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Abstract
Blind Image Quality Assessment (BIQA) is a fundamental
task in computer vision, which however remains unresolved
due to the complex distortion conditions and diversified im-
age contents. To confront this challenge, we in this paper
propose a novel BIQA pipeline based on the Transformer
architecture, which achieves an efficient quality-aware fea-
ture representation with much fewer data. More specifically,
we consider the traditional fine-tuning in BIQA as an in-
terpretation of the pre-trained model. In this way, we fur-
ther introduce a Transformer decoder to refine the percep-
tual information of the CLS token from different perspec-
tives. This enables our model to establish the quality-aware
feature manifold efficiently while attaining a strong gener-
alization capability. Meanwhile, inspired by the subjective
evaluation behaviors of human, we introduce a novel at-
tention panel mechanism, which improves the model per-
formance and reduces the prediction uncertainty simultane-
ously. The proposed BIQA method maintains a lightweight
design with only one layer of the decoder, yet extensive ex-
periments on eight standard BIQA datasets (both synthetic
and authentic) demonstrate its superior performance to the
state-of-the-art BIQA methods, i.e., achieving the SRCC val-
ues of 0.875 (vs. 0.859 in LIVEC) and 0.980 (vs. 0.969
in LIVE). Checkpoints, logs and code will be available at
https://github.com/narthchin/DEIQT.

Introduction
The goal of Image Quality Assessment (IQA) approaches
is to automatically evaluate the quality of images in accor-
dance with human subjective judgement. With the increas-
ing growth of computer vision applications, the efficient and
reliable IQA model has increased in importance. It is essen-
tial to monitor and improve the visual quality of contents and
can be also adopted as testing criteria or optimization goals
for benchmarking image processing algorithms. Based on
the availability of the pristine reference image, IQA can be
typically divided into full-reference IQA (FR-IQA) (Wang
et al. 2004), reduced-reference IQA (RR-IQA) (Soundarara-
jan and Bovik 2011), and no-reference or blind IQA (BIQA)
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Figure 1: Image on top: the performance of the pro-
posed DEIQT varying the amount of training data on the
LIVE dataset. SOTA results are obtained from the TReS
(Golestaneh, Dadsetan, and Kitani 2022) using 80% data.
Our method can achieve the SOTA performance with only
30% data. Images in the medium: the sample images. Images
at bottom: Quality attention map from DEIQT. Our model
can accurately capture the quality degradation areas of an
image. Meanwhile, it ignores the perceptual information that
is related to the image recognition yet less important for the
quality assessment, i.e., the white cars in the second image.

(Moorthy and Bovik 2011). The applications of FR and RR
IQA methods tend to be limited, since reference images are
generally unavailable in real-world situations. Correspond-
ingly, the BIQA methods do not require such reference im-
ages and thus become more promising yet more challenging.

Current state-of-the-art (SOTA) BIQA methods employ
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either convolutional neural networks (CNN) or Vision
Transformer (ViT) based architectures (Dosovitskiy et al.
2021), which perform an end-to-end optimization of fea-
ture engineering and quality regression, simultaneously. The
training strategy of BIQA methods generally follows a
straightforward pre-training and fine-tuning pipeline. In the
pre-training stage, models are trained on a large-scale clas-
sification dataset, i.e., ImageNet (Deng et al. 2009). Then,
models are fine-tuned on a small-scale BIQA dataset. Never-
theless, the requirements of feature representations for these
two stages are not consistent. The pre-training stage concen-
trates on the global semantic features that are highly related
to the image content, whereas the fine-tuning stage needs to
consider both global semantics and local details of an im-
age (Raghu et al. 2021). Consequently, the process of fine-
tuning still necessitates a substantial amount of data so as
to successfully adapt the model awareness from the image
content understanding to the image quality. However, due
to the labor-intensive characteristics of image annotation,
BIQA has high expectations for fitness on low data volumes.
Thus, an efficient data-learning strategy, which is capable of
constructing an accurate quality-aware feature manifold us-
ing a small quantity of data, is desired and has become a
beneficial endeavor for computer vision tasks and industrial
applications.

To this end, we propose a novel BIQA method that can
efficiently characterize the image quality using much fewer
data than existing BIQA methods. The proposed BIQA
method is based on the Transformer encoder-decoder ar-
chitecture, herein namely data-efficient image quality trans-
former (DEIQT). Specifically, we consider that learned fea-
tures at the pre-training stage are highly related yet more ab-
stract for the BIQA task. In other words, the fine-tuning from
the classification task to the BIQA task can be regarded as
an interpretation of feature abstractness. Based on this, the
classification (CLS) token in the Transformer encoder is an
abstract characterization of quality-aware features (Touvron
et al. 2021b). Thus, it may not effectively develop an opti-
mal feature representation for the image quality during the
process of fine-tuning. To address this issue, we introduce
the Transformer decoder to further decode the CLS token,
thereby effectively adapting the token for the BIQA task.

In particular, we make use of the self-attention and cross-
attention operations in the decoder to realize an optimal fea-
ture representation for the image quality. The self-attention
decodes the aggregated features in the CLS token. It can di-
minish the significance of those features that are less relevant
to the image quality. The resulting outputs of self-attention
are handled as the query to the decoder, which is therefore
more sensitive to quality-aware image features. The cross-
attention performs the interactions between the query and
the extracted features from the encoder. It refines the decoder
embeddings such that making the extracted features highly
related to the image quality. The Transformer decoder brings
in an efficient learning property for DEIQT. This not only al-
lows the DEIQT to accurately characterize the image qual-
ity using significantly fewer data (Fig. 1), but also improves
the model training efficiency (Fig. 5). Notably, one layer de-
coder is adequate to deliver a satisfactory performance for

DEIQT (Table 9), which ensures a lightweight design of our
model.

Furthermore, due to the considerable variation in the im-
age contents and distortion conditions, existing BIQA meth-
ods generally suffer from a high prediction uncertainty. This
hinders the model stability, leading to an inaccurate predic-
tion. To address this issue, we design a novel attention-panel
mechanism in the decoder. This mechanism is inspired by
the subjective evaluation system, wherein an image is scored
by a number of participants and the mean of scores (MOS)
is considered the label of this image. During the subjec-
tive quality evaluation, opinions of humans on an image dif-
fer from person to person. The attention-panel mechanism
mimics such human behaviors by randomly initializing and
further learning the opinion of each “human” on the image
quality. Specifically, it makes use of the cross-attention of
decoder to evaluate the image quality from different per-
spectives and concludes the quality evaluation based on the
results from all of these perspectives. The attention-panel
mechanism can improve the model stability while introduc-
ing almost zero parameters (Table 8).

In summary, contributions of this paper are the following:
• We make the first attempt to develop a BIQA solution

based on the complete Transformer encoder-decoder ar-
chitecture. We employ the CLS token as inputs to the
decoder, to enable the proposed DEIQT to extract com-
prehensive quality-aware features from an image while
attaining a high learning efficiency. To the best of our
knowledge, we are the first to leverage the Transformer
decoder for the IQA task.

• Inspired by the human subjective evaluation, we intro-
duce a novel attention-panel mechanism to further im-
prove the performance of DEIQT while reducing the pre-
diction uncertainty. Notably, the attention-panel mecha-
nism introduces almost no parameters to the model.

• We verify DEIQT on 8 benchmark IQA datasets involv-
ing a wide range of image contents, distortion types
and dataset size. DEIQT outperforms other competitors
across all these datasets.

Related Work
CNN-based BIQA. Benefiting from the powerful feature
expression ability, CNN-based BIQA methods have gained a
great deal of popularity recently (Ma et al. 2017; Zhang et al.
2018; Su et al. 2020; Bosse et al. 2017). One of the main-
streams of the CNN-based method (Kim and Lee 2016) is to
integrate the feature learning and regression modeling into a
general CNN framework so that developing an accurate and
efficient quality representation. Modern CNN-based models
(Zhang et al. 2018) also put great efforts into other perspec-
tives of the BIQA challenges, i.e., the limited size of IQA
dataset and complex distortion conditions.

In summary, CNN-based methods demonstrate great po-
tential for BIQA tasks, but further efforts are required.
Specifically, CNN-based methods usually adopt the image
patches (Zhu et al. 2020; Su et al. 2020) as inputs or extract
learned features from different layers of CNNs to form a
multi-perceptual-scale representation, i.e., the shallow layer
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Figure 2: Model overview of the proposed DEIQT

for local details and the deeper layer for high-level seman-
tics (Hu et al. 2021a,b). The effectiveness of these strate-
gies has been proved, but it introduces non-negligible a
computational burden in training and inference(Zhang et al.
2021, 2022). Furthermore, due to the inherent locality bias
of CNNs, the CNN-based BIQA methods are often con-
strained by the ineffective characterization of non-local fea-
tures, notwithstanding the fact that BIQA task depends on
both local and non-local image information.
Transformers in BIQA. Transformers (Vaswani et al. 2017)
that were first designed for the natural language process-
ing have raised considerable research interests in the com-
puter vision area. The Vision Transformer (ViT) (Dosovit-
skiy et al. 2021) is one of the most representative works. It
performs the classification task using a pure Transformer en-
coder architecture, and, with modern training strategies, ViT
achieves a competing performance against the CNN-based
methods (Touvron et al. 2021a). Transformer also demon-
strates great potential in dealing with the BIQA task thanks
to its strong capability in modelling the non-local dependen-
cies among perceptual features of the image. Currently, there
are mainly two ways for using Transformer in BIQA: hybrid
Transformer (Golestaneh, Dadsetan, and Kitani 2022; You
and Korhonen 2021) and pure ViT-based Transformer (Ke
et al. 2021). The former utilizes CNNs to extract the percep-
tual features as inputs to the Transformer encoder, whereas
the latter directly sends image patches as inputs to the Trans-
former encoder.

The Transformer-based BIQA methods have achieved
great performance. However, the Transformer in BIQA
can be further exploited. Current Transformer-based BIQA
methods only involve the Transformer encoder, yet their
ability to accurately characterize the image quality is still
restricted. The main reason can be attributed to that the ex-
tracted features from the encoder are rather abstract in terms

of the image quality, making it difficult to model the rela-
tions between these features and the quality score. Thus, ad-
ditional efforts are needed to derive an optimal feature rep-
resentation for the image quality.

Data-Efficient Image Quality Transformer

Overall Architecture

To further improve the learning efficiency and capacity of
BIQA, we make the first attempt to develop a Transformer
encoder-decoder BIQA framework, namely data-efficient
image quality transformer (DEIQT). The overall architec-
ture of the proposed DEIQT is illustrated in Fig. 2. Given
an input image, we first obtain the CLS token through
the outputs of the Transformer encoder, which acts as the
multi-perceptual-level image representation. With the self-
attention operation, the CLS token can capture local and
non-local dependencies from patch embeddings, thereby
preserving comprehensive information for the image quality.
The CLS token is then integrated with the attention-panel
embeddings via the element-wise addition. A multi-head
self-attention block is applied to transform them into queries
of the decoder. Each attention-panel embedding absorbs the
information from the CLS token, where the cross-attention
mechanism in the decoder allows each to learn quality-aware
features of an image from a unique perspective. Following
this, the transformer decoder outputs the quality embeddings
consisting of quality-aware features of an image. Finally,
the quality embeddings are sent to a multi-layer perceptron
(MLP) head to make several predictions for the image qual-
ity. We can obtain one prediction from each embedding of
the quality embeddings. The average of these predictions is
treated as the final quality score of the image.
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Perceptual Feature Aggregation in Transformer
Encoder
The self-attention of Transformer encoder aggregates local
and non-local information from a sequence of input patches
with a minimum inductive bias, which allows it to com-
prehensively characterize perceptual features of an image.
We herein take the advantage of the self-attention to obtain
an efficient perceptual representation for the image. Given
an input image I ∈ RC×H×W , we first reshape it into N

patches as in tn ∈ Rp2×C , where H and W are the height
and width of the image, respectively. C is the number of
channels and p indicates the patch size. The total number of
patches is calculated as in N = HW

p2 . Each patch is then
transformed into a D-dimension embedding through a lin-
ear projection layer. A learnable embedding of CLS token
T CLS ∈ R1×D is prepended to the N patch embeddings
yielding to a total number of N + 1 embeddings. An addi-
tional position embedding is also introduced into these N+1
embeddings for preserving the positional information.

Let T = {T CLS,T 1, . . . ,TN} ∈ RN+1×D be the em-
bedding sequence. T is then fed to the multi-head self-
attention (MHSA) block to perform the self-attention op-
eration. The MHSA block contains h heads each with the
dimension d = D

h . T is transformed into three groups of ma-
trices as in the query Q, key K and value V using three dif-
ferent linear projection layers, where Q = {Q1, ...,Qh} ∈
R(N+1)×D, K = {K1, ...,Kh} ∈ R(N+1)×D, and V =
{V 1, ...,V h} ∈ R(N+1)×D for Qh,Kh,V h ∈ R(N+1)×d.
The output of Transformer encoder ZO is formulated as :

MHSA (Q,K,V ) =Cat(Attention(Q1,K1,V 1), . . . ,

Attention(Qh,Kh,V h))WL

ZM =MHA (Q,K,V ) + T

ZO =MLP (Norm(ZM )) +ZM ,

(1)

where WL refers to the weights of the linear projection

layer, Attention(Qh,Kh,V h) = softmax
(
QhKh

T

√
d

)
V h

and Norm(·) indicates the layer normalization. ZO is de-
noted as in ZO = {ZO [0] , ...,ZO [N ]} ∈ R(N+1)×d.

Quality-Aware Decoder
For the ViT-based BIQA methods, the learned CLS token
ZO [0] is typically considered to contain aggregated percep-
tual information for the image quality. It will be sent to an
MLP head to perform the regression task of quality predic-
tion. However, as explained earlier, ZO [0] mainly relates to
the abstractness of quality-aware features. It is difficult to
directly utilize ZO [0] to attain an optimal representation for
the image quality. To this end, we introduce a quality-aware
decoder to further interpret the CLS token, such that making
the extracted features more significant to the image quality.

Let T̂ CLS ∈ R1×D be the CLS token obtained from the
output of encoder. T̂ CLS is first sent to a MHSA block to
model the dependencies between each element with the re-
maining elements of the CLS token. The output of MHSA
is followed by the residual connection to generate queries of

Figure 3: Probability distributions of CLS token Gradients
varying the training steps. ViT-BIQA and DEIQT are mod-
els without and with the proposed decoder, respectively. By
introducing the decoder, variations in the gradients decrease
considerably faster than those without the decoder, indicat-
ing that the decoder can greatly improve training efficiency.

the transformer decoder, written by

Qd = MHSA
(

Norm
(
T̂ CLS

))
+ T̂ CLS. (2)

The role of the MHSA block is to decode the CLS to-
ken such that making the produced query more sensitive
to the quality-aware features. Following this, we utilize
ẐO = {ZO [1] , ...,ZO [N ]} ∈ RN×d as Key and Value
of the decoder, denoted by Kd = V d = ẐO, where
ẐO ∩ ZO = T̂ CLS. Then, Qd,Kd and V d are sent to a
multi-head cross-attention (MHCA) block to perform the
cross-attention. During this process, we utilize Qd to re-
interact with the features of the image patches preserved in
the encoder outputs, and thus ensuring the attentional fea-
tures more significant to the image quality. The output of the
cross-attention is written by

S = MLP (MHCA(Norm(Qd),Kd,V d) +Qd) , (3)

where S indicates the refined quality-aware features from
the encoder outputs which is more comprehensive and ac-
curate in defining the image quality. Finally, S is fed to an
MLP head to derive the final quality score, wherein we min-
imize the smooth l1 loss to train our network. The quality-
aware decoder can significantly improve the learning capac-
ity of the transformer-based BIQA model, and thus enhanc-
ing the model performance in terms of prediction accuracy,
generalization capability and stability.

In Fig. 3, we demonstrate the effectiveness of the quality-
aware decoder by investigating the gradients of the CLS to-
ken for models with and without the decoder. As observed,
without the decoder, the gradients of the CLS token vary
significantly throughout the training. This will substantially
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decrease the training efficiency, and even cause the model to
fail to converge. Correspondingly, the designed decoder is
capable of reducing such a large variation, thereby ensuring
a high training efficiency. It is also worth mentioning that
the designed Decoder is combined with the standard ViT
encoder in a non-intrusive manner, which not only makes
our model compatible with any variants of the ViT encoder
but also enables us to directly utilize the weights of other
pretrained encoders to increase the training efficiency of our
model. More importantly, we empirically show that the de-
signed Decoder with a depth of 1 can effectively achieve
a satisfactory performance (Table 9). This significantly re-
stricts the model size, making it more suitable for practical
applications.

Attention-Panel Mechanism
Images captured in the real-world generally involve various
contents and complex distortion conditions, resulting in the
BIQA models exhibiting a high prediction uncertainty. To
mitigate this, we propose an attention-panel mechanism in
the Transformer decoder. This mechanism is inspired by the
human subjective evaluation, wherein an image is scored by
a number of participants and the mean of scores (MOS) is
considered the label of the image. During this evaluation
process, the personal subjective opinion on an image differs
from person to person. The proposed attention-panel mech-
anism imitates such a situation, in which each panel mem-
ber represents a participant of the subjection evaluation and
judges the image quality from a different perspective. This
way, the model can achieve a comprehensive evaluation of
the image quality, thus reducing the prediction uncertainty
(Hu et al. 2019).

Let L be the number of panel members. Prior to sending
the CLS token to the decoder, we create the attention-panel
embeddings as in J = {J1, . . . ,JL} ∈ RL×D. J is ini-
tialized with random numbers. Then, we expand the CLS
token L times to form the matrix T̂ = {T̂ CLS, . . . , T̂ CLS} ∈
RL×D. The element-wise summation of J and T̂ is em-
ployed as the inputs to the quality-aware decoder. Therefore,
the calculation of queries in Eq. 2 is reformulated as

Q̂d = MHSA
(

Norm
(
T̂ CLS + J

))
+
(
T̂ CLS + J

)
. (4)

The operation of cross-attention is performed in Eq. 3 by
replacing Qd with Q̂d. We obtain the quality embeddings
Ŝ = {Ŝ1, ...ŜL} ∈ RL×D. Finally, Ŝ is sent to the MLP
to derive a vector of scores as in O = {O1, . . . , OL}, which
contains L scores corresponding to L members. The mean

of these L scores
∑L

l=1

L
is treated as final quality score.

With the attention-panel, DEIQT is capable of character-
izing the image quality from different perspectives, thus at-
taining a comprehensive evaluation. To verify that, we adopt
the cosine similarity metric to measure the similarity be-
tween the characterized perceptual features from any two
panel members. Given an image, we obtain the quality em-
beddings from three trained DEIQT models with 6, 12 and
18 panel members, respectively. The cosine similarity be-

𝑷𝒂𝒏𝒆𝒍	𝑴𝒆𝒎𝒃𝒆𝒓

𝑪𝒐
𝒔𝒊
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𝒂𝒓
𝒊𝒕
𝒚

Figure 4: Cosine similarity between characterized percep-
tual features of panel members. The number of panel mem-
bers in DEIQT is set to 6, 12, and 18, respectively. The ex-
tremely low similarity between two members suggests that
each member judges the image quality from a very unique
perspective.

tween every two quality embeddings is computed. The re-
sults are reported in Fig. 4. As observed, the similarity be-
tween these panel members is extremely low. Accordingly,
the quality-aware features described by each panel member
are rather different.

Experiments
Benchmark Datasets and Evaluation Protocols
We evaluate the performance of the proposed DEIQT on
8 typical BIQA datasets, including 4 synthetic datasets of
LIVE (Sheikh, Sabir, and Bovik 2006), CSIQ (Larson and
Chandler 2010), TID2013 (Ponomarenko et al. 2015), KA-
DID (Lin, Hosu, and Saupe 2019), and 4 authentic datasets
of LIVEC (Ghadiyaram and Bovik 2015), KONIQ (Hosu
et al. 2020), LIVEFB (Ying et al. 2020), SPAQ (Fang et al.
2020). Specifically, for the authentic datasets, LIVEC con-
sists of 1162 images captured by different photographers
with a wide variety of mobile devices. SPAQ contains 11000
images collected by 66 smartphones. KonIQ-10k is com-
posed of 10073 images selected from public multimedia re-
sources. LIVEFB is the largest-scale authentic dataset (by
far) that includes 39810 images. For the synthetic datasets,
they contain a small number of pristine images which are
synthetically distorted by various distortion types, such as
JPEG compression and Gaussian blurring. LIVE and CISQ
contain 799 and 866 synthetically distorted images with 5
and 6 distortion types, respectively. TID2013 and KADID
consist of 3000 and 10125 synthetically distorted images in-
volving 24 and 25 distortion types, respectively.

In our experiments, two commonly used criteria, Spear-
man’s rank order correlation coefficient (SRCC) and Pear-
son’s linear correlation coefficient (PLCC), are adopted to
quantify the performance of DEIQT in terms of prediction
monotonicity and prediction accuracy, respectively. Both
SRCC and PLCC range from 0 to 1. A superior performance
should result in the absolute values of SRCC and PLCC
close to 1.
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LIVE CSIQ

Method PLCC SRCC PLCC SRCC

DIIVINE 0.908 0.892 0.776 0.804
BRISQUE 0.944 0.929 0.748 0.812
ILNIQE 0.906 0.902 0.865 0.822
BIECON 0.961 0.958 0.823 0.815
MEON 0.955 0.951 0.864 0.852
WaDIQaM 0.955 0.960 0.844 0.852
DBCNN 0.971 0.968 0.959 0.946
TIQA 0.965 0.949 0.838 0.825
MetaIQA 0.959 0.960 0.908 0.899
P2P-BM 0.958 0.959 0.902 0.899
HyperIQA (27M) 0.966 0.962 0.942 0.923
TReS (152M) 0.968 0.969 0.942 0.922
MUSIQ (27M) 0.911 0.940 0.893 0.871

DEIQT (24M) (Ours) 0.982 0.980 0.963 0.946

Table 1: Performance comparison measured by medians of
SRCC and PLCC on synthetic datasets of LIVE and CSIQ,
where bold entries indicate the top two results.

TID2013 KADID

Method PLCC SRCC PLCC SRCC

DIIVINE 0.567 0.643 0.435 0.413
BRISQUE 0.571 0.626 0.567 0.528
ILNIQE 0.648 0.521 0.558 0.534
BIECON 0.762 0.717 0.648 0.623
MEON 0.824 0.808 0.691 0.604
WaDIQaM 0.855 0.835 0.752 0.739
DBCNN 0.865 0.816 0.856 0.851
TIQA 0.858 0.846 0.855 0.850
MetaIQA 0.868 0.856 0.775 0.762
P2P-BM 0.856 0.862 0.849 0.840
HyperIQA (27M) 0.858 0.840 0.845 0.852
TReS (152M) 0.883 0.863 0.858 0.859
MUSIQ (27M) 0.815 0.773 0.872 0.875

DEIQT (24M) (Ours) 0.908 0.892 0.887 0.889

Table 2: Performance comparison measured by medians of
SRCC and PLCC on synthetic datasets of TID2013 and KA-
DID, where bold entries indicate the top two results.

Implementation Details
For DEIQT, we followed the typical training strategy to ran-
domly crop an input image into 10 image patches with a res-
olution of 224 × 224. Each image patch was then reshaped
into a sequence of patches with the patch size p = 16, and
the dimensions of input tokens D = 384. We created the
Transformer encoder based on the ViT-S proposed in DeiT
III (Touvron, Cord, and Jégou 2022). The depth of the en-
coder was set to 12, and the number of heads h = 6. For
the Decoder, the depth was set to 1 and the number of panel
members L = 6.

The Encoder of DEIQT was pre-trained on the ImageNet-
1K for 400 epochs using the Layer-wise Adaptive Moments
optimizer (You et al. 2020) for Batch training with the batch
size 2048. DEIQT was trained for 9 Epochs. The learning
rate was set to 2 × 10−4 with a decay factor of 10 ev-
ery 3 epochs. The batch size was determined depending on

LIVEC KonIQ

Method PLCC SRCC PLCC SRCC

DIIVINE 0.591 0.588 0.558 0.546
BRISQUE 0.629 0.629 0.685 0.681
ILNIQE 0.508 0.508 0.537 0.523
BIECON 0.613 0.613 0.654 0.651
MEON 0.710 0.697 0.628 0.611
WaDIQaM 0.671 0.682 0.807 0.804
DBCNN 0.869 0.851 0.884 0.875
TIQA 0.861 0.845 0.903 0.892
MetaIQA 0.802 0.835 0.856 0.887
P2P-BM 0.842 0.844 0.885 0.872
HyperIQA (27M) 0.882 0.859 0.917 0.906
TReS (152M) 0.877 0.846 0.928 0.915
MUSIQ (27M) 0.746 0.702 0.928 0.916

DEIQT (24M) (Ours) 0.894 0.875 0.934 0.921

Table 3: Performance comparison measured by medians
of SRCC and PLCC on authentic datasets of LIVEC and
KonIQ, where bold entries indicate the top two results.

LIVEFB SPAQ

Method PLCC SRCC PLCC SRCC

DIIVINE 0.187 0.092 0.600 0.599
BRISQUE 0.341 0.303 0.817 0.809
ILNIQE 0.332 0.294 0.712 0.713
BIECON 0.428 0.407 - -
MEON 0.394 0.365 - -
WaDIQaM 0.467 0.455 - -
DBCNN 0.551 0.545 0.915 0.911
TIQA 0.581 0.541 - -
MetaIQA 0.507 0.540 - -
P2P-BM 0.598 0.526 - -
HyperIQA (27M) 0.602 0.544 0.915 0.911
TReS (152M) 0.625 0.554 - -
MUSIQ (27M) 0.661 0.566 0.921 0.918

DEIQT (24M) (Ours) 0.663 0.571 0.923 0.919

Table 4: Performance comparison measured by medians of
SRCC and PLCC on authentic datasets of LIVEFB and
SPAQ, where bold entries indicate the top two results.

the size of the dataset, i.e., 16 and 128 for the LIVEC and
KonIQ, respectively. For each dataset, 80% images were
used for training and the remaining 20% images were uti-
lized for testing. We repeated this process 10 times to mit-
igate the performance bias and the medians of SRCC and
PLCC were reported.

Overall Prediction Performance Comparison
Tables 1-4 report the comparison results between the pro-
posed DEIQT and 13 state-of-the-art BIQA methods, which
include both hand-crafted BIQA methods, such as DI-
IVINE (Saad, Bovik, and Charrier 2012), ILNIQE (Zhang,
Zhang, and Bovik 2015) and BRISQUE (Mittal, Moorthy,
and Bovik 2012), and deep-learning-based methods, i.e.,
MUSIQ (Ke et al. 2021) and MetaIQA (Zhu et al. 2020). As
observed across these eight datasets, DEIQT outperforms all
other methods. Since images on these 8 datasets span a wide
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Training LIVEFB LIVEC KonIQ LIVE CSIQ

Testing KonIQ LIVEC KonIQ LIVEC CSIQ LIVE

DBCNN 0.716 0.724 0.754 0.755 0.758 0.877
P2P-BM 0.755 0.738 0.740 0.770 0.712 -
HyperIQA 0.758 0.735 0.772 0.785 0.744 0.926
TReS 0.713 0.740 0.733 0.786 0.761 -

DEIQT 0.733 0.781 0.744 0.794 0.781 0.932

Table 5: SRCC on the cross datasets validation. The best
performances are highlighted with boldface.

variety of image contents and distortion types, it is very chal-
lenging to consistently achieve the leading performance on
all of them. Correspondingly, these observations confirm the
effectiveness and superiority of DEIQT in characterizing the
image quality.

Generalization Capability Validation
We further evaluate the generalization capability of DEIQT
through the cross-datasets validation methodology, where
a BIQA model is trained on one dataset, and then tested
on the other datasets without any fine-tuning or parameter
adaption. The experimental results in terms of the medians
of SRCC on five datasets are reported in Table 5. As ob-
served, DEIQT achieves the best performance on four of
five datasets and reaches the competing performance on the
KonIQ dataset. These results manifest the strong generaliza-
tion capability of DEIQT.

Data-Efficient Learning Validation
One of the key properties of DEIQT is data-efficient learn-
ing, which allows our model to achieve a competing per-
formance to state-of-the-art BIQA methods while requiring
substantially less training data. Given the costly image an-
notation and model training, such a property is highly de-
sired for BIQA methods. To further investigate this prop-
erty, we conduct controlled experiments to train our model
by varying the amount of training data from 20% to 60%
with an interval of 20%. We repeat the experiment 10 times
for each amount of training data and report the medians of
SRCC. The testing data remains 20% images irrespective of
the amount of the training data and is completely nonover-
lapped with the training data throughout all experiments.

The experimental results are detailed in Tables 6-7. On
the synthetic datasets, even with 20% images, DEIQT has
reached a competing performance to the second best BIQA
method in Table 1. When the training data contains 40% im-
ages, DEIQT outperforms all other BIQA methods. In other
words, DEIQT utilizes only half of the training data and
achieves the best performance on the synthetic datasets. For
authentic datasets, DEIQT is capable of achieving the com-
peting performance with 60% images, which is still much
more efficient than other BIQA methods.

In addition to the required training data, we further eval-
uate the training efficiency of DEIQT which is also an im-
portant indicator for data-efficient learning. Fig. 5 illustrates
the medians of SRCC as the number of epochs increases on

LIVE

Mode Methods PLCC SRCC

ViT-BIQA 0.828 0.894
20% HyperNet 0.950 0.951

DEIQT 0.968 0.965
ViT-BIQA 0.847 0.903

40% HyperNet 0.961 0.959
DEIQT 0.973 0.971
ViT-BIQA 0.856 0.915

60% HyperNet 0.963 0.960
DEIQT 0.974 0.972

Table 6: Data-efficient learning validation with the training
set (LIVE) containing 20%, 40% and 60% images. Bold en-
tries indicate the best performance.

LIVEC KonIQ

Mode Methods PLCC SRCC PLCC SRCC

ViT-BIQA 0.641 0.622 0.855 0.825
20% HyperNet 0.809 0.776 0.873 0.869

DEIQT 0.822 0.792 0.908 0.888
ViT-BIQA 0.714 0.684 0.901 0.880

40% HyperNet 0.849 0.832 0.908 0.892
DEIQT 0.855 0.838 0.922 0.903
ViT-BIQA 0.739 0.705 0.916 0.903

60% HyperNet 0.862 0.843 0.914 0.901
DEIQT 0.877 0.848 0.931 0.914

Table 7: Data-efficient learning validation with the training
set (LIVEC and KonIQ) containing 20%, 40% and 60% im-
ages. Bold entries indicate the best performance.

1 2 3 4

Epochs

0.0

0.2

0.4

0.6

0.8

M
ed
ia
n
S
R
C
C

KonIQ

DEIQT

ViT-BIQA

HyperNet

DBCNN

1 2 3 4

Epochs

0.0

0.2

0.4

0.6

0.8

M
ed
ia
n
S
R
C
C

LIVEC

DEIQT

ViT-BIQA

HyperNet

DBCNN

Figure 5: Median SRCC versus Epochs on the LIVEC and
KonIQ testing datasets.

the testing set of LIVEC and KonIQ. ViT-BIQA directly uti-
lizes the extracted features of the CLS token to predict the
image quality. As shown in Fig. 5, DEIQT converges signif-
icantly faster than other methods, where it reaches a satis-
factory performance in only two epochs. As a comparison,
ViT-BIQA exhibits a slow convergence rate, especially on
the small-scale dataset LIVEC. These observations vividly
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LIVEC KonIQ

Module #Params PLCC SRCC PLCC SRCC

ViT 22M 0.770 0.714 0.919 0.908
std ±0.045 ±0.039 ±0.011 ±0.011

ViT + AP/6 22M 0.782 0.720 0.924 0.913
std ±0.033 ±0.030 ±0.010 ±0.008

ViT + Decoder(R∗) 24M 0.871 0.842 0.927 0.916
std ±0.018 ±0.024 ±0.007 ±0.006

ViT + Decoder(CLS) 24M 0.881 0.863 0.931 0.918
std ±0.018 ±0.019 ±0.005 ±0.007

DEIQT 24M 0.894 0.875 0.934 0.921
std ±0.014 ±0.017 ±0.003 ±0.004

Table 8: Ablation experiments on LIVEC and KonIQ
datasets. Bold entries indicate the best performance.

demonstrate that DEIQT can efficiently implement the do-
main adaptation from the pre-training of classification tasks
to the fine-tuning of IQA tasks, thereby greatly improving
the training efficiency.

Ablation Study

DEIQT is composed of three essential components, in-
cluding the ViT encoder, quality-aware decoder, and the
attention-panel mechanism. We conduct the ablation experi-
ments to examine the individual contribution of each compo-
nent. Table 8 shows the experimental results on the LIVEC
and KonIQ datasets. The ViT in Table 8 refers to the DEIQT
without the quality-aware decoder and the attention-panel.
It is equivalent to the ViT-BIQA in Fig. 5. AP/6 indicates
the attention-panel (AP) with 6 panel members. ViT + AP/6
skips the decoder and sends the inputs of the DEIQT de-
coder to an MLP head to make the prediction. Decoder(R∗)
and Decoder(CLS) mean that random numbers or CLS to-
ken are utilized as inputs of the decoder, respectively. The
proposed DEIQT consists of ViT, Decoder(CLS) and AP/6.

From Table 8, we observe that both the quality-aware
decoder and the attention-panel mechanism are highly ef-
fective in characterizing the image quality, and thus con-
tributing to the overall performance of DEIQT. In partic-
ular, the proposed quality-aware decoder significantly im-
proves the model performance in terms of accuracy and sta-
bility, whereas the attention-panel contributes less than the
decoder. This is reasonable considering that the number of
parameters introduced by the decoder is substantially higher
than those introduced by the attention-panel. The operations
involved in the decoder are also much more sophisticated.
Nevertheless, the attention-panel allows our model to attain
improved performance with negligible additional expense.

Finally, we carry out the experiment to investigate the ef-
fects of the decoder depth on the DEIQT. The experimental
results are listed in Table 9. As can be seen that DEIQT is
insensitive to the depth of decoder. When the number of lay-
ers of decoder increases, the performance of DEIQT remains
almost unchanged on these two datasets. Thus, we set the
number of layers of decoder to 1 to maintain a lightweight
design for our model.

LIVEC KonIQ

Layer Nums #Params PLCC SRCC PLCC SRCC

1 24M 0.894 0.875 0.934 0.921
2 26M 0.890 0.871 0.933 0.919
4 31M 0.895 0.877 0.936 0.922
8 40M 0.895 0.873 0.933 0.918

Table 9: The effects of the layer numbers of the decoder on
the DEIQT. Bold entries indicate the best results.

Conclusion
In this paper, we present a data-efficient image quality trans-
former (DEIQT), which can accurately characterize the im-
age quality using much less data. In particular, we regard
the CLS token as the abstractness of quality-aware features
and adapt it to the queries of the dedicatedly designed de-
coder. Then, we leverage the cross-attention mechanism to
decouple the quality-aware features from the encoder out-
puts. Furthermore, inspired by the human behaviors of the
subjective evaluation, we offer a novel attention-panel mech-
anism to mitigate the prediction uncertainty while introduc-
ing almost no additional parameters. Experiments on eight
standard datasets demonstrate the superiority of DEIQT in
terms of prediction accuracy, training efficiency, and gener-
alization capability.

Acknowledgments
This research was partly supported by the National Key
R&D Program of China (Grant No. 2020AAA0108303), and
in part by National Natural Science Foundation of China un-
der Grant 62201538, Natural Science Foundation of Shan-
dong Province under grant ZR2022QF006, and in part by
China National Postdoctoral Program for Innovative Tal-
ents (BX20220392), China Postdoctoral Science Foundation
(2022M711729)

References
Bosse, S.; Maniry, D.; Muller, K.-R.; Wiegand, T.; and
Samek, W. 2017. Deep neural networks for no-reference
and full-reference image quality assessment. IEEE Trans.
Image Process., 27(1): 206–219.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In International Conference on Learn-
ing Representations. Virtual Event, Austria.
Fang, Y.; Zhu, H.; Zeng, Y.; Ma, K.; and Wang, Z. 2020.
Perceptual quality assessment of smartphone photography.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 3677–3686.

2098



Ghadiyaram, D.; and Bovik, A. C. 2015. Massive online
crowdsourced study of subjective and objective picture qual-
ity. IEEE Trans. Image Process., 25(1): 372–387.
Golestaneh, S. A.; Dadsetan, S.; and Kitani, K. M. 2022. No-
reference image quality assessment via transformers, rela-
tive ranking, and self-consistency. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, 1220–1230.
Hosu, V.; Lin, H.; Sziranyi, T.; and Saupe, D. 2020. KonIQ-
10k: An ecologically valid database for deep learning of
blind image quality assessment. IEEE Trans. Image Pro-
cess., 29: 4041–4056.
Hu, R.; Liu, Y.; Gu, K.; Min, X.; and Zhai, G. 2021a. To-
ward a No-Reference Quality Metric for Camera-Captured
Images. IEEE Transactions on Cybernetics.
Hu, R.; Liu, Y.; Wang, Z.; and Li, X. 2021b. Blind quality
assessment of night-time image. Displays, 69: 102045.
Hu, R.; Monebhurrun, V.; Himeno, R.; Yokota, H.; and
Costen, F. 2019. A statistical parsimony method for un-
certainty quantification of FDTD computation based on the
PCA and ridge regression. IEEE Transactions on Antennas
and Propagation, 67(7): 4726–4737.
Ke, J.; Wang, Q.; Wang, Y.; Milanfar, P.; and Yang, F. 2021.
Musiq: Multi-scale image quality transformer. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, 5148–5157.
Kim, J.; and Lee, S. 2016. Fully deep blind image quality
predictor. IEEE Journal of selected topics in signal process-
ing, 11(1): 206–220.
Larson, E. C.; and Chandler, D. M. 2010. Most apparent dis-
tortion: full-reference image quality assessment and the role
of strategy. Journal of electronic imaging, 19(1): 011006.
Lin, H.; Hosu, V.; and Saupe, D. 2019. KADID-10k: A
large-scale artificially distorted IQA database. In 2019
Eleventh International Conference on Quality of Multime-
dia Experience (QoMEX), 1–3. IEEE.
Ma, K.; Liu, W.; Zhang, K.; Duanmu, Z.; Wang, Z.; and Zuo,
W. 2017. End-to-end blind image quality assessment using
deep neural networks. IEEE Trans. Image Process., 27(3):
1202–1213.
Mittal, A.; Moorthy, A. K.; and Bovik, A. C. 2012. No-
reference image quality assessment in the spatial domain.
IEEE Trans. Image Process., 21(12): 4695–4708.
Moorthy, A. K.; and Bovik, A. C. 2011. Blind image qual-
ity assessment: From natural scene statistics to perceptual
quality. IEEE Trans. Image Process., 20(12): 3350–3364.
Ponomarenko, N.; Jin, L.; Ieremeiev, O.; Lukin, V.; Egiazar-
ian, K.; Astola, J.; Vozel, B.; Chehdi, K.; Carli, M.; Battisti,
F.; et al. 2015. Image database TID2013: Peculiarities, re-
sults and perspectives. Signal processing: Image communi-
cation, 30: 57–77.
Raghu, M.; Unterthiner, T.; Kornblith, S.; Zhang, C.; and
Dosovitskiy, A. 2021. Do Vision Transformers See Like
Convolutional Neural Networks? In Beygelzimer, A.;
Dauphin, Y.; Liang, P.; and Vaughan, J. W., eds., Advances
in Neural Information Processing Systems.

Saad, M. A.; Bovik, A. C.; and Charrier, C. 2012. Blind im-
age quality assessment: A natural scene statistics approach
in the DCT domain. IEEE Trans. Image Process., 21(8):
3339–3352.
Sheikh, H. R.; Sabir, M. F.; and Bovik, A. C. 2006. A sta-
tistical evaluation of recent full reference image quality as-
sessment algorithms. IEEE Trans. Image Process., 15(11):
3440–3451.
Soundararajan, R.; and Bovik, A. C. 2011. RRED indices:
Reduced reference entropic differencing for image quality
assessment. IEEE Trans. Image Process., 21(2): 517–526.
Su, S.; Yan, Q.; Zhu, Y.; Zhang, C.; Ge, X.; Sun, J.; and
Zhang, Y. 2020. Blindly assess image quality in the wild
guided by a self-adaptive hyper network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 3667–3676.
Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles,
A.; and Jegou, H. 2021a. Training data-efficient image trans-
formers & distillation through attention. In International
Conference on Machine Learning, volume 139, 10347–
10357.
Touvron, H.; Cord, M.; and Jégou, H. 2022. DeiT III: Re-
venge of the ViT. In Computer Vision – ECCV 2022: 17th
European Conference, 516–533.
Touvron, H.; Cord, M.; Sablayrolles, A.; Synnaeve, G.; and
Jégou, H. 2021b. Going deeper with Image Transformers.
In 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), 32–42.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Wang, Z.; Bovik, A. C.; Sheikh, H. R.; and Simoncelli, E. P.
2004. Image quality assessment: from error visibility to
structural similarity. IEEE Trans. Image Process., 13(4):
600–612.
Ying, Z.; Niu, H.; Gupta, P.; Mahajan, D.; Ghadiyaram, D.;
and Bovik, A. 2020. From patches to pictures (PaQ-2-PiQ):
Mapping the perceptual space of picture quality. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 3575–3585.
You, J.; and Korhonen, J. 2021. Transformer for image qual-
ity assessment. In 2021 IEEE International Conference on
Image Processing (ICIP), 1389–1393. IEEE.
You, Y.; Li, J.; Reddi, S.; Hseu, J.; Kumar, S.; Bhojana-
palli, S.; Song, X.; Demmel, J.; Keutzer, K.; and Hsieh, C.-J.
2020. Large Batch Optimization for Deep Learning: Train-
ing BERT in 76 minutes. In International Conference on
Learning Representations.
Zhang, L.; Zhang, L.; and Bovik, A. C. 2015. A Feature-
Enriched Completely Blind Image Quality Evaluator. IEEE
Trans. Image Process., 24(8): 2579–2591.
Zhang, W.; Ma, K.; Yan, J.; Deng, D.; and Wang, Z. 2018.
Blind image quality assessment using a deep bilinear convo-
lutional neural network. IEEE Transactions on Circuits and
Systems for Video Technology, 30(1): 36–47.

2099



Zhang, Y.; Qu, Y.; Xie, Y.; Li, Z.; Zheng, S.; and Li, C. 2021.
Perturbed Self-Distillation: Weakly Supervised Large-Scale
Point Cloud Semantic Segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
15520–15528.
Zhang, Y.; Xie, Y.; Li, C.; Wu, Z.; and Qu, Y. 2022. Learn-
ing All-In Collaborative Multiview Binary Representation
for Clustering. IEEE Transactions on Neural Networks and
Learning Systems, 1–14.
Zhu, H.; Li, L.; Wu, J.; Dong, W.; and Shi, G. 2020.
MetaIQA: Deep Meta-Learning for No-Reference Image
Quality Assessment. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

2100


