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Abstract
The mainstream of the existing approaches for video predic-
tion builds up their models based on a Single-In-Single-Out
(SISO) architecture, which takes the current frame as input
to predict the next frame in a recursive manner. This way of-
ten leads to severe performance degradation when they try to
extrapolate a longer period of future, thus limiting the prac-
tical use of the prediction model. Alternatively, a Multi-In-
Multi-Out (MIMO) architecture that outputs all the future
frames at one shot naturally breaks the recursive manner and
therefore prevents error accumulation. However, only a few
MIMO models for video prediction are proposed and they
only achieve inferior performance due to the date. The real
strength of the MIMO model in this area is not well noticed
and is largely under-explored. Motivated by that, we conduct
a comprehensive investigation in this paper to thoroughly ex-
ploit how far a simple MIMO architecture can go. Surpris-
ingly, our empirical studies reveal that a simple MIMO model
can outperform the state-of-the-art work with a large margin
much more than expected, especially in dealing with long-
term error accumulation. After exploring a number of ways
and designs, we propose a new MIMO architecture based on
extending the pure Transformer with local spatio-temporal
blocks and a new multi-output decoder, namely MIMO-VP,
to establish a new standard in video prediction. We evalu-
ate our model in four highly competitive benchmarks. Exten-
sive experiments show that our model wins 1st place on all
the benchmarks with remarkable performance gains and sur-
passes the best SISO model in all aspects including efficiency,
quantity, and quality. A dramatic error reduction is achieved
when predicting 10 frames on Moving MNIST and Weather
datasets respectively. We believe our model can serve as a
new baseline to facilitate the future research of video predic-
tion tasks. The code will be released.

Introduction
Video prediction aims to forecast future frames of a video
sequence conditioned on previous frames. Since anticipat-
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Figure 1: Illustration of MIMO and SISO on Moving
MNIST: The Errors are from (a) PhyDNet (Guen and Thome
2020) (b) Our model. Figures with solid and dashed frames
denote the ground-truth and predicted images respectively.
The red arrows indicate the different error propagation way.

ing the future is such a fundamental capability for intelligent
agents, video prediction has received increasing attention
and benefited many applications such as precipitation fore-
casting (Xingjian et al. 2015), autonomous driving (Kwon
and Park 2019), and action recognition (Liu et al. 2017). In
the practical scenario of these real-life applications, an ac-
curate prediction of the longer-term future will be greatly
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beneficial.
However, the current approaches are quite limited on

the prediction horizon. Most of them develop sophisticated
models based on Single-In-Single-Out (SISO) architecture
such as Recurrent Neural Networks (Wang et al. 2017,
2018a, 2019; Guen and Thome 2020; Yu et al. 2020; Lin
et al. 2020; Wu et al. 2021; Lee et al. 2021a), Convolu-
tional Long Short-Term Memory (ConvLSTM) (Xingjian
et al. 2015) and their variants. These recurrent models learn
a hidden state for the history information and generate the
next frame conditioned on the current predicted frame. As a
result, their quality and accuracy will degrade quickly when
the generated frames go longer due to the Butterfly Effects
of the small error produced in the earlier frames. Especially,
video data is high-dimensional and their models have great
complexity, the small errors are easy to be amplified into se-
rious compound errors over time. Some hierarchical models
predict the low-dimensional structures of the frames firstly
and transfer them back into pixel space to reduce the er-
ror accumulation. They either extract the human pose key-
points (Kim et al. 2019; Walker et al. 2017; Villegas et al.
2017), face landmarks (Yang et al. 2018; Yan et al. 2018) or
semantic label maps (Lee et al. 2021b). With the constraints
of the high level structures, their methods can generate se-
mantic reasonable motions in a very long time period. How-
ever, these methods are infeasible to be applied to unstruc-
tured video data such as weather and radar videos. More im-
portantly, all of these methods only alleviate the problem by
reducing the error generated at once but did not solve it es-
sentially by breaking the error propagation chain.

In contrast, we notice that some approaches for prediction
tasks build up their models in a Multi-In-Multi-Out (MIMO)
manner which takes all the inputs into the encoder and out-
put all the frames from the decoder at once, such as DVF
(Liu et al. 2017) and SimVP (Gao et al. 2022). Compared
with SISO, their future predictions do not rely on the pre-
vious ones and errors are not accumulated. Nevertheless,
only few attempts for video prediction take MIMO architec-
ture and their performances remain inferior to the best SISO
models (Chang et al. 2021). Have the ability of MIMO ar-
chitecture been underestimated for video prediction?

We are curious to figure out how far the MIMO architec-
ture can achieve in video prediction. We implement MIMO
architecture by a pure Transformer (Vaswani et al. 2017)
model which demonstrates great success in many vision
tasks recently as a general backbone since it is superior to
capturing the global dependencies of input frames and out-
put frames. However, it is worth noting that simply apply-
ing the trending Transformer models or their variants (Swin
Transformer (Liu et al. 2021a), etc) is not able to deal with
this problem successfully. Although Vision Transformer-
based models (Arnab et al. 2021; Bertasius, Wang, and Tor-
resani 2021; Liu et al. 2022) have achieved promising per-
formance in video recognition, their extensions (Rakhimov
et al. 2020; Weissenborn, Täckström, and Uszkoreit 2019)
for video prediction are very limited and only output a single
frame at once. Our experiments show Vanilla Transformer
model only leads to inferior model performance since they
struggle to exploit two very important clues for videos – the

spatial dependencies of each frame and the complex spatio-
temporal dynamics. Notably, it is non-trivial to extend a ba-
sic Transformer from time series prediction problem for a
spatio-temporal series prediction task.

To fill this gap, our objective of this paper is to develop
an effective MIMO architecture for video prediction by car-
rying out a series of operations to tailor the basic architec-
ture. Due to our best knowledge, this perspective has never
been investigated in-depth. Various MIMO architectures for
video prediction are empirically compared and studied in
this work.

For the global spatio-temporal dependency clues, we in-
corporate the 2D convolutional structure into the multi-head
attention to simultaneously capture the long term temporal
dependencies of sequence and preserve the spatial informa-
tion of frames. For the most important spatio-temporal clues,
we design a Spatio-temporal block which replaces the sim-
ple forward layers both in the encoder and decoder. This
block will capture the local Spatio-temporal context to ben-
efit the prediction. While many concrete implementations of
this block are possible to capture the local context, we reveal
that a simple design of 3D convolutions layers is already ca-
pable to yield considerably performance gains than individ-
ual art methods. On Moving MNIST dataset, this block leads
to a decrease of 16% MSE error.

Moreover, another problem is the decoder of the typi-
cal Transformer cannot achieve MIMO straightforwardly. To
deal with that, we design a new Multi-Output decoder which
takes all the placeholder of the output frames as input fea-
tures. Then we rectify the last layer of the decoder to gen-
erate the output frames in one shot. This decoder captures
more dependencies of the subsequent frames than recurrent
models. Towards this end, a new video prediction framework
based on the MIMO manner is proposed in the field. We il-
lustrate the error growth curve is remarkably reduced com-
pared with existing work.

Our contribution can be summarized in the following:
(1) We reveal that the Multi-In-Multi-Out strategy plays a
crucial role in addressing the long-standing error accumu-
lation problem in video prediction for the first time. (2)
We advocate a new MIMO architecture which leverages
the Transformer-based architecture by exploiting the spatial
context and local Spatio-temporal correlations of video data.
A new decoder is designed to realize our MIMO idea. (3)
Comprehensive experiments on four benchmarks are carried
out to validate the effectiveness and fruitful insights are pro-
vided. Experimental results show that the proposed MIMO
model achieves superior performance over the state-of-the-
art SISO models in terms of accuracy and fidelity.

Related Work
Single-in-Single-Out Models.
Mainstream video prediction models (Xingjian et al. 2015;
Shi et al. 2017; Wang et al. 2017, 2018a; Oliu, Selva, and
Escalera 2018; Wang et al. 2018b, 2019; Guen and Thome
2020; Yu et al. 2020; Lin et al. 2020; Su et al. 2020; Wu
et al. 2021; Lee et al. 2021a) follow the typical recurrent
strategy to synthesis the future frames, which takes single
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frame in the sequence as input and output the next one by
the recurrent unit. As a prior work, Shi et al. (Xingjian
et al. 2015) proposed ConvLSTM to address the problem.
After that, its variants PredRNN (Wang et al. 2017) and
MIM (Wang et al. 2019) are proposed which capture both
spatial and temporal representations. MotionRNN (Wu
et al. 2021) and PhyDNet (Guen and Thome 2020) explored
different frameworks like GRU or two-branch methods to
achieve promising results. However, it is still an inherent
problem for them to capture long-term dependency and
extrapolate longer sequences. To alleviate the pixel-level
error propagation, a lot of work tried to learn the high-level
semantic structures first, such as human pose (Villegas et al.
2017), segmentation maps (Lee et al. 2021b), then translate
these to pixels space. LMC-Memory(Lee et al. 2021a)
proposed to predict long-term future frames by storing and
recalling long-term motion contexts of video sequences.
However, all of their error still accumulates at a compound
rate. In contrast, our MIMO model fundamentally changes
the error propagation way rather than alleviating the error
per frame.

Multi-in-Multi-Out Models.
Instead of recurrent ways, MIMO models generate all
future frames at once. It has been proved that these models
(Bontempi 2008; Taieb, Sorjamaa, and Bontempi 2010) for
multi-step-ahead time series prediction show superiority
over the others. Compared with SISO, MIMO is able to
capture the relationships of frames not only happened be-
fore but also happened afterwards. Few attempts proposed
MIMO-based models to anticipate videos. For example,
Liu et al. (Liu et al. 2017) proposed DVF, which used a
3D convolution autoencoder to learn voxel flows and syn-
thesize video frames by flowing pixel values from existing
ones. FutureGAN (Aigner and Körner 2018) is also an
encoder-decoder GAN model by stacking Spatio-temporal
3d convolutions, it could predict multiple future frames at
once. SimVP (Gao et al. 2022) is a simple model that is
completely built upon CNN. The MIMO predictive strategy
of SimVP makes it achieve significant performance only
with basic CNNs. However, they did not exploit the real
strength of MIMO architectures. Thus we aim to develop a
top-performing MIMO model to rise the attention for them
in video prediction.

Transformer Models for Videos.
The advantage of modeling long-term dependency of videos
enables Transformers (Vaswani et al. 2017; Dosovitskiy
et al. 2020; Liu et al. 2021a) to be widely applied in the
video domain (Zhou et al. 2018; Gabeur et al. 2020; Girdhar
et al. 2019; Liu et al. 2020; Arnab et al. 2021; Dzabraev et al.
2021; Liu et al. 2021b; Wang et al. 2021; Zhang, Hao, and
Ngo 2021). For example, Zhou et al. (Zhou et al. 2018) pro-
posed an end-to-end video captioning model based on Trans-
former. Kim et al. (Kim et al. 2018) proposed a novel Spatio-
temporal Transformer Network (STTN) for Video Restora-
tion. The works in (Gabeur et al. 2020; Dzabraev et al. 2021)

investigated the potential of Transformers on video retrieval
tasks. Besides, recent advances (Girdhar et al. 2019; Zhang,
Hao, and Ngo 2021; Arnab et al. 2021; Liu et al. 2021b)
focused on designing the T Transformer architectures for
video classification. VisTR (Wang et al. 2021) is a video in-
stance segmentation framework which outputs the masks for
each instance in parallel. However, the Transformer aiming
at video prediction is still underdeveloped and our work fills
this gap.

Proposed Method
Problem Formulation
Suppose we observe a video sequence St−m+1:t :=
{Xt−m+1,Xt−m+2, . . . ,Xt}, where Xt ∈ RC0×H0×W0 rep-
resents the frame (channel C0, height H0, width W0) at
the current time step t. The goal of the Spatio-temporal se-
quence prediction is to generate the most likely length-n se-
quence in the future given the previous length-m sequence:

S∗
t+1:t+n = argmax

St+1:t+n

p(St+1:t+m|St−m+1:t) (1)

SISO predictive strategy. To solve the problem, the Single-
In-Single-Out architectures are widely used. They can natu-
rally preserve the time order logic of the generated frames.
Their prediction paradigm can be written as:

Xt′+1 = F (Xt′ ,Mt′) + σt′ , (2)
where F denotes the model, Mt′ is the memory cell that
remembers the past historical information. σt′ is a Tensor
noise term. Xt′ is the observed frame (t′ ≤ t) or the gen-
erated frame (t′ > t). Note that SISO predictive strategy
is susceptible to the error accumulation problem. For sim-
plicity, consider an Auto Regressive with K=1 and without
exogenous inputs model:

Xt = AXt−1 + σt (3)
where A is a learnable Tensor. It is easy to have:

Xt+n = At+n−1Xt +
t+n−1∑
k=t

Akσt+n−k + σt+n (4)

It is clear that the error Rt+n =
∑t+n−1

k=t Akσt+n−k+σt+n

will accumulate as time step t + n increases, which makes
accurate prediction challenging. Besides, the long-term de-
pendency problem inherited from RNNs would further limit
the performance of the SISO strategy on video prediction.
MIMO predictive strategy. There is an alternative way to
deploy MIMO predictive strategy:

St+1:t+n = F (St−m+1:t) + Σt+1:t+n, (5)
where Σt+1:t+n := {σt+1, . . . , σt+n} is the normal pre-
diction error. Therefore, the MIMO strategy breaks the er-
ror accumulation by synthesising all the frames in parallel.
However, it is not sufficient to deduce MIMO models always
outperform SISO models. Actually, the single error σt+i of
one frame can be extremely high since the MIMO models
may miss some important relationships which SISO models
naturally capture. Notably, it is simple to present MIMO ar-
chitectures but it is non-trivial to equip them with a strong
ability to model long-term and short-term Spatio-temporal
dependencies which are important for complex video data.
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Figure 2: Illustration of MIMO-VP architecture.

Our MIMO-VP Architecture
Encouraging by the great success of Transformer (Vaswani
et al. 2017) models, we build up our MIMO architecture spe-
cific for video prediction based on the Transformer back-
bone. Their placeholder embedding method also helps to
capture the global dependency of the frames. However, a
pure Transformer is a Multi-In-Single-Out architecture and
achieves only moderate performance in video prediction
since they lack of ability to model complex Spatio-temporal
dynamics. There is still a big gap in our goal to tailor it for
video data. To tackle the issue, we propose a series of surg-
eries to enhance the ability of the model to capture spatial
structures and local Spatio-temporal dependencies. Our fi-
nal model is presented in Figure 2.

The formulation of our full model can be written as:

St+1:t+n = Φd(Φe(St−m+1:t), Tt+1:t+n) (6)

where Φe and Φd are the encoder and decoder modules re-
spectively. Tt+1:t+n is a length-n timestep queries. For an
input video St−m+1:t ∈ Rm×C0×H0×W0 with m frames,
we first decompose each frame into non-overlapping patches
and then obtain the sequence-level feature maps h ∈
Rm×C×H×W after several convolution layers.

Note that, we operate 2D Convolution Multi-Head Atten-
tion (MHA) first to generate the query map and paired key-
value map of each frame. It benefits the model to simulta-
neously learn the temporal correlation and preserve the spa-
tial information of sequence. Moreover, different from the
existing auto-regressive prediction paradigm of Transform-
ers, we do not apply the mask operation on the multi-head

self-attention in the decoder block. Because our decoder in-
puts are time step embedding that is already known. In our
model, each generated frame is conditioned not only on the
past sequence but also on its future frames, which preserves
the dependency of future frames. After exploration, we fig-
ure out two operations can boost the performance drastically.
The details are provided in the following.
Local Spatio-Temporal Block We figure out one reason
that the vanilla Transformer is limited in performance since
they lack the ability to capture the short-term variation of se-
quences which is crucial for video generation. Therefore, we
are motivated to install a local Spatio-temporal block which
aims to learn the high order relationship between time step
queries T and their corresponding output sequence S . We
find out a simple way to implement this idea by installing
this block in the place of the FCN layers of the encoder and
decoder. Theoretically, this block can be any neural network
which has the ability to capture Spatio-temporal information
for video data. While a more complex design potentially will
result in more gains, we hope to design this block as sim-
ple as possible to validate the importance of local Spatio-
temporal clues for video prediction. Inspired by most MIMO
frameworks in video domains, we choose a simple 3D Con-
volution layer which is widely used to capture these clues
as our block. Specifically, the block is consisted of two em-
bedding layers with each is a 3DConv, LayerNorm, SiLU
block. The kernel size of 3DConv is 3× 3× 3.
Multi-Out Decoder To achieve our goal, we need to rec-
tify the original decoder to enable it to produce several fu-
ture frames parallelly. The challenge here is how to maintain
the order information of in video sequences. Considering
the permutation-invariant character of the Transformer ar-
chitecture, we here focus on the temporal positional encod-
ing of the sequence. Specifically, we define a time step vec-
tor T = [1, 2, . . . ,m+n]. Then we embed T ∈ R1×(m+n) to
T̂ ∈ R(m+n)×C by an embedding layer. Finally, we expanse
T̂ to T ∈ R(m+n)×C×H×W along the height and width di-
mensions. Accordingly, the temporal positional encoding of
input sequence is T1:m ∈ Rm×C×H×W . After that, we re-
gard Tm+1:m+n ∈ Rn×C×H×W as time step queries and
input them to the decoder module. In this way, our new
decoder is capable of dealing with multi-output scenarios.
SISO strategy is somehow a specific case of MIMO strategy
when the input length is one. The details of this Multi-Out
decoder are illustrated in supplementary materials.

Experimental Results
Dataset Descriptions
Moving MNIST (Srivastava, Mansimov, and Salakhudinov
2015) is a standard synthetic dataset for video prediction. We
generate training set following (Guen and Thome 2020), and
adopt the widely used testing set of 10,000 sequences pro-
vided by (Srivastava, Mansimov, and Salakhudinov 2015).
Human3.6M (Ionescu et al. 2013) dataset is a real-world
human pose dataset comprising 17 kinds of human actions
and 3.6 million poses. We use subjects S1, S5, S6, S7 and
S8 for training, and subjects S9, S11 for testing. We predict
4 frames in the future conditioned on the 4 observed frames.
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Method 10 - 10 10 - 30
MSE ↓ MAE ↓ SSIM ↑ MSE ↓ MAE ↓ SSIM ↑

ConvLSTM (Shi et al. 2017) 103.3 182.9 0.707 - - -
MIM (Wang et al. 2019) 44.2 101.1 0.910 - - -
CrevNet(Yu et al. 2019) 22.3 - 0.949 - - -
ConvTTLSTM (Su et al. 2020) 56.0 92.9 0.913 105.7 - 0.840
PhyDNet (Guen and Thome 2020) 24.2 70.3 0.947 58.7 144.1 0.852
LMC-Memory (Lee et al. 2021a) 41.5 - 0.924 73.2 - 0.879
MotionRNN (Wu et al. 2021) 29.2 87.7 0.933 64.2 156.1 0.844
SimVP (Gao et al. 2022) 23.8 68.9 0.948 - - -
MIMO-VP 17.7 51.6 0.964 31.6 79.1 0.934

Table 1: Quantitative comparison of different models on Moving MNIST dataset.

PhyDNet

MIMO-VP

MotionRNN

...

t
2 10 12 14 16 18 20

Predicted
frames

Error map

Predicted
frames

Error map

Predicted
frames

Error map

Figure 3: Prediction examples on Moving MNIST dataset.

Weather dataset is a real radar echo dataset for precipita-
tion nowcasting, which is obtained from the local weather
bureau. Our training set and testing set contain 9, 600 and
2400 radar sequences (resolution 128×128×1) respectively.

KITTI dataset is one of the most popular datasets for au-
tonomous driving and also a benchmark for computer vision
algorithms. We predict 5 frames in the future when taking 5
observed frames as input.

Implementation Details We use Adam (Kingma and Ba
2014) optimizer with 0.0005 learning rate and L1+L2 loss
to train our model. We implemented the model with Py-
Torch and conducted experiments on NVIDIA V100 GPUs.
Mean Squared Error (MSE), Mean Absolute Error (MAE),
the Structural Similarity(SSIM), LPIPS (Zhang et al. 2018)
and Peak Signal to Noise Ratio (PSNR) are evaluated in our
work. All these metrics are averaged for all predicted frames.
Additionally, we also take Critical Success Index (CSI) into
account for Weather dataset. Details are contained in supple-
mentary materials.

MIM

PhyDNet

MIMO-VP

MotionRNN

t
2 4 5 6 7 8

Figure 4: Prediction examples on Human3.6M dataset.

Quantitative and Qualitative Comparison

Results on Moving MNIST. Firstly, we report the results
which use 10 frames to predict 10 future frames. As shown
in Table 1 and Figure 3, our model significantly outperforms
all the other models. Current RNN-based models get blurry
and wrong predictions in this case, and their prediction error
grows larger over time. On the contrary, our model can pre-
dict high quality frames. To further explore our performance
on long-term prediction, we conduct an experiment by pre-
dicting 30 future frames conditioned on 10 input frames. As
shown in Table 1, our method far surpasses the others in
predicting 30 frames in terms of the MSE metric. Compared
with PhyDNet, our MIMO-VP improves by 46.2% in MSE,
which is much larger than 26.9% in 10-10 prediction task.
Results on Human3.6M. Table 2 shows that MIMO-VP
achieves the best performance on Human3.6M. Compared
with PhyDNet, MIMO-VP improves by 35.8% in MAE. In
Figure 4, complicated background and human motion give
much more challenge for predicting accurate and reasonable
results. While our MIMO-VP can still product relatively pre-
cise future frames comparing with other models.
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Method MAE/100 ↓ SSIM ↑ PSNR ↑
MIM 17.8 0.790 20.57
PhyDNet 16.2 0.901 -
LMC-Memory 17.0 0.820 21.05
MotionRNN 14.8 0.846 22.16
MIMO-VP 10.4 0.941 24.52

Table 2: Quantitative comparisons on Human3.6M dataset.

Method MAE/100 ↓ SSIM ↑ LPIPS ↓ PSNR ↑
CrevNet 56.3 0.587 0.454 17.046
PhyDNet 44.9 0.674 0.403 19.159
LMC-Memory 44.6 0.660 0.410 18.692
MotionRNN 45.0 0.652 0.384 18.931
MIMO-VP 40.9 0.703 0.308 19.616

Table 3: Quantitative comparisons on KITTI dataset.

Method MAE ↓ SSIM ↑ CSI-20 ↑ CSI-30 ↑
MIM 402.6 0.725 0.402 0.164
PhyDNet 280.1 0.859 0.557 0.368
MotionRNN 336.9 0.809 0.519 0.290
MIMO-VP 235.6 0.865 0.595 0.400

Table 4: Quantitative comparisons on Weather dataset.

Results on KITTI. As shown in Table 3, our proposed
MIMO-VP achieves consistent improvement in all evalua-
tion metrics. Compared with LMC-Memory, our model im-
proves by 8.3% in MAE. Quantitative visualization results in
Figure 5 show that our model can preserve much more de-
tails of both background and foreground. For instance, from
the right part of last predicted frames, we can find that the
results of our MIMO-VP is much similar to GroundTruth
while other methods produce obviously blurry frames.
Results on Weather. From Table 4, we can find that our
MIMO-VP has significantly improvement in CSI scores
within different thresholds, which indicates our approach
can predict more credible radar echoes for precipitation
nowcasting. The visualization radar echo maps are shown
in Figure 6. Different color represents different radar echo
intensity (dBZs), i.e. yellow indicates higher intensity than
green. Additionally, the center region of the radar echo is
zoomed in and placed below each predicted frame. We find
that our MIMO-VP predicts more correct yellow regions
than other methods, which means MIMO-VP is a more suit-
able method for precipitation nowcasting.
The comparison of different MIMOs Quantitative com-
parisons are detailed in Table 5, where 3D convolution is
a fully convolutional network. For ViT (Dosovitskiy et al.
2020) and Swin-Transformer (Liu et al. 2021a), we re-
place the classification layer with convolution operation to
be consistent with original image size. We observe that
all other MIMO methods can not achieve state-of-the-art
performance when compared with the best SISO method–
CrevNet (Yu et al. 2019) except ours. To verify the effec-
tiveness of our MIMO-VP, we carry out an ablation study to
analyse each key component.

LMC-Memory

PhyDNet

MIMO-VP

Motion-RNN

t
2 4 6 7 8 9 10

Figure 5: Prediction examples on KITTI dataset.

MIM

MotionRNN

MIMO-VP

PhyDNet

t
2 10 12 14 16 18 20

Figure 6: Prediction examples on Weather dataset.

Ablation Study of Each Component
Quantitative results on Moving MNIST dataset are shown in
Table 6. (1) The Spatial Dependency of Frames. We can
see that MIMO-VP without 2DMHA results in a large per-
formance degradation in comparison with MIMO-VP, with
an increase of 15.1 and 32.8 in terms of MSE and MAE re-
spectively. This phenomenon indicates that 2DMHA mech-
anism, which is able to capture the global long-term spa-
tiotemporal relationships of sequences, makes an important
contribution to the accurate video prediction. (2) The Lo-
cal Spatio-temporal Block (LSB). The results of MIMO-
VP without LSB also show inferior to those of MIMO-VP,
which verifies that the local spatial-temporal variations of
sequence are helpful for prediction. (3) The Multi-Out De-
coder. MISO-VP denotes a variant of MIMO-VP that adopts
the MISO predictive strategy similar to vanilla Transformer.
It infers the next one frame using the predicted frames, in
a recursive manner. Experimental results show that MIMO-
VP beats down the MISO-VP with performance improves
by 18.0% and 14.0% in MSE and MAE respectively. The

1980



Method MSE ↓ MAE ↓ SSIM ↑ #Params (M)
CrevNet 22.3 - 0.949 -
3D convolution 32.8 84.4 - 19.8
ViT 50.2 126.5 0.887 17.5
Swin-Transformer 28.8 77.2 0.940 21.8
SimVP 23.8 68.9 0.948 15.8
MIMO-VP 17.7 51.6 0.964 20.2

Table 5: Results of MIMO models on Moving MNIST.

Method MSE ↓ MAE ↓
Without 2DMHA 32.8 84.4
Without LSB 21.2 59.2
MISO-VP 22.8 62.8
MIMO-VP 17.7 51.6

Table 6: Ablation Study for Each Components.

Method MSE ↓ MAE ↓ SSIM ↑
MIMO-VP F 21.6 59.4 0.955
MIMO-VP 17.7 51.6 0.964

Table 7: Comparison of MIMO-VP and its variant on Mov-
ing MNIST dataset.

reason may be that recursive single-out predictive strategy
will trigger the error accumulation problem and overlook the
stochastic dependency among the future frames.

Comparison of MIMO and SISO
Significance of ‘MI’: long-term dependency Compari-
son results between MIMO-VP and PhyDNet of predicting
10 future frames on Moving MNIST with different input
lengths are shown in Figure 7a. It is observed that the MSE
metric of MIMO-VP drops quickly with the input length
increasing from 5 to 50. PhyDNet improves significantly
when the input length increases from 5 to 10, while improves
slightly from 10 to 50. Precisely, the MSE of MIMO-VP and
PhyDNet deceases by 64.3% and 24.4% respectively from
10 input frames to 50 input frames. Those results demon-
strate that our MIMO-VP has a stronger ability to capture the
long-term sptiotemporal dependency of video sequences for
accurate prediction, while PhyDNet, an RNN-based method,
suffers from the long-term dependency problem because of
the limited capacity of memory.
Significance of ‘MO’: free of error accumulation Fig-
ure 7b illustrates the frame-wise MSE of MIMO-VP and
PhyDNet, corresponding to the sample in Figure 3. We can
observe that the curve of PhyDNet increase dramatically
over time because PhyDNet suffers from the error accumula-
tion problem. By contrast, the curve of MIMO-VP increase
slightly because the normal predictive error, which is related
to the digits overlapping, increases over time. To futher ver-
ify that the error accumulation problem is even worse in
long-term case, we compare the results of predicting 10, 30,
50 and 90 frames on Moving MNIST dataset. In training
phase, all the models are trained by using 10 frames to pre-
dict next 10 frames, while in testing phase, 10, 30, 50, and 90
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Figure 7: (a) Comparison of MIMO-VP and PhyDNet by
predicting 10 future frames conditioned on different length
of input sequence; (b) Frame-wise MSE of MIMO-VP and
PhyDNet on Moving MNIST dataset.
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Figure 8: Results of long-term predication on Moving
MNIST dataset.

frames are predicted in a recurrent manner. Experimental re-
sults are shown in Figure 8a and Figure 8b, from which we
can observe that the error accumulation problems of SISO
models (MotionRNN, PhyDNet) is much severe than MIMO
models (SimVP, MIMO-VP). Thus, ‘MO’ models can over-
come the error accumulation problem in video prediction.
Future frame dependency We compare our MIMO-VP
with its variant MIMO-F, a baseline which removes the self-
attention module in the decoder so that it can not capture all
the dependency of frames. Predictive results are shown in
Table 7, from which we can see MIMO-VP achieves much
better performance than MIMO-F. This phenomenon veri-
fies the benefit of MIMO-VP in preserving the dependency
among the future frames for accurate prediction.

Conclusion

In this paper, we propose a new MIMO architecture for
video prediction, which overcomes the long-term depen-
dencies and error accumulation problems inherently intro-
duced in the Single-In-Single-Out (SISO) models. The re-
sults show that our model wins 1st place in many evalua-
tions and challenge datasets and surpasses the state-of-the-
arts SISO models in a large gap, especially over a longer
period. By this work, we encourage the researchers in pre-
diction area to shift more attention on MIMO models. We
believe our model could serve as a new backbone and facil-
itate the future research of video prediction.
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