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Abstract

Automatic image cropping algorithms aim to recompose im-
ages like human-being photographers by generating the crop-
ping boxes with improved composition quality. Cropping box
regression approaches learn the beauty of composition from
annotated cropping boxes. However, the bias of annotations
leads to quasi-trivial recomposing results, which has an obvi-
ous tendency to the average location of training samples. The
crux of this predicament is that the task is naively treated as a
box regression problem, where rare samples might be domi-
nated by normal samples, and the composition patterns of rare
samples are not well exploited. Observing that similar com-
position patterns tend to be shared by the cropping boundaries
annotated nearly, we argue to find the beauty of composition
from the rare samples by clustering the samples with simi-
lar cropping boundary annotations, i.e., similar composition
patterns. We propose a novel Contrastive Composition Clus-
tering (C2C) to regularize the composition features by con-
trasting dynamically established similar and dissimilar pairs.
In this way, common composition patterns of multiple images
can be better summarized, which especially benefits the rare
samples and endows our model with better generalizability to
render nontrivial results. Extensive experimental results show
the superiority of our model compared with prior arts.

Introduction

Automatic image cropping is an effective technology to im-
prove composition quality of the input images. As one of the
key components of computational imaging, it has attracted
wide research interest (Chen et al. 2003; Islam, Lai-Kuan,
and Chee-Onn 2017). Provided human-annotated cropping
boxes (Wang, Shen, and Ling 2018; Zeng et al. 2019), au-
tomatic cropping can be formalized as a cropping box re-
gression problem. However, as regression models are easily
affected by the bias of training set (Yang et al. 2021), recent
regression-based approaches (Hong et al. 2021; Pan et al.
2021b) are dominated by the normal samples and tend to
render quasi-trivial cropping boxes (Fig. 1(a)). The quasi-
trivial cropping boxes can be described as the central crop-
ping boxes whose boundaries locate near the average lo-
cation of training samples. When the quasi-trivial cropping
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Figure 1: An illustration of quasi-trivial solution and the
examples of our observation. (a) The cropping result from
CACNet (Hong et al. 2021). (b) The cropping result from
our approach. (c) Samples whose top cropping boundaries
locate relatively nearly at the original image coordinate. Red
and green boxes indicate the annotated and predicted crop-
ping results respectively; Yellow dotted line indicates an
identical relative reference position.

boxes just inherit the location bias of the annotated cropping
boundaries and ignore the composition patterns of the in-
put images, the improvement of composition quality is little,
which limits the real-world application. Trying to generate
nontrivial cropping boxes, previous methods take extra data
with additional annotations, e.g., composition classification
dataset (Lee et al. 2018), into account. However, the predica-
ment is hardly addressed. Therefore, we try to reveal the in-
trinsic cause of quasi-trivial solution. As shown in Fig. 2, by
analysing the CACNet baseline (Hong et al. 2021), we il-
lustrate the cause of quasi-trivial solution: dominated by the
normal samples, the composition patterns of rare samples
are barely exploited. Hence, we argue to find the beauty of
composition by taking full advantage of rare samples rather



than by introducing extra data.

In this paper, we probe into the problem: how to better
exploit the composition patterns of the rare training sam-
ples? Similar problems have been studied for decades by the
imbalanced learning methods (Branco, Torgo, and Ribeiro
2017; Lin et al. 2017; Yang et al. 2021), whose main idea
is re-weighting. However, directly adapting these methods
into the cropping box regression task can barely improve the
composition quality. Therefore, we delve into this problem
from another view, which is to enhance the composition rep-
resentations of the rare by looking for the connections be-
tween samples. As illustrated in Fig. 1(c), compared in the
same row, when the annotated top cropping boundaries tend
to locate at a close relative location, the visual focuses lo-
cate relatively nearly; compared with two different rows, the
focuses locate relatively differently. Based on this observa-
tion, we make a hypothesis: cropping boundaries with close
relative location annotations share the similar composition
patterns and vice versa. Based on this, we make full use
of the relationships between the samples, which especially
benefits the rare ones.

Inspired by the contrastive learning (Hadsell, Chopra, and
LeCun 2006; Chen et al. 2020; He et al. 2020) and deep
clustering works (Zhou et al. 2022; Wu et al. 2022), we pro-
pose Contrastive Composition Clustering (C2C) to regular-
ize the composition features based on their regression target
distance. Due to that our hypothesis is based on the crop-
ping boundary, each image has four composition features to
depict each cropping boundary respectively. The optimiza-
tion targets of C2C are: (1) draw features of the samples
with similar annotations closer (2) widen the feature dis-
tance of negative pairs where annotated boundary locates far
away from each other. When C2C is performed in the mini-
batch, we calculate the distance map to select positive and
negative pairs dynamically. Based on the distance map, after
breaking the contrastive loss into alignment and uniformity
loss (Wang and Isola 2020), the contrastive clustering pro-
cedure can successfully work in our regression scenario. As
illustrated in Fig. 1(a) and (b), benefited from the proposed
C2C, our solution can render nontrivial cropping boxes.

Extensive experiments on public benchmarks show that
our solution outperforms state-of-the-art regression-based
approaches even without extra data. By visualizing the crop-
ping results, with C2C, our model hardly collapses into
quasi-trivial solutions. Compared with other imbalanced
learning baselines, C2C also shows superiority in both per-
formance and time efficiency. For the first time, without ex-
ternal data, we demonstrate state-of-the-art image cropping
with only a deep clustering procedure.

Related Work

Image Cropping

Conventional image cropping algorithms (Chen et al. 2003;
Suh et al. 2003; Marchesotti, Cifarelli, and Csurka 2009;
Cheng et al. 2010; Greco and La Cascia 2013) formulate
the composition patterns with predefined rules (Zhang et al.
2005; Nishiyama et al. 2009; Yan et al. 2013; Fang et al.
2014). However, performance of the classic algorithms are
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far from satisfactory. Recently, data-driven algorithms have
significantly improvement. They are driven by two main
ideas: candidate box selection and cropping box regression.

Candidate box selection algorithms follow a two-stage
pipeline. First, candidate boxes are generated according
to prior knowledge. Then, the candidate boxes are ranked
based on the learned composition aesthetic knowledge. The
knowledge can be modeled by saliency detection (Wang,
Shen, and Ling 2018; Tu et al. 2020), teacher-student archi-
tecture (Wei et al. 2018), region of interest and discard (Zeng
etal. 2019, 2020), view-wise mutual relation (Li et al. 2020),
visual elements dependencies (Pan et al. 2021a; Wang et al.
2022) and view-wise difference(Pan et al. 2022). But the re-
sults are dependent on the candidates. To overcome this lim-
itation, some works attempt to find end-to-end solutions.

Cropping box regression algorithms are end-to-end so-
lutions that imitate the process of human cropping. Rein-
forcement learning algorithms estimate the final cropping
box step by step (Li et al. 2018, 2019). Other algorithms pre-
dict the cropping results according to a salient cluster (Pan
et al. 2021b), or a composition class (Hong et al. 2021). The
common deficiencies of these algorithms are the need for
extra data and the problem of degenerating into quasi-trivial
solutions. In contrast to these approaches, our work can ren-
der nontrivial cropping boxes without extra data.

Contrastive Learning and Deep Clustering

Motivated by the InfoMax principle (Linsker 1988), con-
trastive learning aims to learn representations by contrasting
positive pairs against negative pairs (Hadsell, Chopra, and
LeCun 2006; Dosovitskiy et al. 2014). The pioneer works in-
troduce the memory bank to store the representation vectors
and update them by contrasting (Wu et al. 2018; Zhuang,
Zhai, and Yamins 2019; He et al. 2020). Some other works
contrast in batches (Doersch and Zisserman 2017; Ji, Hen-
riques, and Vedaldi 2019; Ye et al. 2019; Chen et al. 2020).
Recently, Wang et al. (Wang and Isola 2020) has character-
ized the contrastive learning by alignment and uniformity.
When deep clustering (Zhou et al. 2022) concerns the joint
optimization of clustering and deep representation learning,
some works (Ling et al. 2022; Deng et al. 2022; Chen et al.
2022) introduce the idea of contrasting into deep clustering.
In this work, we also conduct composition feature clustering
based on the idea of contrasting and combine the clustering
procedure into regular training process, which helps to get a
better composition representation.

Imbalanced Learning

In confront of the training data bias, a naive idea is to re-
weight the loss with the frequency of samples (Lin et al.
2017). Some other works also try to create new samples to
balance the original distribution (Torgo et al. 2013; Branco,
Torgo, and Ribeiro 2017) or to decouple the encoder and de-
coder (Kang et al. 2019). Recently, Yang et al. (Yang et al.
2021) proposes the label and feature distribution smooth-
ing to train the regressor unbiasedly. We directly adapt these
methods into our problem as baselines and compare our C2C
with them in the experiment section.
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Problem and Approach
Quasi-Trivial Solution

We explain what is the quasi-trivial cropping solution and
illustrate the cause of it by analyzing the recomposed re-
sults of the vanilla regression baseline CACNet (Hong et al.
2021). To make the analysis unaffected by extra data, the
composition classification module is dropped. Statistic of
the left boundary is shown in Fig. 2 (results of other bound-
aries are in similar distributions). The red and blue points in
Fig. 2(a-b) show the predicted and target left boundary lo-
cation respectively. The location is normalized into [0, 1],
where 0 represents the leftmost location and 1 represents the
rightmost location. The ordinal number of samples are in-
dicated by the horizontal coordinate. The error bar on the
target point colored in light blue indicates the absolute value
of the prediction error on this sample. From Fig. 2(b), on
the validation set, we observe that the samples whose tar-
get is far away from the mean location tend to have larger
prediction error, which means that the baseline tends to lo-
cate the boundary at an approximate average location for an
unseen image. Therefore, we compare the baseline with the
mean location which can serve as a trivial solution. As illus-
trated in Fig. 2(c-d), when the vertical and horizontal coor-
dinates of each point represent the prediction error and the
corresponding target location respectively, the trivial solu-
tion behaves as two symmetrical lines with the mean loca-
tion as the axis of symmetry. From Fig. 2(d), on the vali-
dation set, we find that the baseline acts extremely similar
to the trivial solution. We call this the quasi-trivial solution
of this boundary. By plotting the location distribution of the
targets and predicted results, we find that normal training
samples with the most amount locate near the mean location

(Fig. 2(e)), hence the baseline tends to predict around the
mean location for an unseen image (Fig. 2(f)), which means
the quasi-trivial solution comes from that the normal sam-
ples overwhelm the rare samples. Hence, we try to exploit
the composition patterns of the rare samples better.

Cropping Boundary Locating Network

As the imbalanced distributions of four cropping boundaries
have different levels and forms, the whole cropping box re-
gression problem is divided into four boundary locating sub-
tasks. Inspired by SABL (Wang et al. 2020), we build the
cropping boundary locating network (CBLNet). As shown
in Fig. 3, CBLNet contains three main components: a convo-
lutional backbone, a boundary feature encoder which builds
the boundary features, and a group of regression heads that
predict the location of four cropping boundaries.

Backbone. A MobileNetV2-based (Sandler et al. 2018)
backbone that fuses multi-scale features (Zeng et al. 2019,
2020) is employed. It generates multi-scale feature maps
F € REH*W from the original image, where C is the chan-
nel dimensionality, H and W represents the height and width
of the feature maps.

Boundary feature encoder. The extracted features ¥ are
processed by two multi-head attention modules to encode
the horizontal and vertical information. The multi-head at-
tention module is implemented by m 1 X 1 convolutions,
where m is the number of heads. The horizontal feature map
H e RMCHXW and vertical feature map V € R"™CXHXW
can be computed by

H = O'y(f(‘rg’(?') *T,...,T,Z_l("f") *F)),
V=0x(E(rg(F)*F,....1 ((F)=F)),

(D
2
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Figure 3: The pipeline of the cropping boundary locating network. The multi-scale features extracted from the input image are
used to encode the horizontal and vertical features. Then, the horizontal and vertical features are split into boundary features.
The final cropping boxes are predicted based on the four boundary features.

where oy () and o (-) are the normalizing operators along
Y and X axis, respectively, & is the concatenating operator
along the channel axis, Tl.h(-) and 7/ (-) represent the i-th
head 1x1 convolution of the horizontal and vertical attention
modules, respectively. After the dimension reduction and the
sum operations along the Y and X axis, H and V are trans-
formed into the horizontal vector k € R*Y and vertical
vector v € RE*H | respectively. Then, h and v are split into
boundary features x!,x" € RE*W/2 and x!,x? € RE*W/2,
which are composition features for left, right, top, and bot-
tom cropping boundaries, respectively.

Regression head. The normalized locations w.r.t. the in-
put image of four cropping boundaries are predicted by a
pooling operator and a 3-layer fully-connected network with
the sigmoid activation function. All regression heads are
supervised with the ¢; loss.

Contrastive Composition Clustering

After dividing the whole cropping box regression into four
sub-regression, composition features w.r.t. four cropping
boundaries are obtained. Based on our hypothesis, when
similar cropping boundaries have common knowledge and
dissimilar ones tend to have different composition patterns,
it is intuitive to minimize the distance of similar samples and
to maximize the distance of dissimilar samples in the com-
position feature space. As illustrated in Fig. 4, inspired by
the contrastive learning algorithms (Wu et al. 2018; Zhuang,
Zhai, and Yamins 2019; He et al. 2020), we propose the Con-
trastive Composition Clustering (C2C).

The C2C introduces the idea of contrastive learning into
our regression scenario by setting the positive and negative
pair thresholds, i.e., z,, and z,. The positive and negative
pair refers to the composition feature pair whose boundary
annotations locate nearly and far away from each other, re-
spectively. In this setting, for each batch, the positive and
negative pairs are not fixed. Hence, we structure the pairs
with a distance map, which is used to calculate the positive
and negative pair matrix £ and N. Inspired by (Wang and
Isola 2020), which identifies two contrastive loss properties:
alignment and uniformity, we adapt the alignment and uni-
formity loss into our C2C. The alignment loss is to cluster
positive pairs, and the uniformity loss is to discriminate be-
tween the elements in negative pairs. In our approach, the
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regression alignment loss and uniformity loss take the form

_ d d_d
Lalign = Z 0<i]<E.<NPi,'maX(”xi —xj||§l — €, 0)
d=lrtb o T=
3)
d —t1]|xd-x9|2
Luniform = Z 0<-]<E-<N i,je (1% jHZ s (4)
d=lirt,b 1=

where x is the £, normalized boundary composition features,
l,r,t,b indicates left, right, top, and bottom respectively,
N denotes the batch size, € controls the expected similar-

ity level of the features with similar regression targets, Pid f

and Mdj can be calculated as

®)
(6)

Pfj:]](Y;i_Y?<Zp)

N4

d d
,jzﬂ(yl _y] >Zn),
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Figure 5: Qualitative comparison with image cropping models. Redundancy in blue boxes violates the composition.

where y is the normalized ground truth location of the crop-
ping boundary, and 1(-) is the sign function.

Details about the derivation process of the optimization
target and the pseudo-code of C2C is described in the sup-
plementary. The alignment and uniformity loss are jointly
optimized with the ¢; loss for the cropping boundary lo-
cating. The total loss of the cropping boundary regression
pipeline can be computed by

N

where § and y are the hyper-parameters used to control the
relative importance of the alignment and uniformity loss.
With C2C, we get more informative and discriminative com-
position features from the rare samples which prevents the
model collapse into the quasi-trivial solution.

L=1, +,8Lalign + ')’Luniform s

Experiments

Here we demonstrate that, CBLNet with C2C achieves
better performance than other cropping box regression al-
gorithms with extra data. When imbalanced learning ap-
proaches can serve as naive baselines to exploit the rare sam-
ples, we compare C2C with these baselines. The results il-
lustrate the superiority of C2C. A detailed ablation study is
also conducted to illustrate the effect of each component.
Further analyses and visualizations also prove the rationale
of our hypothesis and design.

Implementation Details

The input images are resized to 224x224. After processed by
the backbone pre-trained on ImageNet, the channel dimen-
sionality of multi-scale feature map ¥ of size H = W = 14 is
reduced to C = 256. The head number of the multi-head spa-
tial attention module is set to m = 6. In the training stage, 32
images are batched as the input. In the alignment loss, z; is
sett0 0.05, a is set to 1, and € is set to 0.5. In the uniformity
loss, zp, is set to 0.7 and ¢ is set to 1. Only random cropping
is used in data augmentation. By setting 8 = y = 0.025,
the network is optimized by Adam with the learning rate of
5 x 10~* for 80 epochs.
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Datasets and Evaluation Metrics

FCDB (Chen et al. 2017) dataset is used for evaluation. The
FCDB contains 1743 images, and each of them has a ground
truth cropping box. In the performance comparison, 1395
images of the FCDB are used for training and 348 images
for testing. We follow the setting of (Hong et al. 2021) to
randomly choose 200 images as the validation set and the
other images are used for training. To demonstrate whether
an approach can render nontrivial cropping boxes, accord-
ing to their frequency, the test set or the validation set is di-
vided into three disjoint subsets: many-shot, medium-shot,
and few-shot samples. The frequency of samples is related
to their ground truth box size ratios w.r.t. the original im-
age. Hence, in our setting, the ground truth box size ratios
of the many-shot, medium-shot, and few-shot samples are in
the range of 65% ~ 100%, 40% ~ 65%, and 0% ~ 40%, re-
spectively. The performance of intersection over union (IoU)
and the boundary displacement error (BDE) are reported.

Performance Comparison

Comparison with image cropping models. Quantitative
results on the FCDB dataset are illustrated in Table 1. For
the selection-based algorithms, the recalled top-1 cropping
boxes are used to calculate the IoU and BDE metrics. Based
on the results, we can make the following observations: (a)
The gap between two types of algorithms lies in the few-shot
samples. This might be a manifestation of the quasi-trivial
solution problem. The CBLNet trained with the C2C out-
performs the previous regression algorithms especially on
the few-shot samples without extra data, which bridges the
performance gap between regression-based and selection-
based algorithms. (b) C2C is more helpful than extra data.
Compared to the vanilla CACNet without the composition
classification to the final CACNet, it is obvious that the per-
formance boost is from the extra data with the annotation
about composition classification. When the performance of
CBLNet without C2C is comparable with vanilla CACNet,
after trained with C2C, the CBLNet can perform better than
the CACNet, which shows the superiority of the proposed
C2C. Qualitative comparison is shown in Fig. 5. We observe
that the selection-based algorithms, i.e., the VPN, can gen-



Metric IoUT BDE|
Algorithm All Many Med. Few All Many Med. Few
candidate box selection algorithms
VPN 0.665 0.735 0.631 0.435 0.085 0.068 0.092 0.147
GAICT 0.666 0.721 0.655 0.408 0.084 0.072 0.086 0.147
TransView 0.682 - - - 0.080 - - -
VEN 0.735 - - - 0.072 - - -
cropping box regression algorithms
A2RLT 0.636 0.734 0.577 0.349 0.097 0.070 0.111 0.186
A3RL 0.696 - - - 0.077 - - -
vanilla-CACNet* 0.700 0.799 0.650 0.369 0.075 0.050 0.086 0.167
CACNet# 0.716 0.809 0.673 0.386 0.070 0.047 0.079 0.159
regression baseline 0.692 0.776 0.655 0.389 0.077 0.056 0.085 0.158
CBLNet - Ours 0.700 0.787 0.659 0.391 0.075 0.052 0.083 0.158
CBLNet+C2C - Ours 0.718 0.805 0.680 0.418 0.069 0.047 0.078 0.146

Table 1: Quantitative comparison with other state-of-the-art image cropping models on the FCDB dataset. Best performance is
in boldface. The performances tagged by 7 are our reproduced results, and I denotes the results from the original authors.

Metric IoUT BDE| Training
Algorithm All Many  Med. Few All Many  Med. Few Time|
CBLNet baseline 0.700  0.787 0.659 0391 0.075 0.052 0.083 0.158 0.720
SMOGN 0.702  0.796 0.658 0374 0.075 0.051 0.085 0.166 0.956
RRT 0.701  0.791 0.653 0416 0.074 0.051 0.086 0.149 0.730x2
FOCAL-R 0.708 0.797 0.663 0408 0.072 0.050 0.082  0.151 0.747
INV 0.707  0.798 0.660 0.404 0.073 0.050 0.083 0.153 0.734
LDS&FDS 0.709  0.798 0.666 0.408 0.072 0.049 0.082 0.151 1.187
c2cC 0.718 0.805 0.680 0418 0.069 0.047 0.078 0.146 0.788

Table 2: Quantitative comparison of imbalanced learning algorithms on the FCDB dataset. Best performance is in boldface.
The metric of training time shows how many seconds an algorithm needs for training a batch of data. Note that the regressor
re-training (RRT) algorithm needs an extra training round, hence the training time is doubled.

erate nontrivial cropping results but can not obey the sym-
metry (first row) or visual balance (third row) composition
rules well. This shows the limitation of selection-based algo-
rithms. While previous regression-based algorithms tend to
render quasi-trivial cropping results, our approach can ren-
der nontrivial cropping results and align better with compo-
sition rules.

Comparison with imbalanced learning baselines. The

imbalanced learning baselines to be compared:

* SMOGN (Branco, Torgo, and Ribeiro 2017) defines the
rare samples and creates synthetic samples by interpolat-
ing the feature and the regression target. During the train-
ing stage, annotated boundary may shift in the range of
10% of the original length or width.

* FOCAL-R is the regression version of the focal loss (Lin
et al. 2017). Following (Yang et al. 2021), we rewrite the
focal loss as 1/n 31", o(lue;|)¥ e;, where e; is the £ error
for i-th sample, p(-) is the sigmoid function, and p and
Yaresettou =y =2.

o Inverse reweighting (INV) is a traditional method re-
weighting the loss according to inverse frequency of the
classes. (Yang et al. 2021) adopts the scheme based on the
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regression target distribution in the regression scenario.

* Regressor re-training (RRT) (Kang et al. 2019) decouples
the training process of feature and classifier. (Yang et al.
2021) transforms it into the regression version, re-training
the regression head with inverse reweighting.

* LDS&FDS (Yang et al. 2021) propose to smooth the dis-
tribution of regression target to reweight the loss and re-
calibrate the statistics of the feature distribution.

The results are illustrated in Table 2. It shows that pre-
vious methods have notable limitations: (a) RRT can boost
the performance on the few-shot samples but harms that on
the medium-shot samples. (b) LDS&FDS can improve the
performance on many-, medium-, few-shot samples, but at a
cost of additional time consumption. C2C obtains significant
gains on all groups of samples with low time cost.

Ablation Study

Boundary feature encoder and C2C. The performance
contributions of the boundary feature and C2C are shown in
Table 1. We can observe that the regression baseline tends to
output the quasi-trivial cropping results. By only adding the
boundary feature encoder to build the CBLNet, the perfor-
mance cannot be significantly improved. After training with



Metric IoUT BDE|
Batch Size All Many Med. Few All Many Med. Few
4 0.734 0.811 0.685 0.424 0.064 0.041 0.076 0.161
8 0.738 0.805 0.698 0.436 0.061 0.043 0.071 0.145
16 0.741 0.801 0.710 0.438 0.060 0.043 0.066 0.144
32 0.753 0.809 0.715 0.460 0.059 0.042 0.065 0.139
64 0.751 0.809 0.714 0.463 0.059 0.042 0.066 0.142
128 0.749 0.813 0.704 0.465 0.062 0.042 0.073 0.142
256 0.750 0.799 0.718 0.471 0.061 0.046 0.068 0.128
Table 3: Ablation study on the batch size. Best performance is in boldface.

from the CBLNet trained with and without C2C by reducing

the features into two dimensions by t-SNE (Van der Maaten

and Hinton 2008). The location of the corresponding ground

truth boundaries is denoted by color. The darker color means

that the annotated boundary locates farther from the origi-

nal input boundary. Without C2C, the features of the rare

samples, whose ground truth is far away from the input im-

age boundary, are mixed up with that of the normal samples.

Left without C2C Right without C2C This means that the model without C2C can not properly de-

Left with C2C Right with C2C

Figure 6: Distributions of the boundary features from the
CBLNet with/without C2C on the validation set. The color
of the points represents the location of their ground truth
boundary, the lighter the color is, the closer the ground
truth boundary locates to the original image boundary. Best
viewed in color.

C2C, the cropping results align better with the ground truth.
This shows that the main contribution of this work is from
the C2C rather than the CBLNet design.

Batch size. The proposed C2C contrasts the samples in the
batch without the memory bank. We vary the batch size from
4 to 256. Larger batch size provides more positive and neg-
ative pairs. From the results in Table 3, it can be seen that
the change of the performance on the many-shot samples is
relatively smooth. As for the few-shot samples, with larger
batch size, the performance is better. The results reveal that
the proposed C2C benefits from large batch sizes (Chen et al.
2020; He et al. 2020). However, for a better overall perfor-
mance, we adopt batch size of 32.

Analysis

As illustrated in Fig. 6, we visualize the distribution of the
composition features of left and right boundaries (the results
of top and bottom boundaries are in similar distributions)

2017

pict the unseen rare samples, and seems to just project these
samples randomly in the feature space. Hence, these samples
follow the normal distribution of training set, which is the
cause of quasi-trivial solutions. With C2C, firstly, the rare
samples with darker color clustered and the feature distribu-
tion aligns well with the location distribution of the regres-
sion targets, which shows the success of C2C. Secondly, the
expected feature distribution leads to a better performance,
which demonstrates the rationale of our observation and hy-
pothesis that cropping boundaries locating nearly share sim-
ilar composition patterns.

Conclusions

In this work, we study why existing cropping box regression
algorithms tend to render quasi-trivial solution. We find that
the crux lies in the limitation of representational capacity.
Based on our observation, we make a hypothesis that crop-
ping boundaries with similar annotations share similar com-
position patterns. Therefore, we propose to conduct compo-
sition feature clustering to enhance the composition repre-
sentation. Firstly, by presenting CBLNet, the composition
features of four cropping boundaries are obtained. Inspired
by the idea of contrastive learning and deep clustering, we
propose C2C to cluster the samples with similar annotations
jointly with the normal optimization procedure. By training
with C2C, our CBLNet can outperform other state-of-the-
art regression-based image cropping models on the FCDB
dataset even without extra data. Compared with other un-
biased training baselines, the C2C also achieves superior
performance with the little time cost. Our work reveals that
cropping box regression networks actually can directly learn
from the cropping box annotations, but how to train a net-
work matters. Our work provides a new perspective on the
task of cropping box regression and states that composition
feature clustering can make a difference.



Acknowledgements

This work was funded by the DigiX Joint Innovation Center
of Huawei-HUST.

References

Branco, P.; Torgo, L.; and Ribeiro, R. P. 2017. SMOGN:
a pre-processing approach for imbalanced regression. In
Ist Intell. Workshop Learn. Imbalanced Domains: Theory
Appl., 36-50.

Chen, L.-Q.; Xie, X.; Fan, X.; Ma, W.-Y.; Zhang, H.-J.; and
Zhou, H.-Q. 2003. A visual attention model for adapting
images on small displays. Multimedia Syst., 9(4): 353-364.
Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A simple framework for contrastive learning of visual repre-
sentations. In Int. Conf. Mach. Learn., 1597-1607.

Chen, Y.; Pan, Z.; Shi, M.; Lu, H.; Cao, Z.; and Zhong, W.
2022. Design What You Desire: Icon Generation from Or-
thogonal Application and Theme Labels. In Proc. ACM Int.
Conf. Multimedia, 2536-2546.

Chen, Y.-L.; Huang, T.-W.; Chang, K.-H.; Tsai, Y.-C.; Chen,
H.-T.; and Chen, B.-Y. 2017. Quantitative analysis of auto-
matic image cropping algorithms: A dataset and compara-
tive study. In Proc. IEEE Winter Conf. Appl. Comput. Vis.,
226-234.

Cheng, B.; Ni, B.; Yan, S.; and Tian, Q. 2010. Learning to
photograph. In Proc. ACM Int. Conf. Multimedia, 291-300.
Deng, X.; Huang, D.; Chen, D.-H.; Wang, C.-D.; and Lai, J.-
H. 2022. Strongly Augmented Contrastive Clustering. arXiv
preprint arXiv:2206.00380.

Doersch, C.; and Zisserman, A. 2017. Multi-task self-
supervised visual learning. In Proc. Int. Conf. Comput. Vis.,
2051-2060.

Dosovitskiy, A.; Springenberg, J. T.; Riedmiller, M.; and
Brox, T. 2014. Discriminative unsupervised feature learn-
ing with convolutional neural networks. Adv. Neural Inf.
Process. Syst., 217.

Fang, C.; Lin, Z.; Mech, R.; and Shen, X. 2014. Auto-
matic image cropping using visual composition, boundary
simplicity and content preservation models. In Proc. Int.
Conf. Multimedia, 1105-1108.

Greco, L.; and La Cascia, M. 2013. Saliency based aesthetic
cut of digital images. In Proc. Int. Conf. Image Anal. Pro-
cess., 151-160.

Hadsell, R.; Chopra, S.; and LeCun, Y. 2006. Dimension-
ality reduction by learning an invariant mapping. In Proc.
Conf. Comput. Vis. Pattern Recog., volume 2, 1735-1742.
He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. 2020.
Momentum contrast for unsupervised visual representation
learning. In Proc. Conf. Comput. Vis. Pattern Recog., 9729—
9738.

Hong, C.; Du, S.; Xian, K.; Lu, H.; Cao, Z.; and Zhong, W.
2021. Composing Photos Like a Photographer. In Proc.
Conf. Comput. Vis. Pattern Recog., 7057-7066.

Islam, M. B.; Lai-Kuan, W.; and Chee-Onn, W. 2017. A sur-
vey of aesthetics-driven image recomposition. Mutltimedia
Tools Appl., 76(7): 9517-9542.

2018

Ji, X.; Henriques, J. F.; and Vedaldi, A. 2019. Invariant infor-
mation clustering for unsupervised image classification and
segmentation. In Proc. Int. Conf. Comput. Vis., 9865-9874.
Kang, B.; Xie, S.; Rohrbach, M.; Yan, Z.; Gordo, A.; Feng,
J.; and Kalantidis, Y. 2019. Decoupling representation and
classifier for long-tailed recognition. Int. Conf. Learn. Rep-
resentations.

Lee, J.-T.; Kim, H.-U.; Lee, C.; and Kim, C.-S. 2018. Photo-
graphic composition classification and dominant geometric
element detection for outdoor scenes. J. Vis. Commun. Im-
age Represent., 55: 91-105.

Li, D.; Wu, H.; Zhang, J.; and Huang, K. 2018. A2-RL: Aes-
thetics aware reinforcement learning for image cropping. In
Proc. Conf. Comput. Vis. Pattern Recog., 8193-8201.

Li, D.; Wu, H.; Zhang, J.; and Huang, K. 2019. Fast a3rl:
Aesthetics-aware adversarial reinforcement learning for im-
age cropping. IEEE Trans. Image Process., 28(10): 5105-
5120.

Li, D.; Zhang, J.; Huang, K.; and Yang, M.-H. 2020. Com-
posing Good Shots by Exploiting Mutual Relations. In Proc.
Conf. Comput. Vis. Pattern Recog., 4213-4222.

Lin, T.-Y.; Goyal, P; Girshick, R.; He, K.; and Dollar, P.
2017. Focal loss for dense object detection. In Proc. Int.
Conf. Comput. Vis., 2980-2988.

Ling, H.-B.; Zhu, B.; Huang, D.; Chen, D.-H.; Wang, C.-
D.; and Lai, J.-H. 2022. Vision Transformer for Contrastive
Clustering. arXiv preprint arXiv:2206.12925.

Linsker, R. 1988. Self-organization in a perceptual network.
Comput., 21(3): 105-117.

Marchesotti, L.; Cifarelli, C.; and Csurka, G. 2009. A frame-
work for visual saliency detection with applications to image
thumbnailing. In Proc. Int. Conf. Comput. Vis., 2232-2239.

Nishiyama, M.; Okabe, T.; Sato, Y.; and Sato, 1. 2009.
Sensation-based photo cropping. In Proc. ACM Int. Conf.
Multimedia, 669—-672.

Pan, Z.; Cao, Z.; Wang, K.; Lu, H.; and Zhong, W. 2021a.
TransView: Inside, Outside, and Across the Cropping View
Boundaries. In Proc. Int. Conf. Comput. Vis., 4218-4227.
Pan, Z.; Cao, Z.; Xian, K.; Lu, H.; and Zhong, W. 2022. Dis-
criminate Clearer To Rank Better: Image Cropping By Am-
plifying View-Wise Differences. In Proc. Int. Conf. Image
Process., 3176-3180.

Pan, Z.; Xian, K.; Lu, H.; and Cao, Z. 2021b. Robust Image
Cropping by Filtering Composition Irrelevant Factors. In
Proc. Int. Conf. Image Graphics, 277-289.

Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In Proc. Conf. Comput. Vis. Pattern Recog.,
4510-4520.

Suh, B.; Ling, H.; Bederson, B. B.; and Jacobs, D. W. 2003.
Automatic thumbnail cropping and its effectiveness. In
Proc. Annu. ACM Symp. User Interface Softw. Technol., 95—
104.

Torgo, L.; Ribeiro, R. P.; Pfahringer, B.; and Branco, P. 2013.
Smote for regression. In Portuguese Conf. Artif. Intell., 378—
389.



Tu, Y.; Niu, L.; Zhao, W.; Cheng, D.; and Zhang, L. 2020.
Image cropping with composition and saliency aware aes-
thetic score map. In Proc. of AAAI Conf. Artif. Intell., vol-
ume 34, 12104-12111.

Van der Maaten, L.; and Hinton, G. 2008. Visualizing data
using t-SNE. J. Mach. Learn. Res., 9(11).

Wang, J.; Zhang, W.; Cao, Y.; Chen, K.; Pang, J.; Gong, T.;
Shi, J.; Loy, C. C.; and Lin, D. 2020. Side-aware boundary
localization for more precise object detection. In Eur. Conf.
Comput. Vis., 403-419.

Wang, K.; Du, S.; Liu, C.; and Cao, Z. 2022. Interior
Attention-Aware Network for Infrared Small Target Detec-
tion. IEEE Trans. Geosci. Remote Sens.

Wang, T.; and Isola, P. 2020. Understanding contrastive rep-
resentation learning through alignment and uniformity on
the hypersphere. In Int. Conf. Mach. Learn., 9929-9939.

Wang, W.; Shen, J.; and Ling, H. 2018. A deep network
solution for attention and aesthetics aware photo cropping.
IEEE Trans. Pattern Anal. Mach. Intell., 41(7): 1531-1544.

Wei, Z.; Zhang, J.; Shen, X.; Lin, Z.; Mech, R.; Hoai, M.;
and Samaras, D. 2018. Good view hunting: Learning photo
composition from dense view pairs. In Proc. Conf. Comput.
Vis. Pattern Recog., 5437-5446.

Wu, Y.; Shi, M.; Du, S.; Lu, H.; Cao, Z.; and Zhong, W.
2022. 3D Instances as 1D Kernels. In Avidan, S.; Bros-
tow, G.; Cissé, M.; Farinella, G. M.; and Hassner, T., eds.,
Eur. Conf. Comput. Vis., 235-252. Cham: Springer Nature
Switzerland.

Wu, Z.; Xiong, Y.; Yu, S. X.; and Lin, D. 2018. Unsuper-
vised feature learning via non-parametric instance discrim-
ination. In Proc. Conf. Comput. Vis. Pattern Recog., 3733—
3742.

Yan, J.; Lin, S.; Bing Kang, S.; and Tang, X. 2013. Learning
the change for automatic image cropping. In Proc. Conf.
Comput. Vis. Pattern Recog., 971-978.

Yang, Y.; Zha, K.; Chen, Y.; Wang, H.; and Katabi, D. 2021.
Delving into deep imbalanced regression. In Intell. Conf. on
Mach. Learn., 11842—11851.

Ye, M.; Zhang, X.; Yuen, P. C.; and Chang, S.-F. 2019. Un-
supervised embedding learning via invariant and spreading
instance feature. In Proc. Conf. Comput. Vis. Pattern Recog.,
6210-6219.

Zeng, H.; Li, L.; Cao, Z.; and Zhang, L. 2019. Reliable and
efficient image cropping: A grid anchor based approach. In
Proc. Conf. Comput. Vis. Pattern Recog., 5949-5957.

Zeng, H.; Li, L.; Cao, Z.; and Zhang, L. 2020. Grid Anchor
based Image Cropping: A New Benchmark and An Efficient
Model. IEEE Trans. Pattern Anal. Mach. Intell.

Zhang, M.; Zhang, L.; Sun, Y.; Feng, L.; and Ma, W. 2005.
Auto cropping for digital photographs. In Proc. IEEE Int.
Conf. Multimedia Expo, 4-7.

Zhou, S.; Xu, H.; Zheng, Z.; Chen, J.; Bu, J.; Wu, J.; Wang,
X.; Zhu, W.; Ester, M.; et al. 2022. A Comprehensive Sur-
vey on Deep Clustering: Taxonomy, Challenges, and Future
Directions. arXiv preprint arXiv:2206.07579.

2019

Zhuang, C.; Zhai, A. L.; and Yamins, D. 2019. Local aggre-
gation for unsupervised learning of visual embeddings. In
Proc. Int. Conf. Comput. Vis., 6002-6012.



