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Abstract
Event cameras are a kind of bio-inspired imaging sensor,
which asynchronously collect sparse event streams with
many advantages. In this paper, we focus on building bet-
ter and faster event-based object detectors. To this end, we
first propose a computationally efficient event representa-
tion Hyper Histogram, which adequately preserves both the
polarity and temporal information of events. Then we de-
vise an Adaptive Event Conversion module, which converts
events into Hyper Histograms according to event density via
an adaptive queue. Moreover, we introduce a novel event-
based augmentation method Shadow Mosaic, which signifi-
cantly improves the event sample diversity and enhances the
generalization ability of detection models. We equip our pro-
posed modules on three representative object detection mod-
els: YOLOv5, Deformable-DETR, and RetinaNet. Experi-
mental results on three event-based detection datasets (1Mpx,
Gen1, and MVSEC-NIGHTL21) demonstrate that our pro-
posed approach outperforms other state-of-the-art methods
by a large margin, while achieving a much faster running
speed (< 14 ms and < 4 ms for 50 ms event data on the
1Mpx and Gen1 datasets).

Introduction
The event camera is a bio-inspired sensor to capture dy-
namic visual information, which brings a new paradigm to
the sensing technology. Compared with traditional frame
cameras, event cameras offer high temporal resolution
(>10K fps) and high dynamic range (>120 dB), while
maintaining low power consumption (<10 mW) (Gallego,
Delbrück, and Orchard 2022). Object detection, which out-
puts the bounding box and classification for objects, is a
field that may benefit from the advantages, especially in the
scenes with low/high illumination and high moving speed.

After the birth of event cameras, there have been many at-
tempts at event-based object detection (Liang et al. 2021;
Messikommer et al. 2022; Li et al. 2022; Cordone et al.
2022; Bi et al. 2020). They can be roughly classified into two
main categories according to the input representation. The
first category attempts to detect objects directly from asyn-
chronous events. For example, SNN-based methods (Cor-
done et al. 2022) and GNN-based methods (Schaefer et al.
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2022), which directly operate the raw events, have been pro-
posed. The second category of event-based object detection
methods converts asynchronous events into image-like rep-
resentations, such as event histogram (Moeys et al. 2016),
time surface (Lagorce et al. 2017) and event volume (Hu
et al. 2020). These representations are fed to frame-based
object detectors.

Given a series of excellent frame-based object detectors
have been proposed and achieved great success, in this pa-
per, we attempt to exploit the potential of these frame-based
object detectors and extend them to event-based data. In
other words, we seek to achieve event-based object detec-
tion following the pipeline of the second category mentioned
before. The frame-based object detectors originally cannot
deal with event data. Thus, an efficient and effective conver-
sion method is needed to transform the event data to event
frames. A number of methods have been proposed for event
conversion, but they either sacrifice performance or are very
time-consuming, not suitable for efficient end-to-end event-
based object detection.

To solve this problem, we first propose an event represen-
tation Hyper Histogram, which adequately preserves both
the polarity and fine-grained temporal information of events.
We also provide a fast implementation to convert events to
Hyper Histograms. Then, we consider that a suitable input
density is beneficial to event-based object detection. Thus,
we devise an efficient Adaptive Event Conversion (AEC)
module, which converts events into a Hyper Histogram ac-
cording to the event density via an adaptive queue.

Similar to frame-based object detectors, data augmenta-
tion plays an important role in event-based object detec-
tion. However, the augmentation for event data is rarely ex-
plored. We propose a novel event-based data augmentation
method Shadow Mosaic that can directly handle the raw
asynchronous event streams. It can significantly increase the
sample diversity by randomly changing the scale and density
of the input event streams.

Our proposed methods can be easily combined with
frame-based detectors. We test three mainstream object
detection networks YOLOv5 (Jocher 2021), Deformable-
DETR (Zhu et al. 2021) and RetinaNet (Lin et al. 2020). Ex-
perimental results on both the 1Mpx (Perot et al. 2020) and
Gen1 (de Tournemire et al. 2020) datasets demonstrate that
our proposed method significantly outperforms the current
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state-of-the-art methods. We also directly test the trained
model on the Nighttime Driving Detection dataset MVSEC-
NIGHTL21 (Hu, Liu, and Delbruck 2021). The results indi-
cate that the generalization ability of our model is superior.

The contributions are summarized in the following.
• We propose a computationally efficient event representa-

tion Hyper Histogram, which encodes both the polarity
and fine-grained temporal information for events.

• We design an Adaptive Event Conversion module to con-
vert raw events to Hyper Histograms according to event
density, which improves the detection performance and
reduces the runtime.

• We introduce a novel event-based augmentation method
Shadow Mosaic, which enhances the generalization abil-
ity of detectors for event-based object detection.

• With above mentioned methods, we extend frame-based
object detectors to events. Experimental results demon-
strate superior detection performance on three datasets.
The running time is also greatly reduced (< 14 ms and
< 4 ms for 50 ms event data on the 1Mpx and Gen1
datasets).

Related Work
Event Conversion
Due to the asynchronous nature of event data, converting
events into a good spatio-temporal representation is funda-
mental to an event-based computer vision task.

Event histogram (Maqueda et al. 2018), time surface
(Lagorce et al. 2017) and event volume (Zhu et al. 2019)
are commonly used image-like event representations with
the shape (2,W,H). They have been applied for a variety of
event-based computer vision tasks. However, all these repre-
sentations discard partial information of events, which leads
to performance degradation. To retain more information of
the event, inceptive time surface (Baldwin et al. 2019) with
shape (3,W,H) draws averaged time surface and event his-
togram together, but introduces more latency when generat-
ing them independently. There are also representations with
shape (B,W,H) like voxel grid (Zhu et al. 2019), which
accumulates events within B temporal windows. However,
these sparse representations often suffer from poor conver-
gence. There are also works that have been accomplished in
designing learned representations via DNNs (Cannici et al.
2020; Messikommer et al. 2020), SNNs (Shrestha and Or-
chard 2018; Lee et al. 2020; Baldwin et al. 2022) or GNNs
(Bi et al. 2020; Schaefer et al. 2022).

The representations for DNNs fail to retain adequate in-
formation while maintaining high conversion efficiency. The
representations learned through DNNs bring too much la-
tency. The asynchronous representations based on SNNs or
GNNs cannot achieve comparable performance.

Event-Based Object Detection
The early attempts of event-based object detection convert
events into frames and send them to frame-based detectors
(Lagorce et al. 2015; Cannici et al. 2019), which demon-
strated the feasibility of event-based object detection. Inte-
grating events into image-like planes (Lagorce et al. 2017;

),,4( HWKHistogramHyper

Po
si
tiv
e

N
eg
at
iv
e

Po
si
tiv
e

N
eg
at
iv
e

EventPositive
EventNegative

x












0.9) 0, 0, (0,

0.5) 1, 0, (0,

)tr ,p ,y ,x(





T

)4(1 HWKHistogramD 

)(1 NlarrayD



HistogramsQuantity HistogramsTemporal

Bincount

Reshape

K
t

Multi-index 
Mapping

y

)4,(NSequenceEvent

Figure 1: Hyper Histogram generation process. The 4K his-
tograms are generated simultaneously by forming one 1D
histogram with length 4K ·H ·W using the multi-index map-
ping method. A Hyper Histogram is equivalent to K groups
of quantity histograms and temporal histograms.

Hu et al. 2020) retains more spatio-temporal information.
But due to the lack of large-scale event-based datasets, they
have not yet utilized rich spatio-temporal information of
events.

The benchmark real-world datasets of event-based object
detection are the 1Mpx Detection dataset (Perot et al. 2020)
and the Gen1 Detection dataset (de Tournemire et al. 2020).
Several interesting networks have been proposed for these
two datasets, such as (Perot et al. 2020; Liang et al. 2021; Li
et al. 2022). These works modify specific baseline networks
like SSD and RetinaNet by adding attention modules or de-
signing memory mechanisms to improve the performance.
However, almost all the reported works cannot achieve real-
time object detection with high performance on both two
datasets at a detection speed over the labeling frequency of
60 Hz.

More recently, novel SNN-based methods such as (Cor-
done et al. 2022) utilize the surrogate gradient learning
method to detect objects from encoded voxel cube events.
GNN-based methods like (Schaefer et al. 2022) generalize
GNNs to process events as spatio-temporal graphs. How-
ever, their performance is still far behind that of DNN-based
methods.

Method
Hyper Histogram
First of all, we describe a novel event representation Hy-
per Histogram, which is a 3D histogram with the dimension
(4K,W,H), where K is the number of groups splitting the
time window, W and H are the width and the height. The
Hyper Histogram is a collection of the quantity and tem-
poral histograms with different polarities, the generation of
which is described below.

Traditional quantity event histogram records the event
counts for each pixel within a time window (Maqueda et al.
2018). Taking the polarity pk into account, an event his-
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Figure 2: The flow chart of AEC module. The computed building blocks ht within time T is cached in an adaptive queue Q.
The queue is adaptively updated at each timestamp based on the density of the incoming event stream within a short time ts.
The queue ends up outputting the dense HH with 4K̂ channels, where K̂ is an adaptively changed value. Then, HH is sent
to an SENet block and an 1 × 1 convolution layer to get weighted HH with unified channel number C. The weighted HH is
directly fed to frame-based object detectors.

togram can be divided into a positive quantity histogram and
a negative quantity histogram. Taking the positive quantity
histogram as an example, it can be described as

h+(x, y) =
∑

tk∈T,pk=1

δ(x− xk, y − yk). (1)

where δ() denotes the two-dimensional impulse function.
Although quantity event histograms record the event dis-

tribution for pixels, they lose the temporal information.
Thus, we additionally construct temporal histograms to uti-
lize the chronological order. The temporal histogram for
positive events is described as

h+
t (x, y) =

∑
tk∈T,pk=1

δ(x− xk, y − yk) ·
tk − t0

T
(2)

where t0 is the start time of the current time window. The
negative histograms are generated similarly.

As shown in Fig. 1, Hyper Histogram is a matrix contain-
ing quantity and temporal histograms with different polar-
ities. Positive and negative quantity histograms record the
coordinate distribution and temporal histograms record the
temporal distribution. The combination of four histograms
is defined as h, which is treated as the building block of Hy-
per Histogram.

It should be noted that the relative time only counts within
a short period. A single building block of Hyper Histogram
cannot describe the long-range temporal information. To
solve this issue, we propose the Hyper Histogram with K
building blocks, which consists of K groups of h. The finer
temporal subdivision of Hyper Histogram preserves more
fine-grained information of events. This is especially impor-
tant in the case of high-rate detection.

Another obstacle is that the channel-by-channel calcula-
tion of 2D histograms for 4K times is very time-consuming.
In order to achieve efficient generation, we further provide
a fast implementation. Specifically, we first cache a multi-
index mapping matrix from 4D to 1D and multiply each
event sequence with it to form a 1D array. After the Bin-
count and Reshape operations, the final three-dimensional
Hyper Histogram with shape (4K,W,H) is generated. Fig.
1 shows the generation process of Hyper Histograms.

Algorithm 1: Hyper Histogram Generation in AEC Module
Input: queue Q, event stream −→et , length threshold L
Output: Hyper Histogram HHt

1: Ls = 0 ▷ Initialize Ls, denotes the total length of the
sparse event streams during accumulation

2: while −→et is not empty do
3: generate building block of −→et : ht

4: Lt = length(−→et ).
5: ▷ Incoming sparse stream & Previous stream is dense
6: if Lt < L and Ls = 0 then
7: Push ht at the front of Q
8: Ls+ = Lt

9: ▷ Incoming dense stream ∥ Accumulation is enough
10: else if Lt ⩾ L or Ls ⩾ L then
11: Push ht at the front of Q
12: Ls = 0
13: ▷ Incoming sparse stream & Previous stream is sparse
14: else
15: Add ht to the front of Q (accumulation)
16: Ls = Ls + Lt

17: if Q is full then
18: Pop the rear of the queue
19: t = t+ 1
20: HHt = Stack(h in Q) ▷ Generate Hyper Histogram

Compared with calculating 2D histograms for 4K times,
our proposed fast implementation requires only one cal-
culation for a 1D histogram, which can be achieved in a
CUDA-accelerated way. According to statistics, the multi-
index method improves the generating speed by over 14
times.

Adaptive Event Conversion Module
With the novel event representation Hyper Histogram, we
design an Adaptive Event Conversion (AEC) module to re-
duce extra time consumption from converting continuous
event streams to Hyper Histograms and make full use of
event information for accurate detection.

In AEC, the channel number 4K̂ of Hyper Histogram is
adaptively changed according to the density of incoming
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Figure 3: The flowchart of the Shadow Mosaic augmentation method on raw events. The current event sample and 3 randomly
selected event samples are loaded each time. The Shadow method is performed on 4 samples first to generate shadow events
with different spatio-temporal density. Then 4 shadow event samples are merged into one large mosaic event sample. The
coordinates of merged events are randomly scaled up or down. The Shadow method is also used to repair the event distortion
after scaling. Finally, event cropping is performed.

event streams. If the event stream is super dense, then K̂ is
large and vice versa. We also leverage the channel attention
and weighted dimension-reducing to further improve perfor-
mance.

First, an adaptive queue Q, with the capacity T , is ini-
tialized, which caches building blocks. At timestamp t, the
module loads the event stream of a short time ts and gen-
erates its building block ht. At the same time, the queue
chooses how to handle ht according to the length of the in-
coming event stream (reflecting its density) and generate the
Hyper Histogram HHt. The main steps are summarized in
Algorithm 1.

The queue outputs HHt, which consists of 4K̂ ⩽ 4T
ts

groups of dense histograms. This design prevents over-
sparse event histograms being fed to the following network.
The generated histograms are then weighted by a SENet
block (Hu, Shen, and Sun 2018). The channel number is re-
duced from 4K̂ to a pre-defined number C through a 1 × 1
convolution layer.

The squeeze and excitation process of SENet makes full
use of the global information of each channel. The 1 × 1
convolution layer can be deemed as the weighted dimension-
reducing process. The combination of the two operations can
better distinguish events in different time windows and avoid
the network convergence problem due to the unfixed input
channel number.

The adaptive queue in the AEC module requires the input
to be sequential, so it can only be used in the detection of
continuous event streams. In the training process, we did not
utilize continuous event streams, so the adaptive queue is not
applicable for the training phase. We only utilize the adap-
tive queue in the testing phase, where the testing stream is
continuous. In order to improve robustness of our method,

during training, the K is randomly selected in the range
[1, T

ts ].

Shadow Mosaic Augmentation
Data augmentation is essential in object detection tasks to
improve the performance and generalization ability of the
model by diversifying the dataset. Previous event-based ob-
ject detection methods seldom discuss the data augmenta-
tion. In order to achieve high performance and robust end-
to-end event-based object detection, our method needs effec-
tive data augmentation methods that can be directly applied
to raw event data. We design the Shadow Mosaic for event-
based data augmentation. Fig. 3 shows the procedures of
Shadow Mosaic augmentation, which mainly has four pro-
cedures: Shadow, Mosaic, Scaling and Cropping.

Shadow The spatio-temporal density of event streams is
usually unbalanced, which is probably due to different mov-
ing speeds, illumination and etc. This inspires us to pro-
pose the Shadow method, which simulates events of differ-
ent densities based on the original events.

Sparse shadow events are simulated by random sampling
the original events. Dense shadow events are simulated by
replicating events in the three-dimensional domain. When
the brightness of a certain X-Y coordinates changes rapidly
in a short period, event cameras will generate denser events
over the time dimension. Similarly, intense jitter in a short
period generates denser noisy events in nearby X-Y coordi-
nates. Otherwise, relatively sparse events are generated.

Mosaic In object detection, detection of small objects is
always challenging. To improve the detection accuracy on
small objects, we refer to the classic image augmentation
method Mosaic with scale jittering (Bochkovskiy, Wang,
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and Liao 2020; Simonyan and Zisserman 2015), and extend
the Mosaic method for events.

The first step in Mosaic is to merge four shadow event
samples into one large sample. The original coordinates of
each shadow event (x, y) ∈ RW×H are transformed to
new coordinates (x′ + ∆x1, y

′ + ∆y1) ∈ R2W×2H , with
a random offset (∆x1,∆y1). The events belonging to each
shadow event sample occupy a separate range of W ×H in
the new coordinate system, and do not overlap.

Scaling The merged events are then scaled up or down ac-
cording to a ratio k ∈ [0.5, 2], and another random offset
(∆x2,∆y2) is added. The coordinates of the scaled mosaic
event become

(k(x′ +∆x1) + ∆x2, k(y
′ +∆y1) + ∆y2). (3)

One problem is that there is event distortion after scaling.
Image scaling is usually accomplished by image interpola-
tion, such as nearest, bilinear and bicubic interpolations. If
the traditional image interpolation is directly used on scaled
events, or no interpolation is used, the generated events usu-
ally suffer from pixel loss or distortion. Fig. 4 shows the
visualizations of the scaled events after using Shadow and
traditional interpolation methods.

The second row of Fig. 4 illustrates the visualizations af-
ter interpolating the scaled event directly, which introduces
considerable spatial noise due to the asynchronous nature of
events. The traditional interpolation methods are only suit-
able for the generated image-like planes, but they destroy
the relationship between channels, as shown in the third
row, which also loses many spatial details. Only Shadow
can repair the scaled events and restore more realistic origi-
nal events. Therefore, to ensure that the augmented data are
consistent with the original data, the Shadow method is per-
formed once again after scaling up.

Cropping Finally, event cropping is performed on the
scaled events. Referring to the imaged-based cropping op-
eration (Simonyan and Zisserman 2015), we design event
cropping to eliminate events outside the cropping area while
keeping the intersecting coordinates of four event samples
inside the cropping area. The cropping areas are shown by
colored boxes in Fig. 3 with the crop size 2W × 2H .

Experiments
Datasets
We evaluate our proposed methods on three representative
datasets, which are the 1Mpx Detection dataset (Perot et al.
2020), the Gen1 Detection dataset (de Tournemire et al.
2020) and the Nighttime Driving Detection dataset MVSEC-
NIGHTL21 (Hu, Liu, and Delbruck 2021).

The 1Mpx Detection dataset contains a total of 14.65
hours of events, of which 11.19 hours are for training, 2.21
hours are for validation, and 2.25 hours are for testing. The
sample resolution is 1280× 720. There are 7 object classes,
but only 3 classes are chosen for performance comparison.
The total number of bounding boxes is 25 M+. The labeling
frequency is 60 Hz.
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Figure 4: Visualizations of event distortion repaired by
Shadow and other interpolation methods.

The Gen1 Detection dataset is collected with a relatively
low resolution of 304×240, and there are only 2 classes of
objects. It consists of 39 hours of events, of which 22.63
hours are for training, 6.59 hours for validation, and 10.10
hours for testing. The labeling frequency is 20 Hz.

The MVSEC-NIGHTL21 dataset is a derived dataset of
the Multi Vehicle Stereo Event Camera dataset (Zhu et al.
2018) with moving vehicle detection labels. There are 386
labeled event streams with a resolution of 346×260. The en-
tire dataset is collected at night with low illumination, and
the objects are barely discernable from the RGB frames pro-
vided by the authors. The labeling frequency is 12 Hz.

Models
The frame-based models we choose for event-based object
detection are YOLOv5 (Jocher 2021), Deformable-DETR
(Zhu et al. 2021) and RetinaNet (Lin et al. 2020). The model
depth and layer channel multiples of YOLOv5 are both 1.0.
The backbones of RetinaNet and Deformable-DETR are
both ResNet50 (He et al. 2016).

Implementation Details
For fair comparisons, we choose the most commonly used
50 ms as the time interval. The accumulated time T of the
queue in AEC is also set to 50ms. C and ts are set as 4 and
50 ms

8 . Since the interval between two GTs may be greater
than ts, during testing, the GT will not be updated until ar-
rives the next GT timestamp. The values of the threshold L
on three datasets are chosen as 100000, 10000, and 5750 re-
spectively.

We follow the dataset filtering of previous works (Perot
et al. 2020; Li et al. 2022). The resolution of the 1Mpx
dataset is reduced to 640×360. When training the models,
we utilize 8 NVIDIA GTX 1080Ti GPUs for 100 epochs.
When testing, only one NVIDIA GTX 1080Ti GPU is used.

Experimental Results
In the experiment, we utilize two metrics to evaluate the de-
tection performance. One is COCO mAP (mAP@0.5:0.95)
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Methods mAP (%) runtime (ms)

SAM (Liang et al. 2021) 23.9 -
UDA (Messikommer et al. 2022) 48.0⋆ -
ASTMNet (Li et al. 2022) 48.3⋄ 72.3
RED (Perot et al. 2020) 43.0 39.3
ITS + RetinaNet 35.0 / 36.9∗ 90.3
ITS + Deformable-DETR 37.8 / 39.8∗ 88.0
ITS + YOLOv5 39.4 / 41.5∗ 84.0

Ours + RetinaNet 41.8 / 44.1∗ 22.0
Ours + Deformable-DETR 45.9 / 48.3∗ 20.7
Ours + YOLOv5 48.4 / 51.0∗ 13.8

Table 1: Performance comparison with the state-of-the-art
methods on the 1Mpx Detection dataset. ∗ : The confidence
threshold is 0.3. ⋄ : The reported result is in COCO AP50.

Methods mAP (%) runtime (ms)

AEGNN (Schaefer et al. 2022) 16.3 -
SNN-SSD (Cordone et al. 2022) 18.9 -
SAM (Liang et al. 2021) 35.5 -
FS (Crafton et al. 2021) 39.6⋄ 41.2
RED (Perot et al. 2020) 40.0 16.7
ASTMNet (Li et al. 2022) 46.7∗ 35.6
ITS + RetinaNet 36.5 / 44.1∗ 34.2
ITS + Deformable-DETR 37.9 / 45.8∗ 32.6
ITS + YOLOv5 38.2 / 46.1∗ 25.6

Ours + RetinaNet 43.1 / 51.9∗ 9.4
Ours + Deformable-DETR 44.5 / 53.5∗ 7.7
Ours + YOLOv5 47.0 / 56.5∗ 3.9

Table 2: Performance comparison with the state-of-the-art
methods on the Gen1 Detection dataset. ∗ : The confidence
threshold is 0.3. ⋄ : The reported result is in COCO AP50.

calculated using YOLOv5 utilities, with a confidence thresh-
old of 0.3 as the state-of-the-art method ASTMNet (Li et al.
2022). We also provide results calculated using the official
COCO API (The confidence threshold is 0) for a fair com-
parison. The other is runtime, which includes the event con-
version time and the network inference time. For a compre-
hensive comparison, we compare our method with several
state-of-the-art methods and baselines utilizing ITS (Incep-
tive Time Surface) representation (Baldwin et al. 2019).

1Mpx Detection Dataset From Table 1, we can see sig-
nificant performance gains for all three models on the 1Mpx
dataset. Among three detection models, YOLOv5 shows the
best performance. Compared with the state-of-the-art net-
work ASTMNet (Li et al. 2022), the mAP is increased from
48.3% to 51.0%, while maintaining a very short runtime of
13.8 ms, which is only 19% of ASTMNet’s and 35% of
RED’s. Compared with our baselines, the gains are (7.2%
mAP, 68.3 ms runtime), (8.5% mAP, 67.3 ms runtime) and
(9.5% mAP, 70.2 ms runtime), respectively.
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Figure 5: Visualization of detection results on 3 datasets.
Detector with our methods detects the most objects and the
bounding boxes are more accurate.

Methods Training dataset mAP (%)

ITS + RetinaNet 1Mpx / Gen1 30.7 / 30.1
ITS + Deformable-DETR 1Mpx / Gen1 35.4 / 30.9
ITS + YOLOv5 1Mpx / Gen1 37.3 / 31.7

Ours + RetinaNet 1Mpx / Gen1 36.5 / 34.6
Ours + Deformable-DETR 1Mpx / Gen1 44.3 / 37.0
Ours + YOLOv5 1Mpx / Gen1 46.8 / 38.8

Table 3: Detection Performance on the MVSEC-NIGHTL21
dataset. It should be noted that the models we use for testing
are pretrained on the 1Mpx / Gen1 datasets.

Gen1 Detection Dataset The results of the comparison on
the Gen1 dataset are shown in Table 2. Our YOLOv5-based
version achieves the largest improvement over ASTMNet
in terms of mAP, from 46.7% to 56.5%. Leveraging the
compact structure of YOLOv5, the runtime is only 3.9 ms,
which is only 11% of ASTMNet’s and 23% of RED’s. Com-
pared with our baselines, the gains are (7.8% mAP, 24.8ms
runtime), (7.7% mAP, 24.9 ms runtime) and (10.4% mAP,
21.7 ms runtime), respectively.

MVSEC-NIGHTL21 Dataset We further provide the
generalization ability test results in Table 3 by directly eval-
uating trained models on the MVSEC-NIGHTL21 dataset.
The performance of our YOLOv5-based version trained
on two datasets is increased by 9.5% and 7.1%. While
Deformable-DETR achieves increments of 8.9% and 6.1%.
RetinaNet increases by 5.8% and 4.5%.

These encouraging results indicate that we can achieve
high-performance end-to-end event-based object detection
on the 1Mpx and Gen1 datasets, quicker than any previous
work. With some lighter and quicker detectors, the detec-
tion speed can be further improved. Meanwhile, with our
proposed methods, the model trained on large-scale datasets
has sufficient generalization ability to be transferred to other
datasets collected under different conditions.
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1 Mpx Detection dataset Gen1 Detection dataset
Methods mAP (%) runtime (ms) mAP (%) runtime (ms)
Baseline (ITS + YOLOv5) 39.4 84.0 38.2 25.6
+ Mosaic (w/o distortion repair) 44.3 (+4.9) 83.7 43.3 (+5.1) 26.0
+ Shadow Mosaic 46.5 (+7.1) 84.5 45.0 (+6.8) 26.2
+ Shadow Mosaic + Hyper Histogram 47.4 (+7.9) 22.6 46.6 (+8.4) 9.2
+ Shadow Mosaic + Hyper Histogram + AEC 48.4 (+9.0) 13.8 47.0 (+8.8) 3.9

Table 4: Performance of YOLOv5 with different modules.

Interpolation Methods Applied on mAP (%)

Nearest Events 43.6
Bilinear Events 39.8
Nearest ITS 44.5
Bilinear ITS 43.7

Shadow Events 45.0

Table 5: Performance of YOLOv5 with Shadow and differ-
ent interpolation methods on the 1Mpx Detection dataset.

Visual Detection Results We present some visual detec-
tion results of different datasets and different methods in Fig.
5. It can be observed that YOLOv5 with our proposed AEC
module and Shadow Mosaic successfully detects the most
objects. The regression of bounding boxes is also more ac-
curate. Especially for the MVSEC-NIGHTL21 dataset with
different scales and event densities, the models pre-trained
on the 1Mpx dataset can still achieve accurate detection.

Ablation Studies
We perform a series of ablation experiments on the pro-
posed methods. These experiments are conducted on the
1Mpx dataset and the Gen1 dataset. The baseline we utilize
is ITS+YOLOv5. The ablation results are shown in Table 4.
Mosaic The Mosaic augmentation method enriches the scale
diversity of event samples. This leads to increases of 4.9%
and 5.1% in mAP for the two datasets.
Shadow The Shadow augmentation method increases the
sample diversity by randomly changing the density of input
events. It also repairs the distortion after scaling. This leads
to increases of 2.2% and 1.7% in mAP for two datasets. We
also compare the ability of Shadow with other interpolation
methods to repair the distortion. Different methods are used
with Mosaic augmentation. We report the optimal mAP in
Table 5. The Shadow method outperforms any other inter-
polation methods.
Hyper Histogram The experimental results prove that the
representation Hyper Histogram achieves optimal mAP in-
crements of 0.8% and 1.6% for the two datasets. The multi-
index mapping method accelerates the runtime by 3.7 and
2.8 times on the two datasets.
AEC The AEC module further reduce the runtime by 6.1
and 6.6 times on two datasets, with mAP increments of 1.1%
and 0.4%, respectively.

We also conduct ablation experiments on the event rep-
resentation. We start with comparing the Hyper Histogram

Representations mAP (%) runtime (ms)

Event histogram (Moeys et al. 2016) 34.0 34.7
Time surface (Lagorce et al. 2017)∗ 35.1 48.2
Event volume (Hu et al. 2020)∗ 35.9 44.0
ITS (Baldwin et al. 2019)∗ 36.3 84.0

Hyper Histogram (K=1) 35.9 21.2
Hyper Histogram (K=2) 36.4 22.0
Hyper Histogram (K=4) 37.0 22.4
Hyper Histogram (K=8) 36.9 22.7
Hyper Histogram (K=16) 35.7 23.0
Hyper Histogram (AEC) 37.2 13.8

Table 6: Performance of YOLOv5 with different event repre-
sentations on the 1Mpx Detection dataset. ∗ : Preprocessing
is needed.

with other commonly used representations, which are event
histogram, time surface, event volume and ITS. We also
compare the performance of models with different values of
K. It should be noted that in these ablation experiments, no
augmentation methods are utilized for a fair comparison.

The quantitative results are shown in Table 6. It can be
seen that the Hyper Histogram with a fixed K = 4 yields a
maximum mAP of 37.0%. The mAP performance does not
continue to increase with K consistently. The introduction
of AEC achieves 37.2% mAP, and the running time is re-
duced to only 16.4% of models using ITS. The 13.8ms run-
time also includes a 9.4 ms inference time, which means
that the event conversion time is only 4.4 ms.

Conclusion
In this paper, we propose a new event representation Hy-
per Histogram, which keeps the quantity and temporal in-
formation. We also design an Adaptive Event Conversion
module to achieve efficient end-to-end event-based object
detection. In addition, we propose an event-based augmen-
tation method Shadow Mosaic, which significantly improves
the event sample diversity and enhances the generaliza-
tion ability of the model. We equip our proposed modules
on three representative object detection models: YOLOv5,
Deformable-DETR and RetinaNet. The experimental re-
sults on three event-based detection datasets (1Mpx, Gen1
and MVSEC-NIGHTL21) provide credible evidence that
our proposed approach achieves superior performance over
state-of-the-art methods with much faster running speed.
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