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Abstract

We present Progressively Deblurring Radiance Field (PDRF),
a novel approach to efficiently reconstruct high quality ra-
diance fields from blurry images. While current State-of-
The-Art (SoTA) scene reconstruction methods achieve photo-
realistic renderings from clean source views, their perfor-
mances suffer when the source views are affected by blur,
which is commonly observed in the wild. Previous deblurring
methods either do not account for 3D geometry, or are com-
putationally intense. To addresses these issues, PDRF uses
a progressively deblurring scheme for radiance field model-
ing, which can accurately model blur with 3D scene context.
PDRF further uses an efficient importance sampling scheme
that results in fast scene optimization. We perform extensive
experiments and show that PDRF is 15X faster than previous
SoTA while achieving better performance on both synthetic
and real scenes.

Introduction
Reconstructing a 3D scene from 2D images is a long-
standing research problem with extensive applications in
robotics, site model construction, AR/VR, e-commerce,
etc. Significant progress has been observed recently with
developments in differentiable rendering and implicit
function representation, e.g. Neural Radiance Field, or
NeRF (Mildenhall et al. 2020). In this approach, scene ra-
diance is represented as a neural network, i.e. a Multi-
Layer Perceptron (MLP), which maps 3D coordinates to
their respective density and color. By incorporating the MLP
into ray tracing, scene radiance is optimized with a self-
supervised photometric loss to satisfy multi-view observa-
tions; therefore, only calibrated images are required. This
formulation produces photo-realistic scene rendering, mod-
els scene geometry, and accounts for view dependent effects.

While NeRF, along with other implicit function-based
methods (Park et al. 2019; Mescheder et al. 2019; Chen
and Zhang 2019; Sitzmann, Zollhöfer, and Wetzstein 2019),
marks a significant step towards photo-realistic scene recon-
struction, its application in the real world is still limited.
Images acquired in the wild are often affected by factors
like object motion, camera motion, incorrect focus, or low
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Figure 1: Comparisons of radiance field modeling methods
from blurry images. Our proposed PDRF significantly out-
performs previous methods in speed and performance. Re-
sults are aggregated from Table 1.

light conditions. These factors can significantly impact radi-
ance field modeling due to information loss and multi-view
inconsistency. There often exists enough information within
images in the wild to model high quality radiance field, de-
spite the sub-optimal acquisitions. To this end, subsequent
works (Mildenhall et al. 2022; Park et al. 2021a,b; Pumarola
et al. 2021; Tretschk et al. 2021; Martin-Brualla et al. 2021)
attempt to account for these conditions with domain knowl-
edge and estimate a robust NeRF.

In this work, we seek to better address camera motion and
defocus blur in radiance field modeling, which is commonly
observed. Prior works have two drawbacks: a lack of 3D
context in modeling blur and a time-consuming optimization
process. In particular, Deblur-NeRF (Ma et al. 2022) models
a blurry observation by blending P clean pixels with a blur
kernel; however, the pixel-wise blur is predicted based on
2D image coordinates. As we will show, this limits Deblur-
NeRF’s blur modeling capacity due to the lack of scene con-
text. Since P pixels need to be ray-traced to render a single
blurry pixel, Deblur-NeRF is also P times slower than NeRF
in rendering the same number of pixels. As shown in Fig. 1,
this make Deblur-NeRF very computationally demanding.
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Several previous works (Fridovich-Keil et al. 2022;
Müller et al. 2022; Sun et al. 2022; Chen et al. 2022) have
shown great progress in accelerating NeRF; however, they
are not directly applicable to methods that dynamically gen-
erated rays to account for view inconsistencies. Specifically,
these acceleration methods rely on an explicit density vol-
ume, which allows fast ray-tracing by pruning away low
density voxels. This strategy relies on the assumption that
static rays can lead to good density approximation, which is
not true when images are blurred. Voxel pruning also leads
to sub-optimal learning for dynamic ray generation because
gradients only propagate on parts of the ray.

We propose a novel Progressively Deblurring Radiance
Field, or PDRF. PDRF uses a Progressive Blur Estimation
(PBE) module to address the lack of 3D modeling for blur.
To achieve this, PBE first generates a coarse set of rays to
account for blur, based on 2D coordinates. PBE then traces
these rays and obtains their features from the underlying
radiance field. Finally, PBE refines coarse blur estimations
with a second update by incorporating 3D features into blur
modeling. For rendering, PDRF uses a Coarse Ray Renderer
(CRR) and a Fine Voxel Renderer (FVR). CRR provides
feature and density estimation for PBE and FVR respec-
tively. In particular, CRR achieves efficiency by rendering
a ray from its aggregated feature instead of rendering indi-
vidual voxels. FVR focuses on quality, and uses a larger net-
work and denser predictions for high quality view synthesis.
CRR and FVR combine the use of explicit features (Chen
et al. 2022) and an efficient importance sampling to enable
fast convergence and proper gradient updates for PBE. As
demonstrated in Fig. 1, despite the more sophisticated blur
modeling, PDRF is faster and more performant than Deblur-
NeRF in modeling radiance field from blurry images. In
summary, our contributions can be described in three parts:

1. We propose a Progressive Blur Estimation module,
which first proposes a coarse blur model and updates it
with corresponding 3D features to capture details.

2. We propose an efficient rendering scheme, which in-
cludes a Coarse Ray Renderer and a Fine Voxel Ren-
derer; this scheme is significantly faster than NeRF while
supporting ray optimization in PBE.

3. We evaluate the overall PDRF method on synthetic and
real images with blur, and find significant performance
improvements compared to SoTA methods.

Related Work and Backgrounds
Motion and Defocus Deblurring. Motion and defocus blur
are commonly observed image degradations. Blurry obser-
vations are typically modeled as convolutions between clean
images and blur kernels; therefore, single image deblurring
is a heavily ill-posed problem, as many solutions can lead
to the same observations. Traditionally, various priors are
used to constraint the solution space (Chan and Wong 1998;
Rudin, Osher, and Fatemi 1992; Krishnan, Tay, and Fergus
2011; Xu, Zheng, and Jia 2013; Tai et al. 2011; Levin 2006).
More recently, deep learning-based methods have achieved
great performances by learning a more sophisticated de-
blurring prior in a data driven way, e.g. as a function that

directly maps blurry images to clean images. (Chakrabarti
2016; Kupyn et al. 2018; Lee et al. 2021; Nah, Kim, and Lee
2017; Son et al. 2021a; Tao et al. 2018; Zamir et al. 2021;
Zhang et al. 2020) Video-based deblurring explores tempo-
ral consistency to find better solutions, e.g. through optical
flow (Kim and Lee 2015; Pan, Bai, and Tang 2020; Li et al.
2021) or recurrent structures (Zhong et al. 2021; Kim et al.
2017; Nah, Son, and Lee 2019; Son et al. 2021b).
Neural Radiance Field Modeling. Significant progress has
been made in recent years on the 3D scene reconstruction
task. Due to space constraints, we refer to previous sur-
veys (Han, Laga, and Bennamoun 2021; Tewari et al. 2020)
for a comprehensive review. We focus on neural radiance
field modeling, a SoTA approach for scene reconstruction.
NeRF (Mildenhall et al. 2020) is a seminal work that mod-
els scene radiance with an implicit MLP function F . The
color ci and density σi at voxel location Xi ∈ R3 can be
queried from F :

(ci, σi) = F (γLX
(Xi), γLd

(d)), (1)

where ci is dependent on view direction d, and γL is an L-
frequency-band embedding function that leads to better con-
vergence (Tancik et al. 2020). By tracing a ray at locations
Xi = o+ tid , where o is the ray origin and ti indicates the
travel distance, the rendered color Ĉ(rx) for ray rx is:

Ĉ(rx) =
N∑
i=1

Ti(1− exp(−σiδi))ci,

Ti = exp(−
i−1∑
j=1

σjδj),

(2)

which aggregate color ci based current and cumulative den-
sity {σi, Ti}, modulated by distance between samples δi. We
update F by constraining Ĉ(rx) to be similar to observations
C(rx) at all pixel locations x ∈ R2.

NeRF can produce photo-realistic renderings on novel
views; however, it relies on a powerful MLP to represent
the scene. This leads to a very long optimization time with
millions of queries from a network. To ameliorate this is-
sue, NeRF applies importance sampling: it first samples few
equidistant locations along a ray before proposing additional
points around high density regions for finer sampling. Many
follow-up works seek to further accelerate NeRF optimiza-
tion, generally following a space-time trade-off by introduc-
ing explicit representations to supplement implicit neural
networks. DirectVoxGo (Sun et al. 2022) proposes to use
feature and density volumes to store view-invariant infor-
mation and uses a shallow MLP to render view-dependent
color. Plenoxel (Fridovich-Keil et al. 2022) discards MLPs
and uses spherical harmonics to model view dependent ef-
fects; the voxel density and spherical harmonic coefficients
are stored as volumes. A downside to using volumetric
representations is the large memory footprint. To this end,
Instant-NGP (Müller et al. 2022) uses multi-resolution hash-
ing instead of a volume to compactly encode explicit fea-
tures. TensoRF (Chen et al. 2022) proposes a tensor de-
composition to approximate 3D features in lower dimen-
sions, which is more scalable to high resolution. Another
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Figure 2: PDRF is split into two stages. In the coarse stage, PBE models the blur from 2D coordinates to obtain the initial
kernel locations x∗

k. We then obtain the respective ray features fray(rx∗
k
) from CRR. PBE then generates a second, refined blur

estimate based on {x∗
k, fray(rx∗

k
)}, and uses CRR and FVR to render the observed blurry pixel. After optimization, we can

directly render from a blur-free radiance field to obtain deblurred images.

approach to accelerate NeRF is through more efficient im-
portance sampling. Mip-NeRF360 (Barron et al. 2022) uses
a small coarse network that outputs density only and is su-
pervised by another large network. PDRF combines a novel
and efficient importance sampling scheme with explicit rep-
resentations to realize greater acceleration.
NeRF Modeling With Non-Ideal Images. NeRF works
well when images are clean and well-calibrated; however,
images acquired in the wild are often non-ideal. Factors,
such as low light, camera motion, object motion, and incor-
rect focus, can degrade image quality or affect multi-view
consistency. Many works introduce domain knowledge to
model the non-ideal contributor to observations, such that
the radiance field function only models a canonical, multi-
view consistent scene. RawNeRF (Mildenhall et al. 2022)
uses an approximated tonemapped loss and variable expo-
sure to account for low light observations. NeRF-W (Martin-
Brualla et al. 2021) uses image-specific embedding to model
inconsistent appearances and transient objects. For object
motion, many works (Park et al. 2021a,b; Pumarola et al.
2021; Tretschk et al. 2021) use an implicit function to de-
scribe scene deformation, such that the rays are first de-
formed, then traced by a radiance field function. Recently,
Deblur-NeRF (Ma et al. 2022) introduces an implicit func-
tion to model per-pixel blur before radiance field modeling.
Specifically, the blurry observation C̃ is modeled as a con-
volution between clean pixels and a blur kernel:

C̃(rx) =
∑

xk∈N (x)

C(rxk
)h(xk) s.t

∑
xk∈N (x)

h(xk) = 1,

(3)
where xk denotes the clean 2D coordinates at neighbor-
ing locations N (x). The implicit function accounts for blur
by predicting P = |{xk}| rays and their blending weights

h(xk), which are used by a NeRF to computes C̃(rxk
).

Progressively Deblurring Radiance Field
As shown in Fig. 2, PDRF consists of two parts: a Progres-
sive Blur Estimation (PBE) module, and a rendering module.
We first describe PBE, which models blur in two stages. The
coarse stage is fast and estimates blur based on 2D pixel co-
ordinates; the finer stage updates previous results by adding
ray features, such that PBE can take into account 3D scene
context and model blur with more precision. We then de-
scribe the rendering module, which combines an efficient
importance sampling scheme with explicit representations
to accelerate optimization. Coarse Ray Renderer (CRR) pro-
vides fast ray feature and density estimations for PBE and
Fast Voxel Renderer (FVR). FVR performs importance sam-
pling based on CRR’s density estimation and has finer ray
tracing resolution; it also uses a larger, voxel-wise rendering
network to produce high quality view synthesis.

Progressive Blur Estimation
We follow prior works by introducing an implicit function
H to model blur. Specifically, H estimates a number of xk

and their blur kernel weights h(xk) for every x; we then can
use Eq. (3) to render the blurry observations from xk.

Since tracing multiple rxk
is costly, the kernel size P

should be minimal. To effectively find the P rays that de-
scribe blur, we propose a two-stage estimation scheme. As
shown in Fig. 2, the coarse blur estimation stage makes use
of a canonical blur kernel location x′

k ∈ RV×P×2 and view
embedding l ∈ RV×K , where V is the number of source
views and K is the embedding size. Both x′

k and l are learn-
able parameters that serve as the blur kernel and view index

2031



input to H . In return, H produces a set of coarse ray ker-
nels rx∗

k
to account for blurry observations in Eq. (3). More

specifically, H produces offsets {∆ox′
k
,∆x′

k, } to the ray
origin o and x′

k. This can be expressed as:

∆ox′
k
,∆x′

k, h
′(x∗

k) = H(l, x, x′
k, ∅),

x∗
k = x′

k +∆x′
k, ox∗

k
= o+∆ox′

k
,

rx∗
k
= ox∗

k
+ tdx∗

k
,

(4)

where ∅ is a zero vector placeholder for features from the
next stage. This initial blur model {rx∗

k
, h′(x∗

k)} is similar in
formulation to Deblur-NeRF (Ma et al. 2022) and has been
shown to work reasonably well. As recent works (Fridovich-
Keil et al. 2022; Sun et al. 2022; Müller et al. 2022; Chen
et al. 2022) suggest, an implicit function can be enhanced
by explicit features for better and faster convergence, we hy-
pothesize that H can also benefit from additional features.

To motivate the correct features that help H account for
blur, consider a complex scene in Fig. 3a where the back-
ground is out-of-focus. A key piece of information that de-
scribes blur in a pixel is its depth, as pixels have more
blur when their content is further away from the camera.
While {rx∗

k
, h′(x∗

k)} can model a coarse blurry regions,
it cannot distinguish the sharp foreground details amongst
background pixels, limited by their similar 2D coordinates.
Based on this observation, we introduce a second, refine-
ment stage that incorporates ray features fray to H for fine-
grained blur modeling. As shown in Fig. 2, fray(rx∗

k
) is ob-

tained by tracing and aggregating per-voxel features from
the underlying radiance field. The exact formulation is elab-
orated in Eq. (7) and the next section.

Based on fray(rx∗
k
), PBE performs a second inference to

update {rx∗
k
, h′(x∗

k)} and produces the final rxk
:

∆ox∗
k
,∆x∗

k, h(xk) = H(l, x, x∗
k, fray(rx∗

k
)),

xk = x∗
k +∆x∗

k, oxk
= o+∆ox∗

k
,

rxk
= oxk

+ tdxk
.

(5)

The updated {rxk
, h′(xk)} is more accurate in describing

blur, which we demonstrate in Fig. 3c and 3d by measur-
ing the variances of ∆ox∗

k
and ∆oxk

. When observations are
already sharp, i.e. a single ray can approximate the obser-
vation, {∆o,∆x′} should have to similar spatial locations;
when observations are blurry, {∆o,∆x′} should be dissim-
ilar to account for blur and have high variance. Clearly,
{rxk

, h′(xk)} can better distinguish the clear foreground de-
tails from the blurry background. Furthermore, a two-stage
design is still efficient since Eq. (4) computes quickly.

Coarse Ray Renderer
The Coarse Ray Renderer serves two roles in PDRF: it pro-
vides coarse density estimation to FVR and ray features to
PBE. CRR accomplishes this by performing a fast ray trac-
ing. To estimate voxel density, CRR uses a two-layer MLP
Mcoar

σ and an explicit feature volume Gcoar:

σcoar
i , f coar

Xi
= Mcoar

σ (γLX
(Xi),Gcoar(Xi)), (6)

where Xi is the traced 3D coordinates. We implement
Gcoar with tensor decomposition (Chen et al. 2022) and

(a) Defocus Blur (b) Deblur Blur, Magnified

(c) V ar(∆ox∗
i
), Ma et al. (d) V ar(∆oxi), PBE

Figure 3: Visualization of defocus blur in (a), background is
out-of-focus. We visualize the variance of predicted ∆oxi

,
where higher variance correlates with more blurry regions.
Our PBE module (d) can clearly distinguish foreground de-
tails despite their proximity with background pixels; (c) can
only coarsely distinguish fore/background.

use it to accelerate convergence for Mcoar
σ . We find that

a purely explicit density representation used by previous
methods (Fridovich-Keil et al. 2022; Sun et al. 2022; Chen
et al. 2022) is prone to significant noise when the observa-
tions have complex details or blur, likely due to its inflexible
volumetric data structure. Therefore, Eq. (6) uses a combi-
nation of an implicit function and explicit features to ensure
good density estimation. CRR further obtains an efficient ray
feature representation by modifying on Eq. (2):

fray(rx) =
Nc∑
i=1

T coar
i (1− exp(−σcoar

i δi))f
coar
i , (7)

where fray(rx) aggregates feature along ray rx, similar to the
aggregated color C(rx), and Nc is the number of equidistant
samples. We find fray(rx) to be an effective 3D representa-
tion for PBE; in particular, fray(rx) is agnostic to ray direc-
tion as the blur model in PBE is already view specific. We
use fray(rx) for color rendering by another MLP Mcoar

r :

Ĉcoar(rx) = Mcoar
r (fray(rx), γLd

(d)). (8)

This ray-rendering formulation has two advantages. First,
it is very fast to compute; instead of querying every voxel
along the ray through an MLP, Eq. (8) is only inferenced
once per ray. It also serves as a coarse approximation of
per-voxel rendering. Consider ray tracing when the sur-
face density is a Dirac delta function σ = δ̂(Xsurf) at a
3D location Xsurf; this simplifies Eq. (7) and Eq. (8) to
Ĉcoar(r) = Mcoar

r (f coar
Xsurf

, γLd
(d)), which is equivalent to per-

voxel rendering. While this is the optimal solution, multi-
view observations constrain fray to coarsely represent sur-
face features and help CRR achieve a good balance between
speed and performance. CRR is first used by PBE to gather
ray features and renders color based on {rx∗

k
, h′(x∗

k)}; it is
then used with FVR to render colors based on the updated
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{rxk
, h(xk)}. Following Eq. (3), the predicted blurry colors

are computed as follows:

ˆ̃Ccoar∗(rx) =
∑
x∗
k

Ĉcoar(rx∗
k
)h′(x∗

k),

ˆ̃C(rx) =
∑
x∗
k

Ĉ(rxk
)h′(xk),

ˆ̃Ccoar(rx) =
∑
xk

Ĉcoar(rxk
)h(xk).

(9)

Its training loss is a combined photometric loss with all
blurry observation C̃(rx):

LCRR
photo = ∥ ˆ̃Ccoar∗(rx)− C̃(rx)∥22 + ∥ ˆ̃Ccoar(rx)− C̃(rx)∥22.

(10)

Fine Voxel Renderer
The Fine Voxel Renderer leverages the density estimation
from CRR and generates high quality rendering. CRR calcu-
lates weights wi = Ti(1−exp(−σcoar

i δi)) for Nc equidistant
points in Eq. (7), these weights are normalized to produce a
PDF of ray density. FVR uses this PDF to sample additional
Nf points on high density regions for finer tracing. Impor-
tance sampling scheme is used instead of voxel pruning,
as voxel pruning introduces optimization issues for PBE.
Specifically, previous works (Fridovich-Keil et al. 2022; Sun
et al. 2022; Chen et al. 2022) use explicit density volume and
quickly prune off many low density voxels. While this works
for static rays, PBE dynamically generates rays rxi

based on
gradients from the photometric loss. In this case, voxel prun-
ing also eliminates gradients on many points and forces PBE
to optimize rxi base on small segments of the ray. Further-
more, high density voxels are often not correctly estimated
from blurry observations and can lead to erroneous pruning.

After importance sampling, FVR uses a large MLP, which
contains density and color components Mfine

σ and Mfine
c re-

spectively for high quality view synthesis. The voxel density
σfine is obtained as follows:

σfine, ffine
Xi

= Mfine
σ (γLv

(Xi),Gcoar(Xi)⊕ Gfine(Xi)), (11)

where ⊕ is the concatenation operation. We use an addi-
tional fine feature volume Gfine with the previous Gcoar to
maximize explicit feature capacity. Then, per-voxel color is
rendered and aggregated as follows:

ci = Mfine
c (ffine

Xi
, γLd

(d)),

Ĉfine(rx) =
Nc+Nf∑

i=1

T fine
i (1− exp(−σfine

i δi))ci.
(12)

A photometric loss is used for FVR, similar to CRR:

ˆ̃Cfine(rx) =
∑
xi

Ĉfine(rxi)h(xi),

LFV R
photo = ∥ ˆ̃Cfine(rx)− C̃(rx)∥22.

(13)

Finally, the overall loss includes a total variation constraint
L∗
TV on the explicit feature volumes to enforce smoothness,

following previous works (Fridovich-Keil et al. 2022; Sun
et al. 2022; Chen et al. 2022):

Ltot = LCRR
photo + LFV R

photo + λ(LGcoar

TV + LGfine

TV ). (14)

Experiments
Dataset. We evaluate our deblurring method on the dataset
provided by (Ma et al. 2022), which contains five synthetic
scenes and twenty real world scenes. The synthetic scenes
are affected by camera motion blur and defocus blur sep-
arately and have blur-free novel view groundtruth. For real
world scenes, ten of them are affected by camera motion blur
and the remaining ten are affected by defocus blur. While
real world scenes have blur-free references, the calibration
and exposure may not be consistent with source views. As
such, we report quantitative evaluations, specifically PSNR
and SSIM, on synthetic scenes and provide quantitative met-
rics on real world scenes in supplemental material.
Implementation Details. We construct PBE as a four-layer
MLP with a channel size of 64 and ReLU as the activation
function. The size of view embedding l and ray feature fray
is 32 and 15. The canonical kernel locations x′

i are normal-
ized to be at most ±10 pixels from x. For CRR, we use a
decomposed feature tensor Gcoar that represents 17 million
voxels; for FVR, Gfine represents 134 million voxels. The
channel dimension for the decomposed {X,Y, Z} axes are
{64, 16, 16}. For CRR, the two-layer MLP Mcoar

σ and three-
layer MLP Mcoar

r have a channel size of 64 for hidden lay-
ers. PDRF is trained with a batch size of 1024 rays, each ray
has coarse samples Nc = 64 and importance sampled for
Nf = 64 additional voxels. A gamma correction function of
Ĉ(rx)

1
2.2 is used as the camera response function.

Ablation Study. We compare three versions of designs to
demonstrate the effectiveness of different components:

• PDRFsingle-5: We use only the first stage, i.e. Eq. (4), to
model blur without ray features, kernel size P = 5.

• PDRF-5: PDRF with kernel size P = 5.
• PDRF-10: PDRF with kernel size P = 10.

As shown in Table 1, PDRFsingle-5 is much faster than
Deblur-NeRF and on par in performance, demonstrating the
effectiveness of CRR and FVR; however, PDRF-5 outper-
forms PDRFsingle-5 by introducing a second refinement stage
in PBE. PDRF-5 is not significantly slower than PDRFsingle-
5, as CRR can obtain ray features very quickly. Finally,
PDRF-10 uses a more powerful blur model by doubling the
kernel size; this leads to significant performance improve-
ment but also slower training time. An interesting direction
for further optimization is to first distinguish the blurry and
non-blurry regions, e.g. as shown in Fig. 3, and focus more
modeling power on blurry regions. This also has applica-
tions to object motion modeling in NeRF, as oftentimes only
some objects in the scene move when all observations are
modeled for deformation. We demonstrate PDRF’s applica-
tion to object motion modeling in the supplementary section.
Quantitative and Visual Evaluation. We quantitatively and
visually compare PDRF against various radiance field mod-
eling methods in Table. 1 and Fig. 4. NeRF (Mildenhall
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Factory Cozyroom Pool Tanabata Trolley Average Time

Camera Motion PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM Hrs

NeRF 19.32 0.4563 25.66 0.7941 30.45 0.8354 22.22 0.6807 21.25 0.6370 23.78 0.6807 5.00
Plenoxel 18.42 0.4854 25.56 0.8480 30.13 0.8481 21.67 0.6992 20.81 0.6759 23.31 0.7113 0.42
TensoRF 18.85 0.4981 24.91 0.7975 15.89 0.3783 21.06 0.6762 20.01 0.6584 20.53 0.6017 0.83

MPR + NeRF 21.70 0.6153 27.88 0.8502 30.64 0.8385 22.71 0.7199 22.64 0.7141 25.11 0.7476 5.00
Deblur-NeRF 25.60 0.7750 32.08 0.9261 31.61 0.8682 27.11 0.8640 27.45 0.8632 28.77 0.8593 20.0
Deblur-TensoRF 23.20 0.6560 30.18 0.8890 29.83 0.7956 25.13 0.7891 25.10 0.7894 26.69 0.7838 1.50
Deblur-TensoRFpru 20.02 0.4889 28.00 0.8570 29.66 0.7968 22.87 0.7029 22.99 0.7231 24.71 0.7137 1.25

PDRFsingle-5 25.65 0.7793 31.37 0.9255 31.28 0.8623 27.55 0.8809 27.43 0.8769 28.66 0.8650 1.15
PDRF-5 25.60 0.7786 32.01 0.9310 31.53 0.8686 27.70 0.8851 27.90 0.8841 28.95 0.8695 1.33
PDRF-10 26.56 0.8102 31.90 0.9321 31.29 0.8657 28.21 0.8952 28.48 0.8956 29.29 0.8798 2.33

Defocus PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM Hrs

NeRF 25.36 0.7847 30.03 0.8926 27.77 0.7266 23.80 0.7811 22.67 0.7103 25.93 0.7791 5.00
Plenoxel 25.51 0.8579 30.33 0.9315 27.33 0.7382 23.59 0.8371 22.42 0.7862 25.84 0.8302 0.42
TensoRF 25.08 0.8415 29.77 0.9154 16.23 0.4112 22.97 0.8193 22.40 0.7819 23.17 0.7539 0.83

KPAC + NeRF 26.40 0.8194 28.15 0.8592 26.69 0.6589 24.81 0.8147 23.42 0.7495 25.89 0.7803 5.00
Deblur-NeRF 28.03 0.8628 31.85 0.9175 30.52 0.8246 26.25 0.8517 25.18 0.8067 28.37 0.8527 20.0
Deblur-TensoRF 27.01 0.8257 30.39 0.8882 27.41 0.6841 24.36 0.7835 23.91 0.7593 26.62 0.7882 1.50
Deblur-TensoRFpru 25.55 0.7932 28.64 0.8777 27.60 0.6954 23.66 0.7711 22.51 0.7195 25.59 0.7714 1.25

PDRFsingle-5 28.33 0.8743 31.78 0.9222 30.43 0.8233 26.26 0.8649 25.47 0.8261 28.45 0.8622 1.15
PDRF-5 30.34 0.9032 32.10 0.9269 30.48 0.8262 27.31 0.8818 27.05 0.8581 29.46 0.8792 1.33
PDRF-10 30.90 0.9138 32.29 0.9305 30.97 0.8408 28.18 0.9006 28.07 0.8799 30.08 0.8931 2.33

Table 1: Quantitative comparisons of different radiance field modeling methods on five synthetic blurry scenes. Best and second
best performances are indicated as bold and underlined.

et al. 2020), Plenoxel (Fridovich-Keil et al. 2022), and Ten-
soRF (Chen et al. 2022) are SoTA methods that do not ex-
plicitly account for blur degradation. Plenoxel and TensoRF
are significantly faster than NeRF; however, these methods
often do not outperform NeRF when the inputs are blurry. In
fact, TensoRF performs significantly worse and sometimes
reaches collapsed solutions, e.g. with the Pool scene, where
scene density is all concentrated near the camera origins.
This is due to the limited capacity in TensoRF’s low-rank
density representation, which has more noise given blurry
observations. Furthermore, the noise leads to less efficient
voxel pruning and longer optimization time. Plenoxel per-
forms better than TensoRF, but takes more memory at 2
GB per scene compared to TensoRF’s 200 MB and PDRF’s
160 MB features. We note that both Plenoxel and Instant-
NGP (Müller et al. 2022) use customized CUDA kernels
for acceleration and are difficult to be analyzed or modified.
In particular, Instant-NGP does not have baselines for real
forward-facing scenes like LLFF (Mildenhall et al. 2019).
We also tested on DVGO (Sun et al. 2022); however, DVGO
yields collapsed solutions for all scenes.

We then look into radiance field modeling methods that
take blur into consideration. One approach is to first ap-
ply image-based or video-based deblurring methods on
source views, as is done by MPR (Zamir et al. 2021) and
KPAC (Son et al. 2021a). While this approach leads to some

improvements, denoted as MPR+NeRF and KPAC+NeRF
in Table 1, it does not explore 3D redundancy from dif-
ferent source views. Deblur-NeRF (Ma et al. 2022) uses a
pixel-coordinate-based blur model before radiance field op-
timization and does not rely on external training data. In
comparison, it outperforms all previous methods; however,
Deblur-NeRF is also the most computationally demanding
method and requires twenty hours to reach convergence.
We create another baseline by replacing NeRF with Ten-
soRF in Deblur-NeRF, which we named Deblur-TensoRF.
Deblur-TensoRF is significantly faster than Deblur-NeRF;
however, its performance is also notably worse. We con-
tribute this again to TensoRF’s compressed density rep-
resentation. We also note that Deblur-TensoRF does not
use voxel pruning. To demonstrate the incompatibility of
voxel pruning with dynamic ray generation, we add a
Deblur-TensoRFpru baseline in Table 1, which prunes low
density voxels during training and results in significantly
worse performances than Deblur-TensoRF. Our CRR+FVR
design uses a combination of explicit and implicit represen-
tation to estimate density, and is both faster and more per-
formant than Deblur-TensoRF; specifically, PDRF-5 is 15
times faster than Deblur-NeRF and takes only 80 minutes
to converge. This is even faster than Deblur-TensoRF, par-
tially due to the more efficient sampling scheme. We ob-
serve that PDRF’s PBE can effectively model blur by using
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Novel View Src. View NeRF Plenoxel TensoRF Db-Ten.RF Db-NeRF PDRF G.T.
5 hrs 25 mins 50 mins 90 mins 20 hrs 80 mins

PSNR/SSIM Motion 18.98/.538 18.51/.530 16.11/.321 22.00/.726 23.06/.805 24.66/.870

PSNR/SSIM Defocus 21.71/.798 20.80/.778 19.33/.758 19.33/.758 23.91/.869 27.92/.928

LPIPS Motion 0.2288 0.2248 0.2722 0.1231 0.0953 0.0767

LPIPS Defocus 0.1219 0.1582 0.1119 0.0730 0.0669 0.0599

Figure 4: Visual comparisons of different radiance field modeling methods. The first two rows are synthetic scenes with motion
and defocus blur. The last two rows are real scenes with motion and defocus blur. For real scenes, the ground truth is for
reference as the exposures are inconsistent. Db-Ten.RF and Db-NeRF stands for Deblur-TensoRF and Deblur-NeRF.

feature from the underlying radiance field, especially for de-
focus blur. This is likely because defocus blur can be much
better modeled with 3D context, e.g. scene depth. Camera
motion blur is less sensitive to 3D geometry of the scene;
however, improvements can still be observed.

Visually, PDRF can recover very fine details both on syn-
thesized and real scenes despite the blurry observations from
neighboring source views. As shown in Fig. 4, Deblur-NeRF
fails to recover details. While Deblur-TensoRF benefits from
the additional blur modeling, it suffers from more noise.
This can also be observed when comparing TensoRF to
Plenoxel and NeRF. For more visualizations on scene den-
sity, please refer to the supplementary material section.

Conclusion
In this work, we present PDRF, a novel radiance field mod-
eling method that addresses camera motion and defocus blur
in observations. PDRF is both significantly faster and more
performant than previous deblurring methods. Specifically,
PDRF proposes PBE, which progressively updates the blur

model by incorporating information from the underlying ra-
diance field; as such, PBE can accurately account for the
observed blur. To support PBE and accelerate radiance field
optimization, PDRF proposes a rendering pipeline that con-
sists of CRR and FVR. CRR is an efficient renderer that pre-
dicts ray color based on aggregated ray features. With its
lightweight design, CRR provides ray feature estimation to
PBE and density estimation to FVR. FVR uses importance
sampling to determine efficient voxel samples along the ray,
which are then rendered by a larger network for their color
and density. Both CRR and FVR use explicit feature repre-
sentation to help accelerate their convergence rate. We per-
form extensive experiments and show that our method leads
to significantly better deblurring results, especially on de-
focus blur. PDRF is about 15X faster than Deblur-NeRF,
which is the previous SoTA. In the future, we hope to investi-
gate more efficient ways to increase the blur model capacity
without sacrificing speed.
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