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Abstract

Recently, webly supervised learning (WSL) has been stud-
ied to leverage numerous and accessible data from the In-
ternet. Most existing methods focus on learning noise-robust
models from web images while neglecting the performance
drop caused by the differences between web domain and real-
world domain. However, only by tackling the performance
gap above can we fully exploit the practical value of web
datasets. To this end, we propose a Few-shot guided Proto-
typical (FoPro) representation learning method, which only
needs a few labeled examples from reality and can signif-
icantly improve the performance in the real-world domain.
Specifically, we initialize each class center with few-shot
real-world data as the “realistic” prototype. Then, the intra-
class distance between web instances and “realistic” proto-
types is narrowed by contrastive learning. Finally, we mea-
sure image-prototype distance with a learnable metric. Proto-
types are polished by adjacent high-quality web images and
involved in removing distant out-of-distribution samples. In
experiments, FoPro is trained on web datasets with a few real-
world examples guided and evaluated on real-world datasets.
Our method achieves the state-of-the-art performance on
three fine-grained datasets and two large-scale datasets. Com-
pared with existing WSL methods under the same few-shot
settings, FoPro still excels in real-world generalization. Code
is available at https://github.com/yuleiqin/fopro.

Introduction
The past decade has witnessed a revolution in computer vi-
sion with the advent of large-scale labeled datasets (e.g.,
ImageNet (Deng et al. 2009)). However, a large collec-
tion of data are sometimes inaccessible, let alone the time-
consuming and expensive annotations. On the contrary, there
are abundant weakly labeled images on the Internet. There-
fore, webly supervised learning (WSL) has attracted grow-
ing attention from researchers (Krause et al. 2016; Kaur,
Sikka, and Divakaran 2017; Kolesnikov et al. 2019; Zhang
et al. 2020; Tu et al. 2020; Liu et al. 2021; Zhang et al. 2021).

Queries and tags are directly used as weak labels with-
out verification, bringing about a considerable proportion
of noises in web datasets (e.g., 20% in JMT-300M (Sun
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Figure 1: Differences between web and real-world images.
(a) Web dataset noise. (b) Web dataset bias.

et al. 2017), 34% in WebVision (Li et al. 2017), and 32%
in WebFG496 (Sun et al. 2021)). As shown in Fig. 1(a), var-
ious noises include label flipping errors, semantic ambiguity
of polysemy queries, and outliers of unknown categories. To
alleviate their effect, prior knowledge such as neighbor den-
sity (Guo et al. 2018), reference clean sets (Jiang et al. 2018;
Lee et al. 2018), and side information (Zhou et al. 2020;
Cheng et al. 2020) is explored for label correction and sam-
ple selection. Recently, Li et al. (Li, Xiong, and Hoi 2020)
develop a self-supervised method with representative class
prototypes (MoPro) to achieve satisfying performance.

Most existing WSL methods are merely concerned with
noise reduction. They ignore the model degradation in real-
world scenarios because the performance on web domain
testing sets is emphasized in previous model assessments.
Domain gaps exist between images crawled from the web
(e.g., advertising photos, artworks, and rendering) and those
captured in reality (see Fig. 1(b)). In this case, the better
fitting of web images counteractively leads to worse gener-
alization on practical applications. Few studies try to tackle
such performance gaps by domain adaptation methods. For
example, Xu et al. (Xu et al. 2016) distill knowledge from
the web domain to the real-world domain. Niu et al. (Niu,
Li, and Xu 2015) fine-tune pretrained models on real-world
datasets. However, both of them need plenty of labeled data
in the target domain, which impedes practicability.

Unlike the methods above, our objective is to cost-
efficiently mine web data for real-world applications. We
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Figure 2: (a) The t-SNE (Van der Maaten and Hinton 2008) of the low-dimensional embeddings of web images (◦) substantiates
that with the increase of K, class prototypes (×) are regularized to approach few shots (∆) with dense intra-class and isolated
inter-class distribution. (b) The diminished performance gap between the testing results of web (WebVision1k) and real-world
(ImageNet1k) images confirms that FoPro takes full advantage of few shots to improve its generalization beyond the web
domain, making web data truly useful in learning representations for actuality. (c) FoPro estimates noise-robust prototypes to
pull instances nearby closer. Noisy samples are filtered by assessing their relation with prototypes. Only clean ones update
prototypes in return. FoPro achieves better interpretability, discriminability, and generalization. Best viewed magnified.

handle both the noise and domain gap by resorting to a few
human-labeled samples for guidance on whom to learn from
and what to learn. In our setting, clean labeled examples are
too scarce to train or fine-tune a deep model, and therefore
alternative methods need to be developed in response.

To this end, we propose a robust prototypical representa-
tion learning method with noisy web data and a few clean
examples (see Fig.2). Motivated by the anchoring role of
class prototypes (Li et al. 2020; Li, Xiong, and Hoi 2020),
we introduce Few-shot guided Prototypes, termed as Fo-
Pro, to effectively deal with noise and domain gap. Techni-
cally, we project features of the penultimate layer of a clas-
sification model to low-dimensional embeddings. The criti-
cal problem is how to formulate a class-representative and
domain-generalized prototype in the embedding space with-
out being deviated by the dominating noises. Due to noise
memorization (Arpit et al. 2017), simply averaging over in-
stances with high prediction confidence does not promise
a noise-robust estimation. Consequently, we first initialize
each class prototype with realistic few shots as the clus-
ter center. Secondly, intra-class distance is shortened by
contrastive learning between web instances and prototypes.
Then, high-quality web examples are involved in polish-
ing prototypes to improve discriminability. Simultaneously,
high similarity between prototypes and few shots is regular-
ized to maximize the interpretability and generalizability of
prototypes. Finally, we quantify the compatibility between
instances and prototypes by the proposed relation module
for sample selection and correction, which benefits proto-
type update in the next iteration. Specifically, the relation
module learns a flexible and transferable metric to assess if a
web image corresponds to its label. Besides, we set siamese
encoders (He et al. 2020) and prototypes are only updated by
the momentum encoder in a smooth and progressive way.

Our contributions can be summarized as follows:

• We propose a new few-shot learning setting in WSL with
abundant noisy web images and a few real-world images,
which aims to improve the performance of WSL for real-

world applications in a cost-efficient way.
• We present a new method under the setting above called

FoPro, which simultaneously solves noise and data bias
in an end-to-end manner. Experimental results show that
our method can significantly improve the performance in
real-world benchmark datasets.

• We propose a new relation module for label noise cor-
rection. It outperforms existing methods that use fixed
metrics (e.g., cosine distance) by evaluating instance-
prototype similarity with a learnable metric.

• Extensive experiments on the fine-grained WebFG496
and the large-scale WebVision1k datasets confirm the
superiority of FoPro over the state-of-the-art (SOTA)
methods. Performance under the increasing K-shot set-
tings demonstrates that FoPro utilizes few shots wisely to
bridge the gap towards real-world applications.

Related Work
Webly Supervised Learning
WSL aims to leverage vast but weakly-annotated web re-
sources. Previous works utilize web images for tasks includ-
ing classification (Bergamo and Torresani 2010; Wu et al.
2021; Yao et al. 2017, 2020), detection (Divvala, Farhadi,
and Guestrin 2014; Shen et al. 2020), and segmentation
(Shen et al. 2018; Jin, Ortiz Segovia, and Susstrunk 2017).

Recently, noise cleaning methods such as self-contained
confidence (SCC) (Yang et al. 2020) and momentum pro-
totype (MoPro) (Li, Xiong, and Hoi 2020) are proposed to
improve representation learning in WSL. SCC balances two
supervision sources from web labels and predicted labels by
introducing instance-wise confidence. MoPro targets model
pretraining for several down-streaming tasks by combining
self-supervised and webly-supervised techniques. Specifi-
cally, MoPro is closely related to ours since the contrast be-
tween instances and prototypes is used to learn discrimina-
tive features. Different from MoPro, we formulate a brand-
new setting where a few samples labeled by experts are
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available. To assure that class prototypes are not misled
by noise, an implicit constraint on distribution is achieved
by enforcing high similarity between prototypes and few
shots. Furthermore, we estimate the relation score between
instances and prototypes to correct labels and discard out-
of-distribution (OOD) samples.

Learning from Noisy Labels
Labels in human-annotated datasets can still be noisy due to
lack of expert domain knowledge (Song et al. 2022). To pre-
vent deep models from overfitting noisy labels, several stud-
ies have been conducted and can be categorized as: 1) robust
architecture (e.g., noise transition layer (Chen and Gupta
2015) and probability model (Xiao et al. 2015)); 2) regu-
larization techniques (e.g., label smoothing (Pereyra et al.
2017) and mix-up (Zhang et al. 2018)); 3) robust losses (e.g.,
MAE (Ghosh, Kumar, and Sastry 2017) and GCE (Zhang
and Sabuncu 2018)); 4) loss refinement (e.g., reweighting
(Wang, Liu, and Tao 2017) and bootstrapping (Reed et al.
2015)); 5) sample selection (e.g., multi-model collabora-
tion (Malach and Shalev-Shwartz 2017) and iterative strate-
gies (Li, Socher, and Hoi 2019)). Hybrid approaches are de-
signed in practice. For example, PeerLearn (Sun et al. 2021)
develops a two-stage framework with peer models. Each
model chooses clean samples independently and feeds them
to train the other model. Different from the existing meth-
ods, we do not assume that samples with small losses or high
confidence are clean. Instead, we maintain class prototypes
and filter out noise by comparing instances and prototypes in
a non-linear metric. Moreover, PeerLearn presumes that the
percentage of noise is consistent across categories, which
contradicts our observation.

Contrastive Representation Learning
Contrastive learning methods can be roughly categorized
as: 1) context-instance contrast, where the relationship of
local parts with respect to global context is learned (Kim
et al. 2018); 2) instance-wise contrast, where similar im-
age pairs are pulled closer with dissimilar pairs pushed far-
ther (He et al. 2020; Chen et al. 2020a). Prototypical con-
trastive learning (PCL) (Li et al. 2020) encourages each im-
age embedding to be adjacent to its assigned cluster proto-
type. However, their method is under an unsupervised set-
ting where k-means clustering is used to generate proto-
types. Our model is supervised by both numerous-yet-noisy
web labels and limited-yet-clean few-shot labels. Besides, in
PCL, batch embeddings in the current epoch are contrasted
with the “outdated” prototypes in the previous epoch. FoPro
keeps modifying prototypes smoothly all the time so that
clean samples can be pinpointed by the latest features.

Method
In this section, a formal description of our few-shot WSL
setting is presented, followed by the detailed explanation of
FoPro. Fig. 3 illustrates the model architecture.

Problem Statement
Existing WSL setting aims to train a deep model F(θe; θc)
with the optimal parameters of encoder θ∗e and classifier θ∗c

from the web dataset Dw = {(xw
i , y

w
i )}N

w

i=1. Here, xw
i de-

notes an image, ywi ∈ {1, ..., C} is its class label. The num-
ber of classes and images are C and Nw, respectively. Due
to noise issues, ywi might not equal to the ground-truth y∗i .
If ywi ̸= y∗i and y∗i ∈ {1, ..., C}, (xw

i , y
w
i ) is viewed as

an in-distribution (IND) sample with label-flipping error. If
ywi ̸= y∗i and y∗i /∈ {1, ..., C}, then (xw

i , y
w
i ) is an out-of-

distribution (OOD) sample.
We propose a new WSL setting that additional real-

world images are available with verified labels: D t =

{(xt
i, y

t
i)}N

t

i=1 and yti = y∗i . The number of real-world sam-
ples is N t = K ·C, where K denotes K-shot per class. Our
FoPro aims to achieve two goals with Dw: 1) to learn gen-
eralizable representations from high-quality examples; 2) to
correct IND samples and discard OOD samples.

Model Architecture
The main components of FoPro include siamese encoder
backbones, a classifier, a projector, a reconstructor, an aux-
iliary classifier, and a relation module.

Our siamese encoder networks share the same architec-
ture. Enlighted by MoCo (He et al. 2020), we update param-
eters of the first encoder θ1e by back-propagation and employ
momentum update for the second encoder θ2e :

θ2e = meθ
2
e + (1−me)θ

1
e , (1)

where me is the momentum parameter. The plain and mo-
mentum encoders respectively extract features v

{w;t}
i and

v
′{w;t}
i ∈ IRde from inputs x

{w;t}
i and their augmented

counterparts x
′{w;t}
i . Note that our encoder is structure-

agnostic, and its choices are up to specific tasks. All layers
except the last fully connected (FC) layer are used.

A classifier is trained to map features v
{w;t}
i to the pre-

dicted probabilities p{w;t}
i over C classes. It consists of one

FC layer with softmax activation.
A projector distills discriminative contents from features

v
{w;t}
i for low-dimensional embeddings z

{w;t}
i ∈ IRdp . It

is composed of two FC layers and one ReLU layer. We fol-
low (Chen et al. 2020a,b) to perform contrastive learning
in the embedding space after projection. ℓ2-normalization is
involved for unit-sphere constraint on z

{w;t}
i .

A reconstructor recovers ṽ
{w;t}
i from z

{w;t}
i , where

ṽ
{w;t}
i should be as close as possible to v

{w;t}
i . Symmetric

structure is adopted for the projector and reconstructor.
An auxiliary classifier with one FC layer generates prob-

abilities qt
i over C classes based on embeddings zti.

Our relation module compares each pair of one instance
embedding z

{w;t}
i and one class prototype ck ∈ IRdp , k ∈

{1, ..., C} for distance measurement. Given the concate-
nated embeddings [z{w;t}

i , ck], it learns to score their close-
ness rik ∈ IR by two FC layers with one ReLU layer.

Training Strategy
FoPro employs a four-stage training strategy.
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Figure 3: Overview of FoPro. The encoder, classifier, and projector are trained to produce discriminative embeddings. Class
prototypes are first initialized by few shots and then polished with clean samples for contrastive learning to regularize cluster
distribution. Instance-wise contrastive loss is optimized simultaneously. The relation module learns a distance metric between
an instance and its assigned class prototype. Finally, we adjust web labels for confidence-weighted hybrid target learning.

Stage 1: Preparation In this early stage, we warm up the
system by learning common, regular patterns for the first T1

epochs. As discovered by (Arpit et al. 2017), easy examples
are reliably learned with simple patterns before the model
overfits noise. We achieve this via training the encoder and
classifier with cross-entropy loss.

Lcls
i = − log(p

{w;t}
i(yi)

). (2)

Since v
{w;t}
i might contain redundant features that make

outliers indistinguishable, we set a projector to only keep
principal components. The previous method PCL stems
from the analogy of autoencoder to PCA, and learns pro-
jection by minimizing the reconstruction loss for the projec-
tor and reconstructor. In preliminary experiments, however,
we find that such optimization cannot give a good starting
point for prototype initialization because z

{w;t}
i is not nec-

essarily class-indicative. Therefore, an auxiliary classifier is
applied on zti to bring back its representation capacity. Only
few shots are used here due to purity concerns.

Lprj
i = ∥ṽ{w;t}

i − v
{w;t}
i ∥22 − log(qt

i(yi)
). (3)

Stage 2: Incubation Clean few shots play an anchoring
role in “territory” enclosure in the embedding space. Given
extracted embeddings from the momentum encoder, we ini-
tialize prototypes by averaging few shots in each class.

ĉk =
1

K

∑
yi=k

zti, ck =
ĉk

∥ĉk∥2
. (4)

In this stage, we begin to pull instances within one class
towards the prototype for T2 epochs. Besides, instance-level
discrimination is encouraged by contrastive losses (Chen
et al. 2020a) to improve separation across classes.

Lpro
i = − log

exp((zw;t
i · cyi

− δw;t)/ϕyi
)∑C

k=1 exp((z
w;t
i · ck − δw;t)/ϕk)

, (5)

Lins
i = − log

exp(zw;t
i · z′w;t

i /τ)∑Q
j=1 exp(z

w;t
i · z′w;t

j /τ)
, (6)

where δw;t refers to the margin coefficient, and Q is the
length of the memory bank for storing embeddings of vis-
ited instances. Temperature coefficients can be fixed as τ or
class-dependent as ϕk. We put constraints on learning repre-
sentations with a high margin so that clean few shots gather
around prototypes tightly, ensuring better justification and
interpretability. Furthermore, to regularize the distribution
of each class cluster, adjustable temperature coefficients (Li
et al. 2020) are estimated based on concentration.

ϕk =

∑
yi=k ∥z

w;t
i − ck∥2

Nw;t
k log(Nw;t

k + α)
, (7)

where Nw;t
k denotes the number of web and few-shot in-

stances of class k, and α is a smoother. Embeddings of large,
loose clusters will be penalized more to approach their pro-
totypes, while those of small, tight clusters will be relaxed.

Stage 3: Illumination With parameters of the encoder and
projector fixed, the relation module learns to score the com-
patibility between one instance and each prototype. It sheds
light on whether the given label of a web image is correct.
We select clean samples Dr for training the relation module.

Dr = D t ∪ {(xw
i , y

w
i )|

C∑
j=1

|(zwi − cyi
) · cj | ≤ σ}, (8)

where σ is a threshold between 0 and 1. Such criterion com-
prehensively considers both the cosine distance between in-
stance and prototypes, and the distance among prototypes.
Then, the relation module is trained for T3 epochs by:

Lrel
i = − log

exp(riyi
)∑C

k=1 exp(rik)
. (9)
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Stage 4: Verification Armed with “pretrained” model,
we start label correction, OOD removal, prototype update,
and continue noise-robust learning for T4 epochs. Three
sources of prior knowledge are incorporated for cleaning: 1)
self-prediction; 2) instance-prototype similarity; 3) relation
score. Rules for adjusting labels are detailed below:

swi = βpw
i + (1− β)[c1, ..., cC ]

T · zwi (10)

ŷwi =


ywi if riyi

> γ,
argmaxk s

w
i(k) else ifmaxk s

w
i(k) > γ,

ywi else if swi(yi)
> 1/C,

Null (OOD) otherwise,
(11)

where γ is a threshold between 0 and 1. Since fine-grained
categories share highly similar visual patterns, the relation
module is only used for positive verification of the initial
web label. Besides, we introduce an alternative confidence
measure from self-prediction and similarity for label reas-
signment. When the first two conditions are not satisfied,
an image will be kept as hard example if its confidence is
above average. Otherwise, it is discarded as OOD. Note that
the basic control flow above is inspired by MoPro. We fur-
ther improve it with the proposed relation module (Eq.11
cond. 1) to better evaluate the compatibility between in-
stances and class prototypes, and thereafter enable accurate
label-flipping-error correction and OOD removal without ig-
noring hard examples by mistake (Eq.11 conds. 2–4).

After label adjustment, we exploit the predicted prob-
abilities as pseudo-labels for self-training (Tanaka et al.
2018; Han, Luo, and Wang 2019). Such soft targets can be
viewed as a regularizer on the classifier like label smoothing
(Müller, Kornblith, and Hinton 2019) and self-knowledge
distillation (Hinton et al. 2015). Instead of using a fixed co-
efficient, we follow (Yang et al. 2020) to leverage confidence
on the corrected label for weighting soft and hard targets.

Lcls
i = − log(pt

i(yi)
)− swi(ŷi)

log(pw
i(ŷi)

)

−(1− swi(ŷi)
)
∑C

k=1 p
w
i(k) logp

w
i(k). (12)

With the label-flipping errors and OOD reduced, class
prototypes are updated by embeddings of the remaining
clean examples from the momentum encoder. Exponential
moving average (Li, Xiong, and Hoi 2020) is used for two
reasons: 1) initialization by few shots remains to exert a pro-
found anchoring effect. 2) smoothed transition is achieved to
stabilize contrastive learning. For class k, web images with
ŷwi = k and few shot images with yti = k are involved:

ĉk = mpck + (1−mp)z
w;t
i , ck =

ĉk
∥ĉk∥2

. (13)

Note that reliable samples, which are selected by Eq. 11
per batch, also participate in training the relation module.
The criterion by Eq. 8 is only used in stage 3.

Experiments
We train FoPro on web datasets and evaluate it on real-world
testing sets. FoPro boosts K-shot performance and reaches
the SOTA. Ablation study validates the relation module.

Web Dataset # Img. # Cls. Real-World

Web-
FG496

Bird 18k 200 CUB200-2011
Air 13k 100 FGVC-Aircraft
Car 21k 196 Stanford Car

Web-
Vision1k

Web-
Vision1k 2.44M 1k ImageNet1k

Google500 0.61M 500 ImageNet500

Table 1: Statistics of web datasets.

Datasets
WebFG496 (Sun et al. 2021) contains three fine-grained
datasets sourced from Bing. The testing sets of CUB200-
2011 (Wah et al. 2011), FGVC-Aircraft (Maji et al. 2013),
and Stanford Car (Krause et al. 2013) are used.

WebVision1k (Li et al. 2017) is collected from Google
and Flickr. The validation set of ImageNet1k (Deng et al.
2009) is used. Besides, we also use Google500 (Yang et al.
2020) where 500 out of 1k categories are randomly sampled
with images only from Google (see Table 1).

We randomly sample K shots per class from the train-
ing sets of real-world datasets. Classification accuracy (%)
is adopted as the evaluation metric for all experiments.

Implementation Details
WebFG496 The B-CNN (Lin, RoyChowdhury, and Maji
2015) (VGG-16 (Simonyan and Zisserman 2014)) is used
as encoder. We refer to (Sun et al. 2021) for the training
settings: optimizer is Adam with weight decay of 1× 10−8;
batch size is 64; the learning rate is 1×10−4 and decays to 0
by cosine schedule; a warm-up policy increases the learning
rate linearly for 5 epochs with the frozen encoders.

WebVision1k The ResNet-50 (R50) (He et al. 2016) is
used as encoder. We refer to (Yang et al. 2020) for the train-
ing settings: batch size is 256; optimizer is SGD with the
momentum of 0.9 and weight decay of 1× 10−4; the learn-
ing rate is 0.01 and decays to 0 by cosine schedule.

We refer to MoPro to set me = 0.999, mp = 0.999,
dp = 128, and Q = 8192. In view of the dataset scale,
we set T1 = 20, T2 = 5, T3 = 20, T4 = 175 for WebFG496
and set T1 = 15, T2 = 5, T3 = 10, T4 = 30 for WebVi-
sion1k/Google500. Preliminary experiments on WebFG496
show that γ = 0.6 and β = 0.5 work better than γ = 0.2 and
β = 0, 0.25, 0.75, 1. A lower γ means a more relaxed crite-
rion on clean sample selection, which might bring in noise
and cause performance drop. The balanced combination of
self-prediction and similarity terms performs more robust to
noise than the biased cases. Other hyper-parameters are em-
pirically set as: δw = 0, δt = 0.5, τ = 0.1, α = 10, σ = 20.
Their optimal values require meticulous fine-tuning, which
is beyond consideration of the present study.

Data augmentation includes random cropping and hori-
zontal flipping. Strong augmentation on the inputs to the
momentum encoder (He et al. 2020) additionally uses color
jittering and blurring. Since birds might only differ in color,
random rotation in 45 degrees is used instead. Experiments
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are conducted on a CentOS 7 workstation with an Intel
8255C CPU, 377 GB Mem, and 8 NVIDIA V100 GPUs.

Results

Method Back- WebFG496
bone Bird Air Car Avg.

Vanilla R50 64.43 60.79 60.64 61.95
MoPro† R50 71.16 76.85 79.68 75.90
SCC† R50-D 61.10 74.92 83.49 73.17
Vanilla B-CNN 66.56 64.33 67.42 66.10
Decouple B-CNN 70.56 75.97 75.00 73.84
CoTeach B-CNN 73.85 72.76 73.10 73.24
PeerLearn B-CNN 76.48 74.38 78.52 76.46
PeerLearn† B-CNN 76.57 74.35 78.26 76.39
FoPro(K=0) B-CNN 77.79 79.37 86.99 81.38
FoPro(K=1) B-CNN 78.07 79.87 88.01 82.03
FoPro(K=16) B-CNN 85.54 86.40 91.51 87.81
† Results are reproduced by ourselves with the official codes.

Table 2: The SOTA results on fine-grained datasets.

Baselines Our FoPro is compared with vanilla backbones
and the SOTA methods including SCC, MoPro, Decouple
(Malach and Shalev-Shwartz 2017), CoTeach (Han et al.
2018), PeerLearn, MentorNet (Jiang et al. 2018), Curricu-
lumNet (Guo et al. 2018), and CleanNet (Lee et al. 2018).
Results of the SOTA methods that are trained and evaluated
on the same datasets are directly quoted here. We also re-
produce three closely-related methods of SCC, MoPro, and
PeerLearn under K-shot settings with the officially released
codes. Their default hyper-parameters are employed if the
same web datasets are engaged. Otherwise, they are set the
same as ours. Additionally, we modify the proposed method
only to exhibit its applicability for 0-shot without specific
design. In that case, web images with predicted probability
of the target class over γ are used to train the auxiliary clas-
sifier. In view of the dataset scale, prototypes are initialized
by randomly sampled 16 and 50 web images per class from
WebFG496 and WebVision1k/Google500, respectively.

Figure 4: The averaged results under K-shot settings on fine-
grained datasets (left) and ImageNet1k (right).

Table 2 confirms the superiority of the proposed method
on fine-grained datasets even under 0-shot. FoPro boosts the
accuracy of vanilla backbones more significantly than the
SOTA methods with respect to their backbones.

Method† Back- ImageNet1k ImageNet500
bone Top 1 Top 5 Top 1 Top 5

MentorNet Inception
ResNetV2 64.20 84.80 – –

Curriculum-
Net

Inception
V2 64.80 83.40 – –

Vanilla R50-D 67.23 84.09 – –
SCC R50-D 67.93 84.77 68.84 84.62
SCC† R50-D 67.57 85.74 64.40 81.56
Vanilla R50 65.70 85.10 61.54 78.89
CoTeach R50 – – 62.18 80.98
CleanNet R50 63.42 84.59 – –
MoPro R50 67.80 87.00 – –
MoPro† R50 66.05 85.66 58.68 78.39
PeerLearn† R50 52.57 73.35 42.04 61.71
FoPro(K=0) R50 67.03 85.57 68.59 86.03
FoPro(K=1) R50 67.55 86.31 69.11 86.19
FoPro(K=16) R50 68.83 87.83 72.02 89.38
† Results are reproduced by ourselves with the official codes.

Table 3: The SOTA results on large-scale datasets.

FoPro reaches the optimal performance on large-scale
datasets with K=16 (see Table 3). The vanilla R50-D (He
et al. 2019) performs better than R50. Although FoPro is
preceded by SCC and MoPro at first (0-shot), it rises steadily
after exploiting a few real-world examples efficiently.

Under the degeneration circumstance (K=0), FoPro out-
performs the SOTA methods on WebFG496. The reason why
FoPro (K=0) degrades slightly on ImageNet1k/500 lies in
the high percentage of noises in WebVision1k/Google500.
In that case, prototypes (K=0) are initialized and polished
solely by noisy web examples without intervention from
clean shots, which may not be class-representative. With few
real-world examples (K > 0) involved, FoPro regains its ad-
vantage over the SOTA methods.

K
WebFG496 Avg. ImageNet1k ImageNet500
Top 1 Gap Top 1 Gap Top 1 Gap

0 81.38 – 67.03 5.57 68.59 3.85
1 +0.65 – +0.52 5.22 +0.52 3.63
2 +0.85 – +0.67 5.20 +1.35 3.29
4 +2.17 – +0.32 4.60 +1.50 2.91
8 +4.10 – +0.85 4.64 +2.06 2.90
16 +6.43 – +1.80 3.91 +3.43 2.19
16 87.81 – 68.83 – 72.02 –
Ref. 87.16† – 76.15‡ – 76.22‡ –
† Official results of the B-CNN trained on FGVC-Aircraft,

CUB200-2011, and Stanford Car are averaged.
‡

Official results of the R50 trained on ImageNet1k by Py-
Torch are quoted respectively for 500 and 1k classes.

Table 4: FoPro gains of K-shot over 0-shot. Gap refers to
the differences between web and real-world testing results.

Effect of Few-Shots We explore the potential of FoPro by
varying the number of real-world examples per class from 1
to 16. As shown in Fig. 4, FoPro achieves consistent perfor-
mance growth with K on fine-grained datasets. It surpasses
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Figure 5: One-shot real-world examples and the web images sorted by their distance to class prototypes. Best viewed magnified.

SCC and PeerLearn by a large margin. On ImageNet1k, the
abnormal case of K=4 is mainly due to sampling jittering.
Since ImageNet contains many unreal images, it could not
eliminate the possibility of sampling atypical images of cer-
tain classes. However, as K increases, FoPro starts to take
the lead. We believe more few shots directly refine the es-
timated prototypes for better representation. Clean samples
can be more appropriately selected to promote discrimina-
tive feature learning. With amendment on cluster formation,
FoPro also enjoys a higher level of interpretability in class
centers with competitive performance.

Table 4 reports the performance gap between WebVi-
sion1k/ImageNet1k and Google500/ImageNet500 when the
testing sets of web domain are available. In line with Fig.
2(b), the reduced gap reflects that we bridge the noisy web
domain and real-world domain with limited K shots. FoPro
approaches reference benchmarks that are trained on real-
world datasets, corroborating its practical value that much
labor of data collection and annotation can be saved.

Effect of Relation Module In Table 5, we study the effect
of relation module for clean example selection. We remove
FC layers and directly compare an instance and each pro-
totype using cosine similarity. Results confirm that the pro-
posed relation module discovers clean examples more pre-
cisely than the pre-defined similarity metric. By using a non-
linear metric, we do not assume that element-wise compar-
ison could solely separate matching or mismatching pairs.
Besides, such a learnable metric is not sensitive to input vari-
ation and behaves better on noisy samples.

K=1 WebFG496 Avg. ImageNet1k ImageNet500
w/o RM 81.59 65.22 64.69
w RM 82.03 67.55 69.11

Table 5: Ablation Study on the Relation Module (RM).

Visualization In Fig. 2(a), we visualize the low-
dimensional embeddings with t-SNE for the randomly cho-
sen 10 categories in WebVision as a demonstration. For con-
venience, all 16 real-world examples in each class are aver-
aged and displayed as one few-shot example. Differences in
the cluster distribution (from K=1 to K=16) are highlighted
to show that: 1) the distance between each prototype and the
few-shot example becomes shorter; 2) the density of class
clusters is improved. From Fig. 5, we conclude the following
insights: 1) Web images close to the estimated prototypes

are clean and similar to real-world photos with limited post-
processing. Our FoPro learns to sort out noise in web data
for robust representation learning. 2) The proposed method
generalizes across various domains such as product close-
up, computer graphics, and screenshots. 3) Intra-class diver-
sity (e.g., wing postures of the sooty albatross), uncaptured
salient parts (e.g., the yellowish patch on the back head of
the bobolink), and editing of tone curve (e.g., colored body
of the painted bunting and yellow-breasted chat) are the pos-
sible reasons why hard examples of 1-shot and clean web
images still locate away from prototypes.

Conclusion
This paper introduces a new setting for webly-supervised
learning, which optimizes the learning system with a large
quantity of noisy web images and a few real-world images.
Under this setting, we propose a few-shot guided proto-
typical representation learning method called FoPro, which
simultaneously tackles noise and dataset bias in a cost-
efficient manner. It is characterized by the guidance from a
few real-world domain images for learning noise-robust and
generalizable representations from web data. Experimental
results demonstrate that our method can effectively utilize
few-shot images to improve the performance of WSL on
real-world benchmarks. Future work includes investigation
of side information from web datasets (e.g., captions, web-
site titles, and user comments) and application extension to
weakly-supervised object detection and segmentation.
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