have found that adding additional temporally-invariant
or temporally-persistent constraints to these action recogni-
tion methods can bring considerable performance improve-
ments. In addition, some work (Fernando et al. 2017; Dave
et al. 2022) is explicitly tailored to learning spatial-temporal
representations of video recognition and understanding tasks.
However, these efforts are restricted by typically computa-
tional complexity in label propagation tasks, as they do not
learn fine-grained correspondences in the context, at the
object or instance level.

Self-supervised Graph Representation Learning. Graph
representation learning method models the distribution of
nodes with connectivity in the graph. Specifically, graph em-
bedding and graph kernel are the mainstreams of existing
self-supervised graph representation methods. The graph em-
bedding methods are mainly based on stochastic (i.e., random
walk) heuristics (Perozzi, Al-Rfou, and Skiena 2014; Grover
and Leskovec 2016; Hamilton, Ying, and Leskovec 2017)
while sampling negatives randomly. However, these methods
overemphasize proximity information at the expense of struc-
tural information (Hassani and Khasahmadi 2020) and do not
take full advantage of node features (You, Ying, and Leskovec
2019). The graph kernel methods aspect (Borgwardt and
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Kriegel 2005; Shervashidze et al. 2009, 2011; Chen, Jacob,
and Mairal 2020) decomposes graphs into substructure (in-
cluding random walks, shortest paths, subtrees, graphlets,
etc.) and measures the pairwise similarity among sub-graphs
by the kernel function. Nevertheless, these methods require
artificially designed measures to measure the similarity be-
tween substructures. Instructively, RWNN (Nikolentzos and
Vazirgiannis 2020) compares a spatio-temporal graph (input)
against learnable graphs with the random walk kernel for
learning graph representations, which focus on structure. In-
spired by RWNN (Nikolentzos and Vazirgiannis 2020), we
exploit a biased random walk kernel to characterize the local
neighborhoods and macro-view structure in videos.

Method

Preliminaries of Graph Kernel

General Formulations of Graph Kernel. Graph kernels
give rise to well-defined function spaces to identify a com-
pact sub-graph structure and possess rules of composition
that guide how input graphs can be built from simpler sub-
graph (i.e., hidden graphs) (Lei et al. 2017; Jagarlapudi and
Jawanpuria 2020; Nikolentzos and Vazirgiannis 2020). Re-
garding unlabeled video as a graph, we compare the input
graphs against several learnable hidden graphs to learn the
sub-graph structure. We formulate this as an optimization
task that maximizes the similarity between the distributions
of the input graph and the hidden graphs with graph kernels
in a random walk manner.

Formally, we define two graphs as G1 = (V1,E1) and
G2 = (V2,E2) with |V1| = n and |V2| = m, and the
direct product as G× = (V×,E×) with |V×| = nm that is
a graph over pairs of nodes from G1 and G2 with nodes set
V× = {(v1, v2) : v1 ∈ V1 ∧ v2 ∈ V2} and edges set E× =
{{(v1, v2), (u1, u2)} : {v1, u1} ∈ E1 ∧ {v2, u2} ∈ E2}.

In concrete, the random walk graph kernel performs ran-
dom walks on two graphs G1 and G2 separately, quantify-
ing the similarity between pairwise graphs by the number
of matched walks. We perform simultaneous random walks
within two graphs, which can be formalized as a random
walk on G× in an elegant way to find the correspondence
between hidden graphs (Gärtner, Flach, and Wrobel 2003;
Nikolentzos and Vazirgiannis 2020).

k×(G1,G2) =

|V×|∑
i,j=1

[
P∑

p=0

(λA×)
p

]
ij

, (1)

where A× ∈ Rnm×nm is the adjacency matrix of G× (Xu
et al. 2019), λ is the positive, real-valued bias, and P is the
step of the walk.

Furthermore, we extend the scalar-node in G1, G2 with
learnable vectors F1 ∈ Rn×d, F2 ∈ Rm×d to better depict
the node relationship. Then, let F× = F1F

⊤
2 ∈ Rn×m be

the similarity between the two graphs’ nodes. The graph
kernel in Eq. 1 can be further expanded to consider the node
similarity with bias, and the P -step random walk kernel with

1v

2v

λ=1λ=
1/

bp

λ=1/bq

λ=1/bq

Figure 2: Illustration of the bias of graph kernel. The walker
has walked from node v1 to node v2, now evaluating the next
walk’s possible step (red arrow).

f = vec(F×) ∈ Rnm is defined as:

k×(G1,G2) =

|V×|∑
i,j=1

fifj

[
P∑

p=0

λpA
p
×

]
ij

=

P∑
p=0

f⊤λpA
p
×f .

(2)

The Bias of Graph Kernel. Aimed to capture the entire
graph’s structural information efficiently, we hope to take ho-
mophily and structural equivalence (Henderson et al. 2011)
into consideration when exploring diverse local neighbor-
hoods in the process of random walking. To this end, we
further developed a flexible biased random walk to obtain the
learnable hidden graph, as shown in Fig. 2.

To be concrete, for bias in each step (λ in Eq. 2), we intro-
duce a second-order random walk guided by two learnable
parameters bp and bq (Grover and Leskovec 2016). After
walking from node v1 to v2 and now residing at node v2, the
probability of the next walk to node v3 is considered as:

λbp,bq (v1, v3) =


1/bp, if dv1,v3 = 0

1, if dv1,v3 = 1

1/bq, if dv1,v3 = 2

, (3)

where dv1,v3 = 1 or 2 denote that v3 is the one-hop or two-
hop neighbor of v1, dv1,v3 = 0 indicates that the walker has
returned from node v2 to node v1.

Framework
In the context of video correspondence learning, we present
our VideoHiGraph using the proposed biased graph kernel.
Let vclip be an input video clip with T frames, which is con-
structed as a spatial-temporal graph. Gt is the spatial graph
whose nodes represent the patch features extracted from tth

frame and mapped by an encoder ϕ, and nodes in adjacent
frames share an edge. As shown in Fig. 3, our method learns
both graph-level and node-level correspondence.

Graph-Level Correspondence Learning For graph-level
correspondence learning, we first extract the spatial structure
i.e., sub-graphs, of the spatial graph in each frame. Then, the
temporal graph is constructed based on cross-frame match-
ing sub-graphs. Building upon a spatial-temporal graph to
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Figure 3: The proposed model for correspondence learning on graph and node levels. We construct the spatial graph based on
grid patches (nodes) of t frame. (i) Graph-level learns sub-graph representing the spatial structure of t frame based on biased
graph kernel with hidden graphs. Next, we build the temporal graph to learn long-range correspondence by matching the same
sub-graphs in t and t′ frames. (ii) Node-level links all cross-frame nodes to construct temporal graph to provide self-supervised
signals based on graph kernels.

describe the video, we can encode structural information or
multiple-nodes relationship into the representations.

Concretely, we initialize H learnable hidden graphs (i.e.,
the adjacency matrix and node features are learnable) as sub-
graphs and compare the spatial graph Gt against these hidden
graphs Gt = {G(1)

t ,· · · ,G(h)
t ,· · · ,G(H)

t }, h∈ {1,· · ·,H}. Fol-
lowing the above preliminaries, the structural features of the
sub-graph can be obtained as:

K(h)
t =f(cat[k1

×(Gt,G(h)
t ) ·F (h)

t ,. . .,kP
×(Gt,G(h)

t ) ·F (h)
t )],

Kt = {K(1)
t ,. . . ,K(h)

t ,. . . ,K(H)
t },

(4)

where ‘·’ denotes the dot product, f(·) and cat[·, ·] mean
linear projection and concatenation operation, kp×(Gt,G(h)

t )

is the pth-step graph kernel value, p∈{1,· · ·, P} (See Eq. 2),
F

(h)
t ∈Rm×d is the node feature of G(h)

t , m and d denote the
number and feature dimension of nodes, respectively.

Furthermore, we employ cross-frame matching to asso-
ciate the sub-graphs (Zeng et al. 2019; Brasó and Leal-Taixé
2020). We first sample two sub-graph matching features
K(h)

t ,K(h)
t′ ∈Rm×d in different frames t, t′ by distant sam-

pling strategies (Xu and Wang 2021) and match these features
of two graphs with the matching matrix M ∈ {0, 1}m×m.
The optimization of M is achieved by maximizing the fol-
lowing object function (Jagarlapudi and Jawanpuria 2020):

max
M

Tr(MK×), (5)

where K× = K(h)
t′ K(h)⊤

t , Tr(·) denotes the trace of a ma-
trix. To solve Eq. 5, one can relax M to be an element of
the transportation polytope (Asano, Rupprecht, and Vedaldi

2020; Cuturi 2013):

max
M

Tr(M⊤K×) + κh(M),

s.t. M∈Rm×m
+ , M⊤1m = 1m,M1m = 1m,

(6)

where 1m denotes the vector of all ones of m dimensions.
h(M)=−

∑
i,j Mi,j logMi,j is entropy as the extra regu-

larization term to reduce the randomness of node matching,
controlled by hyperparameters κ>0. We use a small value of
κ to ensure that each node of K(h)

t is assigned to one and only
one node of K(h)

t′ , and vice versa. With the soft assignment
relaxation, the solver of Eq. 6 can be given as (Cuturi 2013):

M=diag(u′)exp
(K×

κ

)
diag(v′), (7)

where u′ ∈ Rm and v′ ∈ Rm are renormalization vectors
following Sinkhorn-Knopp iteration (Cuturi 2013).

With the matching probability matrix M , the ith node
of K(h)

t is assigned to the jth node of K(h)
t′ , where j =

argmaxi′{Mi,i′}mi′=1. Furthermore, P(h)
t,i = {K(h)

t′,j}Tt′=1 de-

notes the best matching node set of K(h)
t,i across the T frames,

and the other node set is U (h)
t,i = {K(h)

t′,z}
T,m
t′,z=1/P

(h)
t,i . Briefly

speaking, objects in each frame is modeled as multiple sub-
graphs. Here, we use the InfoNCE loss (Van den Oord, Li,
and Vinyals 2018) to preserve the structure consistency:

Lgraph=

H,T,m∑
h,t,i=1

∑
p∈Ph

t,i

log
− exp(K(h)

t,i ·p)/τp)
exp(K(h)

t,i ·p/τp)+
∑

u∈Uh
t,i

exp(K(h)
t,i ·u/τp)

,

(8)
where τp is a hyper-parameter.
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Node-Level Correspondence Learning Building on
graph-level correspondence, we employ the temporal consis-
tency on the node-level temporal graph to refine the space-
time correspondence. Inspired by CRW (Jabri, Owens, and
Efros 2020), we construct a temporal graph in that the ad-
jacent frame nodes share a directed edge, and the pairwise
similarity of nodes denotes weight. The node-level corre-
spondence is obtained by performing a forward-backward
cycle on the temporal graph, taking the weight of edges as
the transition probability.

More precisely, let the dense node feature maps of Gt and
Gt+1 be Ft and Ft+1. The non-negative affinities matrix is
computed over edges departing from each node as:

St+1
t (i, j) =

exp(< F i
t ,F

j
t+1 > /τa)∑N

l=1 exp(< F i
t ,F

l
t+1 > /τa)

. (9)

For a video clip with T frames in total, we perform a
T -step random walk on the temporal graph:

S̄T
1 =

T−2∏
i=0

softmax(Si+2
i+1). (10)

With the matching matrix S̄T
1 , similar to Eq. 8, the node-

level objective function is minimized as follows:

Lnode = Lcross(R, I),

where R = S̄T
1 S̄

1
T ⇒ forward-backward cycle,

(11)

where Lcross is cross entropy loss function, and I is the
target position index generated according to the location of
the t frame node, e.g., the ground truth of the ith node is i.

Total Loss. Finally, we minimize the hidden-graph and
node-level objective with the weight β:

Ltotal = Lgraph + βLnode. (12)

Implementation
We generate node embedding (i.e., image patch) with the
encoder ϕ-ResNet-18 (He et al. 2016). We reduce the down-
sampling factor to 1/8. For each frame, we sampling over-
lapping 32×32 patches in an 8×8 grid as nodes, and then
fed them into ϕ to extract node features. Our training videos
come from Kinetics400 (Carreira and Zisserman 2017) with-
out using any annotation labels. T =18 is the length of the
input video clip. We set T/2 = 9 for the distant sampling
strategy of the graph-level correspondence, and node-level
continuous sampling (Xu and Wang 2021) is set with a fixed
frame interval of 2 from the starting frame.

The hyper-parameters are empirically set to: H = 5, P =3,
κ= 0.03, τp = 0.1, τa = 0.07, β = 0.5. We use the Adam
solver to optimize the loss function. The learning rate is set
to 1×10−4, and the weight decay is 1×10−6.

Experiments
Evaluation of Learned Representation
Following previous works (Wang, Jabri, and Efros 2019;
Wang et al. 2021b), the evaluation does not involve addi-
tional finetune. We evaluated our VideoHiGraph on two

types of fine-grained video correspondence tasks: one-shot
paradigm (Lai and Xie 2019; Wang et al. 2021b) and zero-
shot paradigm (Lei, Xing, and Chen 2020; Lu et al. 2020b;
Qin et al. 2021). The one-shot paradigm is treated as label
propagation that propagates the initial label of the first frame
is to subsequent frames according to the dense correspon-
dence learned. Meanwhile, the zero-shot paradigm casts the
evaluation as a temporal association that needs to track and
segment all objects automatically. The first task involves ob-
ject segmentation, semantic parts tracking, and human pose
tracking, while the latter involves instance association.

Video Object Segmentation In Table 1, We first evaluate
our method based on the popular video object segmentation
benchmark DAVIS-2017 (Pont-Tuset et al. 2017). VideoHi-
Graph is considerably superior to all current SSL methods,
leading the second-best CLTC (Jeon et al. 2021) and the
third-best CRW (Jabri, Owens, and Efros 2020) by 0.2 and
2.2 in terms of J&Fm, respectively. Remarkably, CLTC used
task-specific model weights and architectures for DAVIS. It
suggests that our graph kernel-based model captures the dy-
namic structure of the video better than the densely connected
approach. Meanwhile, our SSL approach, trained without
pixel-wise manual annotations, achieves competitive perfor-
mance compared to some famous supervised models (i.e.,
OSVOS (Caelles et al. 2017) and FEELVOS (Voigtlaender
et al. 2019)). This result indicates that structural and temporal
consistency provides a good supervise signal and dramati-
cally affects the correspondence quality.

In Table 2, we examine our SSL method on another VOS
benchmark, i.e., YouTube-VOS (Xu et al. 2018), again con-
firming the advantage of our approach among all the above
SSL methods and partially famous supervision methods. The
performance reported and the visualization of the learned
hidden graphs in Fig. 4 confirm the superiority and validity
of our approach to exploring video structure, allowing our
model to learn more robust representations.

Video Part Segmentation and Pose Keypoint Tracking
We next evaluate our VideoHiGraph on the Video Instance
Parsing (VIP) benchmark (Zhou et al. 2018) for the body part
propagation task and the JHMDB benchmark (Jhuang et al.
2013) for the pose keypoint tracking task. VideoHiGraph
consistently outperforms all above SSL methods (See Table 3)
on semantic-level (mIoU), instance-level (AP), and keypoint-
level (PCK) parsing, especially the main counterpart: CRW
and CLTC. For the VIP, the performance is attributed to the
method’s ability that learns well cross-instance differentiation
and intra-instance invariance. For the JHMDB, the success
indicates that the model learns robust representations from
sufficiently negative samples to learn sub-graph structure.

Video Instance Segmentation We finally examine the
model performance on the video instance segmentation
benchmark - YouTube-VIS (Yang, Fan, and Xu 2019) for
experimental completeness. Our VideoHiGraph exhibits su-
perior performance on the instance-level association (See
Table 4), and outperforms the seminal tracking-by-detection
work, i.e., MaskTrack R-CNN (Yang, Fan, and Xu 2019), and
the bottom-up method, i.e., STEm-Seg (Athar et al. 2020).
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Figure 4: Examples of hidden graphs learned (lower right corner) from the graph-level correspondence learning component and
some target-related sub-graphs of the YouTube-VOS.

Method Backbone Sup. Dataset (size) J&Fm Jm Jr Fm Fr

Colorization (Vondrick et al. 2017) ResNet-18 % Kinetics (800 hours) 34.0 34.6 34.1 32.7 26.8
CorrFlow (Lai and Xie 2019) ResNet-18 % OxUvA (14 hours) 50.3 48.4 53.2 52.2 56.0
UVC (Li et al. 2019) ResNet-50 % C/Kinetics (800 hours) 60.9 59.3 68.8 62.7 70.9
MAST (Lai, Lu, and Xie 2020) ResNet-18 % OxUvA (14 hours) 63.7 61.2 73.2 66.3 78.3
VFS (Xu and Wang 2021) ResNet-18 % Kinetics (800 hours) 66.7 64.0 - 69.4 -
CRW (Jabri, Owens, and Efros 2020) ResNet-18 % Kinetics (800 hours) 68.3 65.5 78.6 71.0 82.9
NRG (Zhao, Jin, and Heng 2021) ResNet-18 % Kinetics (800 hours) 68.7 65.8 77.7 71.6 84.3
CLTC (Jeon et al. 2021) ResNet-18 % YT (5.58 hours) 70.3 67.9 78.2 72.6 83.7
Ours ResNet-18 % Kinetics (800 hours) 70.5 67.9 80.7 73.1 83.8

ResNet (He et al. 2016) ResNet-18 " I (1.28M, - ) 62.9 60.6 69.9 65.2 73.8
OSVOS (Caelles et al. 2017) VGG-16 " I/D (1.28M, 10k) 60.3 56.6 63.8 63.9 73.8
FEELVOS (Voigtlaender et al. 2019) Xception-65 " I/C/D/YT (1.28M, 663k) 71.5 69.1 79.1 74.0 83.8
STM (Oh et al. 2019) ResNet-50 " I/D/YT (1.28M, 164k) 81.8 79.2 88.7 84.3 91.8

Table 1: Quantitative comparisons for video object segmentation on DAVIS-2017. ”Sup.” indicates whether it is a supervised
model. For convenience, we simplified the representation of some datasets, e.g., ImageNet(I), COCO(C), DAVIS(D), PASCAL-
VOC(P), YouTube-VOS(YT).

Method Backbone Sup. Overall JSeen ↑ FSeen ↑ JUnseen ↑ FUnseen ↑
Colorization (Vondrick et al. 2017) ResNet-18 % 38.9 43.1 38.6 36.6 37.4
CorrFlow (Lai and Xie 2019) ResNet-18 % 46.6 50.6 46.6 43.8 45.6
MAST (Lai, Lu, and Xie 2020) ResNet-18 % 64.2 63.9 64.9 60.3 67.7
CLTC (Jeon et al. 2021) ResNet-18 % 67.3 66.2 67.9 63.2 71.7
Ours ResNet-18 % 67.8 66.3 68.1 64.5 72.1

OSVOS (Caelles et al. 2017) VGG-16 " 58.8 59.8 60.5 54.2 60.7
PreMVOS (Luiten, Voigtlaender, and Leibe 2018) ResNet101 " 66.9 71.4 75.9 56.5 63.7
STM (Oh et al. 2019) ResNet-50 " 79.4 79.7 84.2 72.8 80.9

Table 2: Quantitative comparisons for video object segmentation on YouTube-VOS with “Seen” and “Unseen” classes.

Note that our method with a lightweight backbone shows
substantial competitive performance without annotations.

Further Analysis

Hidden Graphs. We first study the influence of our core
differentiable biased graph kernel on performance. As shown
in Table 5 (left), we study more variants by replacing the pro-
posed biased graph kernel method with (1) the shortest path
kernel (SP) (Borgwardt and Kriegel 2005), (2) the graphlet
kernel (GR) (Shervashidze et al. 2009), and (3) the Weisfeiler-

Lehman subtree kernel (WL) (Shervashidze et al. 2011).

Due to the learning of sub-graph structure, our differen-
tiable biased graph kernel can recognize the fundamental
properties of sub-graphs that are indistinguishable in other
graph kernels (Kriege et al. 2018) (See Fig. 4), such as
triangle-freeness (i.e., a graph does not contain a cycle with
three nodes). Benefiting from taking the homophily and struc-
tural equivalence into account, we explore a complementary
solution and achieve better results than WL, confirming the
superiority of our proposed biased graph kernel. Meanwhile,
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VIP JHMDB

Method Backbone Sup. mIoU↑ AP ↑ PCK@0.1 ↑ PCK@0.2 ↑
TimeCycle (Wang, Jabri, and Efros 2019) ResNet-50 % 28.9 15.6 57.3 78.1
UVC (Li et al. 2019) ResNet-50 % 34.1 17.7 58.6 79.6
CRW (Jabri, Owens, and Efros 2020) ResNet-18 % 38.6 - 59.3 84.9
CLTC (Jeon et al. 2021) ResNet-18 % 37.8 19.1 60.5 82.3
Ours ResNet-18 % 39.6 20.9 61.7 85.2

ResNet (He et al. 2016) ResNet-18 " 31.9 12.6 53.8 74.6
ATEN (Zhou et al. 2018) ResNet-50 " 37.9 24.1 - -
TSN (Song et al. 2017) CPM (Wei et al. 2016) " - - 68.7 92.1

Table 3: Quantitative comparisons for part segmentation and pose tracking on VIP and JHMDB val, respectively.

Method Backbone Supervised AP AP50 AP75 AR1 AR10

DeepSORT(Wojke, Bewley, and Paulus 2017) ResNet-50 " 26.1 42.9 26.1 27.8 31.3
SeqTracker(Yang, Fan, and Xu 2019) ResNet-50 " 27.5 45.7 28.7 29.7 32.5
MaskTrack R-CNN(Yang, Fan, and Xu 2019) ResNet-50 " 30.3 51.1 32.6 31.0 35.5
STEm-Seg(Athar et al. 2020) ResNet-50 " 30.6 50.7 33.5 31.6 37.0

Ours ResNet-18 % 30.8 54.5 33.9 33.3 37.2

Table 4: Quantitative comparisons for video instance segmentation on YouTube-VIS21 val.

Kernel J&Fm
SP 67.7
GR 68.5
WL 68.9
Our 70.5

Lnode Lgraph Bias J&Fm

" 68.4
" " 69.9
" " " 70.5

Table 5: Ablative studies of Graph Kernel Strategies (left)
and Training Components L (right).
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Figure 5: Ablative studies of Step Length P (left) and Se-
quence Length T (right).

we determine that the too-large step length P of the biased
graph kernel hinders the performance as shown in Fig. 5 (left)
that tends to over-complex the hidden graph learned.

Training Components. We next investigate the efficacy of
essential components, i.e., graph-level and node-level corre-
spondence. In Table 5 (right), our parser modeling graph-level
correspondence provides a substantial performance gain in
J&Fm, i.e., +1.5 (see row 2), and +2.1 (see row 3), respec-
tively. The graph-level component can distinguish similar
(hard negative sample) or occluded objects from a structured
perspective, and the node-level component complementary
guarantees a confidence score in the self-supervised setting.

Biased Graph Kernels. We also validate the assumption
of our biased graph kernels. Table 5 (right) is evident that
biased graph kernels in exploring neighborhoods outperform
non-biased graph kernels (bp = bq = 1, see row 2), giving us
a 0.6 gain. The learnable parameters bp and bq can adaptively
mine the right mix of homophily and structural equivalence
to explore the graph’s structure.

Sequence Length. Finally, we explore the contribution of
the sequence length in the training phase. As shown in Fig. 5
(right), the best performance for our model can be obtained
by setting the sequence length of the video clip to T = 18.
We find that longer training sequences in conjunction with
sampling strategy accelerated convergence and improved
performance on the DAVIS task. Of course, an excessively
long sequence length can increase the task’s difficulty.

Conclusions

In this paper, we presented an SSL approach for temporal cor-
respondence learning, VideoHiGraph, from unlabelled videos.
Utilizing the prior of corresponding patches consistency, we
train the hidden graph network to achieve temporal consis-
tency based on the graph kernel. Then, cross-frame matching
works for regularizing representation learning and improving
correspondence inference. We argue that a unified framework
is an appealing alternative to task-specific methods, and the
effectiveness was thoroughly validated over various label
propagation tasks. Despite the impressive results, we also ex-
pect a flurry of innovations along the direction of modalities
consistency in areas such as video, text, audio, and more.
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