
DocEdit: Language-Guided Document Editing

Puneet Mathur1*, Rajiv Jain2, Jiuxiang Gu2,
Franck Dernoncourt2, Dinesh Manocha1, Vlad I. Morariu2

1University of Maryland, College Park
2Adobe Research

1{puneetm, dmanocha}@umd.edu
2{rajijain,jigu,dernoncourt,morariu}@adobe.com

Abstract

Professional document editing tools require a certain level of
expertise to perform complex edit operations. To make editing
tools accessible to increasingly novice users, we investigate in-
telligent document assistant systems that can make or suggest
edits based on a user’s natural language request. Such a system
should be able to understand the user’s ambiguous requests
and contextualize them to the visual cues and textual content
found in a document image to edit localized unstructured text
and structured layouts. To this end, we propose a new task of
language-guided localized document editing, where the user
provides a document and an open vocabulary editing request,
and the intelligent system produces a command that can be
used to automate edits in real-world document editing soft-
ware. In support of this task, we curate the DocEdit dataset, a
collection of approximately 28K instances of user edit requests
over PDF and design templates along with their corresponding
ground truth software executable commands. To our knowl-
edge, this is the first dataset that provides a diverse mix of edit
operations with direct and indirect references to the embedded
text and visual objects such as paragraphs, lists, tables, etc. We
also propose DocEditor, a Transformer-based localization-
aware multimodal (textual, spatial, and visual) model that
performs the new task. The model attends to both document
objects and related text contents which may be referred to in a
user edit request, generating a multimodal embedding that is
used to predict an edit command and associated bounding box
localizing it. Our proposed model empirically outperforms
other baseline deep learning approaches by 15-18%, providing
a strong starting point for future work.

Introduction
Digital documents are used extensively to help people im-
prove business productivity (drafting contract agreements,
presentation decks, letterheads, invoices, resumes, form fill-
ing) and communicate with customers through online ad-
vertisements, social media posts, flyers, posters, billboards,
web and mobile app prototypes, etc. However, modern doc-
ument editing tools require a skilled professional to work
on a large screen. Challenges emerge when complex editing
operations require multiple different functionalities wrapped
within the editing tools for text and image region placement,

*Work done during internship at Adobe Research
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

grouping, spatial alignment, replacement, resizing, splitting,
merging, and special effects. As the creation and editing of
documents become more ubiquitous and increasingly used
by novice users on mobile devices, there is an increasing
need to improve the accessibility of these tools through an
intelligent assistant system that can understand user’s intent
and translate it into executable code that can be processed by
the editing tool to fulfill a user’s editing needs.

We formulate a new task for language-guided document
editing and create a new dataset, DocEdit, as illustrated in
Figure 1, wherein an intelligent system is expected to gener-
ate the executable commands (e.g., move components, mod-
ify attribute values and special effects, add/delete text, etc.)
and visually ground the region of interest given the natural
language edit request expressed by human users over a docu-
ment image. To do so, document editing systems should not
only understand the user intent, but also extract and interpret
the textual content of the document images along with the vi-
sual cues including layout (paragraphs, lists, tables, headers,
footers), non-textual elements (marks, tick, shapes, diagrams,
graphs), and style (font, colors, size, highlighting, special
effects). Departing from generic language-guided image edit-
ing tasks (Shi et al. 2020; Lin et al. 2020c), our task warrants
a different approach to exploit the above visual cues and
high-density of textual tokens by making use of the relative
positioning of objects and text tokens.

The new dataset for this task, DocEdit, provides natural
language edit requests on PDFs and design template docu-
ments, along with the result of a human carrying out the edit
request. Each edit request is mapped to an executable com-
mand that can be simulated in real-world document editing
software. To collect such a dataset, we utilized User Inter-
face (UI) experts to, edit a set of input documents, provide
a description of the edit, and generate the ground truth ex-
ecutable command corresponding to a set of diverse and
creative edit requests posed by freelance designers. DocEdit
contains more than 17k PDF and 10k design templates with
a diverse mix of edit operations (add, delete, modify, split,
merge, replace, move, copy) and reference types (direct, ob-
ject referring, text referring) from the users.

Our work also takes the first step towards automating
Language-guided Localized Document Editing (LLDE) using
DocEditor, a Transformer-based localization-aware multi-
modal (textual, spatial, and visual) model. The model repre-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

1914

Shift the subheading "Manuscript Draft"
and the sentence below it 10px below

Move (Text; Location; None; +10px Down)

ACTION (COMPONENT; ATTRIBUTE; INITIAL STATE; FINAL STATE)

Check options SPO/DCA and Fund
Dividend in leftmost column Transaction

Modify (Checkbox; SPO/DCA, Fund Dividend; Unticked; Tick)
ACTION (COMPONENT; ATTRIBUTE; INITIAL STATE; FINAL STATE)

Change the yellow heart above
"Weekend" into red circle

Replace (Image; Shape, Color; heart, yellow; cicrle, red)
ACTION (COMPONENT; ATTRIBUTE; INITIAL STATE; FINAL STATE)

DocEditorDocEditor DocEditor

--Manuscript Draft--

Neural Computing and Applications

Named Entity Recognition via GCN

Figure 1: The DocEdit dataset provides natural language edit requests on PDFs and design template documents. Each edit
request is mapped to an executable command that can be used to automatically apply edits in real-world document editing
software. We propose DocEditor, a neural architecture to generate the executable computer command and ground the region of
interest bounding box. Examples from the Hierarchical Forms dataset and the public Enron corpus in this figure illustrate several
challenges where an intelligent system needs to (a) interpret and localize structured components and their relative positioning in
the document; (b) match document text tokens in a text-rich document formatted in varied spatial layouts (checkboxes, choice
groups, text fields, columns, rows), (c) visually understand the objects as per the description.

sents the visual appearance of document elements (e.g., para-
graphs, images) through their bounding boxes and document
semantics (the meaning of the text in the document) through
document text tokens obtained via OCR. It uses multi-head at-
tention to obtain a text-enriched visual box embedding which
is fused with a text embedding and a regression token. The
fused representation is provided to a Transformer decoder,
which generates the command text in an autoregressive fash-
ion. Additionally, we employ a layout graph to encode the
relative position of boxes and document text tokens to regress
the RoI bounding box coordinates. We perform node classifi-
cation as an auxiliary task for anchor box prediction to ground
the edit location in terms of relevant object and document
text token boxes. DocEditor proves as a strong benchmark
for this task and outperforms other unimodal and multimodal
baselines. Our contributions are:
• We introduce a new task and dataset for document edit

command generation for language-guided localized docu-
ment editing. The DocEdit dataset consists of document-
edit pairs on PDFs and design templates along with corre-
sponding ground truth executable commands.

• We propose DocEditor, a novel multimodal transformer
that takes a language-based edit request and produces
a spatially localized set of edit commands. To the best
of our knowledge, no such multimodal language-guided
document editing model exists, with existing models lack-
ing in terms of their understanding of document text and
their ability to perform localized edits. Our proposed
DocEditor model empirically outperforms other base-
line deep learning approaches by 15-18%, providing a
strong starting point for future work.

Related Work
Table 1 shows prior tasks and datasets for language-guided
image editing systems such as (Shi et al. 2020; Lin et al.

Dataset Size OCR LE IR Doc
CAISE 6.1K ✗ ✗ ✗ ✗
DialEdit 8.8K ✗ ✗ ✗ ✗
Edit me 9.1K ✗ ✓ ✗ ✗
ILLC-IER 2.5K ✗ ✓ ✓ ✗
DocEdit (Ours) 28.3K ✓ ✓ ✓ ✓

Table 1: . Comparison of DocEdit with related language-
guided image editing datasets. Our dataset is the largest
document-centric corpus with localized edits (LE), OCR’ed
text, and indirect references (IR) to local objects.

2020c). However, most of these tasks are designed to work
with natural images instead of documents that are usually
text-rich and may contain a wide range of structured compo-
nents in varied layouts. Recent GAN-based methods (Jiang
et al. 2021a; El-Nouby et al. 2018; Wang et al. 2022; Li
et al. 2020; Jiang et al. 2021b) are popular for natural image
editing tasks as they perform end-to-end pixel-wise image
generation, but are unsuitable for digital-born PDF docu-
ments with rich text. Such methods still cannot handle spatial
and semantic understanding of embedded text present in the
documents. Previous research works (Kim et al. 2022; Shi
et al. 2021, 2022; Chen et al. 2018) have explored language-
driven image editing to map image edits into actionable com-
puter commands, they are largely limited to global requests
where the entire image is uniformly modified. Complex and
unstructured documents, for example, images of receipts, in-
voices, and forms have a large number of relatively small text
objects scattered throughout an unstructured document and
surrounded by “distraction” objects which are not of inter-
est. Hence, there is a need to spatially localize the objects
of interest by modeling text and image content and relating
it to the user’s text description. Efforts to investigate such

1915

localized editing of spatial regions remain limited. Previous
attempts at intent/action/goal identification from user edit
requests (Manuvinakurike et al. 2018a,b,c; Lin et al. 2020a)
have only explored a limited set of edit functions constrained
to changes in brightness, contrast, background color, and
their numeric values. Hence, there is a significant gap in the
space of operations possible through automated document
editing, thus necessitating the development of methods that
can generalize to ambiguous open vocabulary user requests
and convert them into executable commands grounded in
specific action, component, and attribute taxonomy.

Task Description
We introduce the task of generating an executable command
from a linguistic user request for editing a document ac-
cording to the user’s intent. Formally, given a document
D to be edited and the user request defined as a sequence
of n tokens W = [t1, t2, · · · tl], we predict the executable
command C of the format: ACTION(< Component >
,< Attribute >,< Initial_State >,< Final_State >
, [x, y, h, w]). Here, Action describes the executable function
belonging to the following taxonomy - Add, Delete, Copy,
Move, Replace, Split, Merge, Modify. It is followed by ar-
guments corresponding to the document components to be
edited, attributes to be modified, initial state of the attributes,
and the final state of the attributes expected in the edited
version. The Region of Interest (RoI) is represented by the
bounding box [x, y, h, w] enclosing the components to be
edited in the input document image, such that (x, y) refers to
the top-left coordinate while h and w refer to the height and
width of the bounding box, respectively. We perform end-to-
end command generation task along with the RoI bounding
box regression grounded in the document image.

DocEdit Dataset
Language-guided image editing has been studied in the past.
However, there is no existing dataset that captures language-
guided editing of structured documents such as PDFs, Pow-
erPoint presentations, and design templates, in which the
spatial arrangement of content (text, images, etc) may be as
important as the content itself, and edit operations are lo-
calized to specific regions of a document. Such documents
are rich in layout due to the presence of a high variety of
structured components such as tables, graphs, text fields,
checkboxes, widgets, lists, and backgrounds along with the
unstructured text. Therefore, we present the DocEdit dataset
which provides pairs of the document image and user edit
requests along with the ground truth edit command and the
final edited version of the document. We present two variants
of the DocEdit dataset: (1) DocEdit-PDF comprising of ed-
its performed on publicly available PDF documents and (2)
DocEdit-Design comprising of edits on design templates.
Data Acquisition: We extracted 20K anonymized PDF doc-
uments from the publicly available Enron corpus and Hier-
archical forms (Aggarwal et al. 2020) datasets with all per-
sonally identifiable information (PII) removed for DocEdit-
PDF. We downloaded 12K publicly available and freely
distributed design templates from the Adobe Express plat-

form for DocEdit-Design. Document Edit Creation: We
employed 15 freelance annotators from Upwork with verified
past experience in graphic design and Word/PDF document
editing. The annotators were provided with examples and on-
line tutorials for editing PDF and design templates and were
encouraged to provide creative edit requests unique to each
document. The edit requests are shuffled and each annotator
is asked to utilize Adobe Acrobat and Adobe Express tools
for physically editing PDF documents and design templates,
respectively. We trained both sets of annotators to make them
familiar with the edit creation process so as to guarantee the
quality of the dataset. In the training session, we provided
feedback for 100 practice edit requests and the corresponding
edited version of the document per annotator for consistency.
We performed this training session multiple times until the
quality of the data has no obvious/critical issues. Ground
Truth Collection: We developed a taxonomy of possible ac-
tions, components, and attributes. The annotators were asked
to select the most relevant edit action along with one or more
relevant options for components and attributes. Additionally,
we asked the annotators to provide ground truth labels for
the initial state of the component prior to editing, and the
final state of the component post-editing as text inputs filled
in by the annotator based on the user request description
and visual context from the document image. In order to
uniquely identify the location of the component to be edited,
we asked the annotators to mark a tightly enclosed bounding
box region surrounding the corresponding component in the
document image. We concatenated the labels and bounding
box coordinates to form the output command. Ground truth
labels were not sourced from the same annotator providing
the edit request description. Data Quality Estimation: We
report a high degree of agreement (Krippendorff’s alpha)
between annotators for the test portion (20% of the dataset)
in the Appendix. Edit Reference Types: We further cate-
gorize the editing requests as direct, object-referencing, or
text-referencing requests. Direct requests are self-contained
with specific cues about the component to be modified. We
see that a majority of samples in our dataset are indirect re-
quests that refer to a component or text in a document through
their relative position, making the task challenging due to the
necessity to resolve indirect object references. Data Splits:
We split both DocEdit-PDF and DocEdit-Design into train,
validation, and test in the ratio of 70:10:20.

Methodology
We present DocEditor (see Figure 2), a neural architecture
that takes in the user request text and document image as
input and predicts an executable edit command by generating
the textual functional arguments along with regressing the
bounding box coordinates of the edit RoI. Our model can
be seen as a sequence of five phases: (a) multimodal feature
extraction to obtain the user request embedding, visual ob-
ject embeddings, and document text token embeddings, (b)
obtaining text-enriched visual object representations, (c) gen-
erating an executable command by combining the linguistic
and visual input representations and passing the combina-
tion through a Transformer encoder-decoder, and (d) a layout
graph for encoding spatial relationships (e) RoI bounding

1916

O
bject

Em
bedding

Text
D

ecoder

M
ultim

odal Transform
er

O
bject

D
etection

O
C

R

Paragraph

List

Image

USER EDIT REQUEST

x
y
h
w

0

1
0
1
1

0
0
1

List

Paragraph

Paragraph

Paragraph

Paragraph

O
bject

Position
Text Token
Em

bedding
Text Token

Position

Drag the second paragraph and
the bulleted list below it in the
middle column to leftmost column

R
equest

Em
bedding

[REG]

Text-Enriched O
bject

Gated
R-GCN

Dense

ACTION

MOVE (<Paragraph, List> <Location> <2nd Column> <1st column>)

COMPONENT ATTRIBUTE INITIAL STATE FINAL STATE

z
z

z
b

z
z

z

b
b

b

b

b

Anchor Box Prediction

Bounding Box Regression

Command Text Generation

t
t

t

Layout Graph

Object Node

Text Node

Object-Text Token Edge
Text-Text Token Edge
Object-Object Box Edge

Figure 2: Overview of our proposed system, DocEditor: Object boxes and document text tokens obtained by the object detector
and OCR system from the document image are combined using multi-headed attention to form text-enriched visual object
embeddings. These are concatenated with the encoded text request and [REG] token to form the multimodal input to the
Transformer model. A text decoder generates command text in an auto-regressive way. The output hidden states of the object
boxes and document text token embeddings are used to create a Layout Graph with nodes joining Object boxes and document
text boxes learned through a Gated R-GCN. We perform node classification for anchor box prediction. The graph embedding
obtained through the readout function is combined with the [REG] token embedding to regress the RoI bounding box coordinates.

box regression of the command’s target region.

DocEditor Model

Multimodal Feature Extraction: Our model receives input
from three modalities: textual request description, the docu-
ment’s visual objects, and document text tokens. We extract
embeddings corresponding to each modality and project them
into a common d-dimensional latent space. (1) Textual Re-
quest Embedding: Given the user request, we encode the re-
quest words w1, w2, · · · , wi into a sequence of T WordPiece
tokens using SentencePiece (Kudo and Richardson 2018).
We use a vocabulary of 32,000 workpieces obtained from
a pre-trained Transformer model to convert the tokens into
the request text embedding, and then project them into a d
dimensional embedding, yielding zrtext ∈ Rd×T . (2) Visual
Object Embedding: Given a document image, we use pre-
trained object detectors to obtain a set of N visual objects in
the document. Inspired by Singh et al. (2019), we extract the
visual object features from the object detector’s output. These
features are linearly transformed into d-dimensional vector
space to get the object embedding as zobj ∈ Rd×N . Further,
we extract the normalized 2D-bounding box coordinate bobjn
of each object box. (3) Document Text Embedding: We
obtain a set of M document text tokens from the document
image using the OCR system. We extract the 300-dimensional
FastText vector (Bojanowski et al. 2017), 604-dimensional
Pyramidal Histogram of Characters (PHOC) (Almazán et al.
2014) vector, and normalized 2D bounding box coordinates

bdtextm . We concatenate all the features and linearly project
them into a d-dimensional space to get the final document
text embedding as zdtext ∈ Rd×M .
Text-enriched Visual Object Representation: Building a
common embedding space for user request text, image fea-
tures, and document text is challenging because there may
be hundreds of document text tokens in a text-rich docu-
ment. Fitting the entire set of document text tokens in the
input space may become infeasible due to the increasing com-
putational complexity of multi-headed attention that grows
quadratically to the input dimension space. Moreover, not all
document text contributes equally to grounding the edit text
in the image. There is a need to better exploit the associa-
tions between bounding boxes corresponding to document
objects (e.g., paragraphs) and the nearby document text at a
document level to handle such edit requests that indirectly
reference local document objects through their associated
document text tokens. Thus, we propose the Text-enriched
Document Object representation module (as shown in Fig
2) which contextually integrates the visual objects with their
overlapping document text by computing the position-guided
attention score vector an between the nth visual object and
m document text tokens for all n = 1, · · · , N as follows,

an = softmax((WQbobjn)T ∗ [WKbdtext1 , · · · ,WKbdtextM]
(1)

where WQ and WK are the query projection matrix and
key projection matrix, respectively. The document text at-
tended embedding representation for the nth visual object

1917

is calculated as the weighted sum of the M document
text embeddings given by following equation z

obj|dtext
n =

[zdtext1 , · · · , zdtextM] ∗ aTn . Each nth object is then repre-
sented by aggregating the object feature embedding zobjn ,
document text attended object representation z

obj|dtext
n and

the linear projection of the object bounding box coordinate
W objbobjn given as: x̂obj

n = zobjn + x
obj|dtext
n + W objbobjn .

The input sequence of object embeddings is represented by
ẑobj = [ẑobj1 , · · · , ẑobjN].
Multimodal encoder-decoder for command generation:
We first fuse the multimodal input context comprising of
user request embedding zrtext and Text-enriched visual ob-
ject representation ẑobj . We further pre-append a learnable
embedding (called [REG] token (Deng et al. 2021), and de-
noted by r) to the multimodal input for mapping the spatial
location of the edit intent. The combined multimodal embed-
ding input for our encoder-decoder model is formulated as
zinput = zr ⊕ ẑobj ⊕ r, where ⊕ represents concatenation.
The [REG] token is randomly initialized at the beginning of
the training stage and optimized with the whole model.

We then utilize the Text-to-Text (T5) Transformer (Raf-
fel et al. 2020) as our base encoder-decoder architecture
to take our input and generate a command sequence. We
retain the originally proposed model while modifying the in-
put and output layers to accommodate the additional [REG]
token. The multi-head attention mechanism in the Trans-
former model allows each pair of tokens from the joint
embedding to attend to each other across modalities. As
a result, the decoder’s hidden states as well as the out-
put state of the [REG] token can leverage a consolidated
multi-modal representation for localization-aware and layout-
oriented command generation and box coordinates regres-
sion tasks. The output hidden states from the Transformer
model can be represented as hout = Transformer(zinput)
such that houtput = [hrtext

1 , · · · , hrtext
T ;hobj

1 , · · · , hobj
N ;hr],

where hrtext, hobj , and hr refer to the output hidden states
corresponding to the request text, object, and [REG] embed-
dings, respectively. We perform greedy decoding, i.e. choose
the highest-probability logit at every time step, to generate
the output command text.
A Layout Graph to Encode Spatial Relationships: User
requests often indirectly reference the components relative
to other neighboring objects or text in the document. We
hypothesize that the model should reason about the local
layout within the region of interest for improving its pre-
dictive performance. Hence, we build a Document Layout
Graph GD = (V,E) to encode the relative spatial rela-
tions between visual object boxes and text positions. Here,
V = {V obj , V dtext}, where V obj , V dtext are the set of
nodes corresponding to N object nodes V obj

1 , · · · , V obj
N , and

M document text token nodes V dtext
1 , · · · , V dtext

M , respec-
tively. The node embeddings of object nodes are extracted
from the output hidden states corresponding to the object
boxes hobj

n ∀n ∈ {1, · · · , N}. In the case of document text
token nodes, we directly use the document text token embed-
ding zdtextm ∀m ∈ {1, · · · ,M} as the node embedding. The
Layout Graph contains three types of edges E: (1) Object-

Text Token Edges: directed edges for node affiliation if
the document text token box lies entirely within the object
box. (2) Text-Text Token Edges: Connecting all neighboring
document text token boxes may lead to dense and isolated
components, while joining adjacent tokens in the same line
may produce disconnected components. We instead build a
β-skeleton of all document text token boxes in the document
image with β = 1 (Kirkpatrick and Radke 1985) since such
edges provide a balance between connectivity within a local
cluster of document text tokens and ensure that the whole
graph is one connected component (Berg et al. 1997). The
graph is constructed on peripheral points of the document
text token boxes with at most one edge between each pair
of boxes. All connections in the β-skeleton graph are added
as undirected edges to the layout graph. (3) Object-Object
Box Edges: directed edges weighted by the type of spatial
position between two object boxes in the document. Inspired
by Yao et al. (2018), we define ten types of spatial relations –
inside, overlap, and 8-way orientations including up, down,
left, right, upper-left, upper-right, bottom-left, bottom-right.

We use the Gated Relational Graph Convolution Network
(GR-GCN), a gated variant of R-GCN to model our layout
graph. GR-GCN is able to learn highly relational data rela-
tionships in densely-connected graph networks. The layout
graph is passed through two layers of GR-GCN to obtain
enriched graph node embeddings G

′′

D.
Bounding Box Prediction: Our proposed model directly in-
fers the bounding box coordinates of the region of interest
over the document image. We aggregate the node embed-
dings corresponding to all object and document text token
nodes in G

′′

D using a summation-based graph readout func-
tion (Xu et al. 2018) which is mathematically denoted as
gout = ρ(

∑
vi∈G

′′
D
Wgvi), where Wg is a learnable matrix.

We concatenate the output state of [REG] token from the
Transformer decoder hr and the readout output gout, and
pass it through a regression block which is implemented as
an MLP with a ReLU activated fully-connected layer and
a prediction head with four outputs for each bounding box
coordinate b

′
as b

′
= ReLU(Dense(hr ⊕ gout).

Training DocEditor

Command Generation Loss: For generating the textual part
of the desired output command, we utilize the pre-trained
weights of T5 which were obtained by performing a denoising
pre-training task on 750 GB cleaned English text data from
the publicly-available Common Crawl web archive. We fine-
tune the backbone Transformer architecture using standard
maximum likelihood, i.e. using teacher forcing (Williams
and Zipser 1989) and a cross-entropy loss between predicted
token t

′

i and ground truth token ti as Lgen = −
∑

i ti log(t
′

i),
where ti = 1 for token predicted correctly.
Bounding Box Regression Loss: To address the problem of
scaling effects due to varying sizes of the predicted boxes,
we predict normalized bounding box coordinates between
0 and 1000, which are then scaled by the document im-
age dimensions to retrieve original dimensions. We utilize
a weighted sum of the scale-invariant generalized IoU loss
(GIoU) (Rezatofighi et al. 2019) and the smooth L1 loss

1918

System EM (%) Word Overlap F1 ROUGE-L Action (%) Component (%)

Baselines

Generator-Extractor 6.6 0.25 0.22 36.7 8.5
GPT2 11.6 0.76 0.76 79.7 27.2
BART 19.7 0.78 0.76 81.2 29.5
T5 20.4 0.79 0.76 81.4 29.8
BERT2GPT2 7.3 0.37 0.39 45.2 9.2
LayoutLMv3-GPT2 8.7 0.39 0.40 47.6 10.3
CLIPCap 8.5 0.25 0.27 44.5 9.34
DiTCap 23.6 0.81 0.80 82.5 25.5
Multimodal Transformer 31.6 0.82 0.83 83.1 32.4

Ours DocEditor 37.6 0.87 0.86 87.6 40.7

Ablation

w/o Text Embedding 6.7 0.15 0.12 6.75 6.5
w/o Visual Embedding 33.6 0.74 0.75 77.5 36.9
w/o Layout Graph 32.7 0.75 0.76 82.2 37.5
w/o Bounding Box Regression Loss 33.6 0.80 0.79 85.2 38.2
w/o Anchor Box Prediction Loss 35.8 0.84 0.83 84.4 39.5

(a) DocEdit-PDF

System EM (%) Word Overlap ROUGE-L Action (%) Component (%) Attribute (%)
Generator-Extractor 10.1 0.33 0.31 33.4 15.9 14.5
GPT2 16.6 0.78 0.76 76.4 24.5 18.2
BART 19.5 0.79 0.77 77.1 25.1 25.3
T5 20.0 0.80 0.78 77.5 25.8 25.7
BERT2GPT2 6.5 0.31 0.30 36.0 18.6 9.5
LayoutLMv3-GPT2 9.6 0.36 0.34 38.3 20.1 12.6
CLIPCap 9.3 0.24 0.25 19.78 13.6 14.2
DiTCap 18.9 0.79 0.77 77.8 25.4 25.6
Multimodal Transformer 32.8 0.83 0.81 79.5 48.6 35.2
DocEditor 38.2 0.86 0.86 84.5 52.2 43.5
w/o Text Embedding 6.1 0.13 0.11 6.4 6.9 6.5
w/o Visual Embedding 34.0 0.77 0.77 79.5 44.2 37.7
w/o Layout Graph 33.5 0.79 0.77 79.1 46.1 38.3
w/o Bounding Box Regression Loss 34.2 0.83 0.82 82.5 47.1 39.2
w/o Anchor Box Prediction Loss 35.0 0.82 0.78 83.3 49.8 41.7

(b) DocEdit-Design

Table 2: Results comparing the performance of DocEditor for command generation with baselines and ablations on DocEdit-PDF
and DocEdit-Design datasets. Bold represents the best-performing model. DocEditor outperforms all baseline methods.

for the standard regression problem. Let b = (x, y, w, h)
denote the prediction the normalized ground-truth box as
b
′
= (x

′
, y

′
, w

′
, h

′
). The training objective of our bounding

box regression is: Lbbox = Lsmooth−l1(b, b
′
)+λLgiou(b, b

′
),

where Lsmooth−l1 and Lgiou are the smooth L1 loss and
GIoU loss, respectively. λ is a hyperparameter. Anchor Box
Prediction Loss: Not all object or document text token boxes
are relevant to the edit intent. Hence, the model should have
the ability to select the ones that highly overlap with the
ground truth RoI. We treat each node in the layout graph as
an anchor and perform binary node classification to predict
if the object or document text token box lies entirely within
the ground truth region of interest (RoI). We optimize the
anchor prediction as an auxiliary task through the binary
cross-entropy loss as Lanchor = −

∑
Vi∈G

′′
D
yi log Vi where

yi = 1 if the object box overlaps with RoI, else 0.

Multitask Training: Command generation, bounding box
regression and anchor box prediction tasks are all correlated
as they share a common linguistic, spatial and visual latent
space, and can reinforce each other. Hence, we use multi-task

training to optimize both tasks simultaneously. The final opti-
mization uses a weighted sum of Lgen, Lreg, Lanchor such
that total loss L = λ1Lgen+λ2Lreg+(1−λ1−λ2)Lanchor ,
where the weighting factors λ1, λ2 are hyperparameters.

Experiments
Baselines: We compare DocEditor against several uni-
modal and multimodal baselines for the command generation
task:Seq2seq Text-only: We use GPT2 (Radford et al. 2019),
BART(Lewis et al. 2020), and T5 (Raffel et al. 2020) that
input only the user text description. Generator-Extractor
uses BERT+DETR with an autoregressive decoding head
for command generation. Tranformer Encoder-Decoder
(Rothe, Narayan, and Severyn 2020): Combines GPT2 de-
coder with LayoutLMv3 encoder (LayoutLMv3-GPT2) or
BERT encoder (BERT2GPT2). Prefix Encoding (Mokady
et al. 2021): We utilize intermediate learned representations
from a pre-trained encoder (CLIP (Radford et al. 2021) and
DiT (Li et al. 2022)) as a prefix to the GPT2 decoder net-
work and fine-tune on downstream tasks. Multimodal Trans-

1919

System DocEdit-PDF DocEdit-Design
Top-1 Acc (%) Top-1 Acc (%)

ReSC-Large 17.04 15.89
TransVG 25.34 24.89
DocEditor 36.50 34.34
w/o Text Embedding 3.33 3.25
w/o Visual Embedding 22.45 20.47
w/o Layout Graph 14.48 15.56

Table 3: Results comparing the performance of DocEditor
for RoI bounding box regression with baselines and ablations
on DocEdit-PDF and DocEdit-Design datasets.

Dataset GPT2 BART T5
CAISE (Kim et al. 2022) 60.1 59.5 42.8
ILLC-IER (Lin et al. 2020b) 57.7 55.8 46.9
DocEdit-PDF (Ours) 11.6 19.7 20.4
DocEdit-Design (Ours) 16.6 19.5 20.0

Table 4: Results comparing the difficulty of contemporary
language-driven image-editing datasets.

former (M4C) Hu et al. (2020): Combines multimodal input
from user description, visual objects, and document text with
a text generation decoder instead of the copy pointer mecha-
nism. For the RoI bounding box prediction task, we compare
DocEditor against visual grounding methods such as ReSC-
Large (Yang et al. 2020) and TransVG (Deng et al. 2022)
for direct coordinates regression. Evaluation Metrics: We
report exact match accuracy (EM %), Word overlap F1and
ROUGE-L (Lin 2004). In order to evaluate at a more granular
level, we compute the exact match accuracy for actions, com-
ponents, and attributes. We evaluate bounding box prediction
in terms of top-1 accuracy (%) (Jaccard overlap ≥ 0.5).

Results
Performance Comparison of command generation: Table
2 compares the performance of DocEditor model against
other contemporary baselines on the DocEdit-PDF and
DocEdit-Design datasets. Our proposed model achieves sig-
nificantly better performance across both PDF and design
template documents when compared to the text-only and
multi-modal baselines used in prior command generation
work. We attribute this to DocEditor’s ability to localize
structured components through Text-enriched object box em-
beddings and contextualize relevant visual objects and doc-
ument text tokens through multi-head attention in contrast
to text-only approaches that lose these visual cues and prior
multi-modal approaches that do not leverage the document
structure. Moreover, DocEditor exploits the anchor box pre-
diction loss to determine the mutual importance of each ob-
ject and document text token box which helps it improve
over the multimodal transformer baseline. However, it can
also be observed that there is ample room for improvement
in both types of document settings. We attribute this to the
inherent difficulty of the task and motivate further research
by discussing current shortcomings through error analysis.
Performance Comparison of RoI Prediction: We compare

the RoI bounding box prediction performance of baselines
with the proposed model in Table 3. We re-purpose scene-text
visual grounding baselines for our task due to similarity in the
input space. Transformer based TransVG (Deng et al. 2021)
model outperforms other competitive baselines as it contex-
tual learns the visual and linguistic information through a
common embedding space. Our method further improves this
architecture by enhancing the output of [REG] token embed-
ding by output from the layout graph. Ablation Analysis:
Table 2 and 3 analyze the ablations for each component of
the DocEditor. The textual modality of the user request is
most critical–removing it yields the random baseline. Re-
moving any other model component does not degrade the
performance below this benchmark, which aligns with the
fact that the edit command generation task cannot be solved
without the edit request descriptions. Removing the Layout
Graph severely degrades bounding box regression perfor-
mance as well as text match accuracy because the model
loses the ability to spatially localize the relevant objects and
document text tokens. Removing the text-enriched object box
embedding significantly affects the consistency of text being
generated and the regression box overlap as the model can no
longer utilize the document text to match the referred compo-
nent in the descriptions. Comparison with contemporary
tasks: We compare the difficulty of our proposed language-
guided document editing task with existing image editing
tasks through their performance on naive text generation
models. We hypothesize that if the text-only modality can
provide enough information for solving the task, it will make
the image modality redundant and trivialize the overall task to
seq2seq generation. Table 4 summarizes the performance of
GPT2, BART, and T5 across language-guided image editing
datasets - CAISE (Kim et al. 2022) and ILLC-IER (Lin et al.
2020b). We observe that text-only models achieve a high ex-
act match accuracy (6̃0%). We conclude that samples in these
datasets contain many generic edit commands that are neither
user-specific nor require a visual or spatial understanding of
localized components. Our dataset struggles to achieve one-
third of performance (≤ 20%) compared to other datasets,
necessitating research in non-trivial multimodal methods for
closing the performance gap with expert humans. We present
and discuss detailed qualitative examples in the Appendix.
We observe that the proposed model is unable to handle com-
monsense reasoning on world knowledge and makes errors
when it is required to parse several attribute modifications
simultaneously for the same component.

Conclusion and Future Work
We present a dataset for language-guided document edit-
ing with instances of user edit requests on PDFs and design
templates and their ground truth executable command for
real-world document editing automation. We also present
DocEditor, a Transformer-based localization-aware multi-
modal model that outperforms the competitive baseline for
command generation tasks and edit RoI prediction tasks. We
provide qualitative analysis with examples to gain insights
on the limitations of the proposed model to motivate future
work along several interesting directions of conversational
document editing and intelligent document assistance.

1920

References
Aggarwal, M.; Gupta, H.; Sarkar, M.; and Krishnamurthy,
B. 2020. Form2Seq : A Framework for Higher-Order Form
Structure Extraction. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), 3830–3840. Online: Association for Computa-
tional Linguistics.
Almazán, J.; Gordo, A.; Fornés, A.; and Valveny, E. 2014.
Word spotting and recognition with embedded attributes.
IEEE transactions on pattern analysis and machine intel-
ligence, 36(12): 2552–2566.
Berg, M. d.; Kreveld, M. v.; Overmars, M.; and Schwarzkopf,
O. 1997. Computational geometry. In Computational geome-
try, 1–17. Springer.
Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2017.
Enriching word vectors with subword information. Trans-
actions of the association for computational linguistics, 5:
135–146.
Chen, J.; Shen, Y.; Gao, J.; Liu, J.; and Liu, X. 2018.
Language-based image editing with recurrent attentive mod-
els. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 8721–8729.
Deng, J.; Yang, Z.; Chen, T.; gang Zhou, W.; and Li, H. 2021.
TransVG: End-to-End Visual Grounding with Transformers.
2021 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), 1749–1759.
Deng, J.; Yang, Z.; Liu, D.; Chen, T.; gang Zhou, W.; Zhang,
Y.; Li, H.; and Ouyang, W. 2022. TransVG++: End-to-End
Visual Grounding with Language Conditioned Vision Trans-
former. ArXiv, abs/2206.06619.
El-Nouby, A.; Sharma, S.; Schulz, H.; Hjelm, R. D.; Asri,
L. E.; Kahou, S. E.; Bengio, Y.; and Taylor, G. W. 2018. Keep
Drawing It: Iterative language-based image generation and
editing. ArXiv, abs/1811.09845.
Hu, R.; Singh, A.; Darrell, T.; and Rohrbach, M. 2020. Itera-
tive answer prediction with pointer-augmented multimodal
transformers for textvqa. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
9992–10002.
Jiang, W.; Xu, N.; Wang, J.-Y.; Gao, C.; Shi, J.; Lin, Z. L.;
and Liu, S. 2021a. Language-Guided Global Image Edit-
ing via Cross-Modal Cyclic Mechanism. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), 2095–
2104.
Jiang, Y.; Huang, Z.; Pan, X.; Loy, C. C.; and Liu, Z. 2021b.
Talk-to-Edit: Fine-Grained Facial Editing via Dialog. 2021
IEEE/CVF International Conference on Computer Vision
(ICCV), 13779–13788.
Kim, H.; Kim, D. S.; Yoon, S.; Dernoncourt, F.; Bui, T.; and
Bansal, M. 2022. CAISE: Conversational Agent for Image
Search and Editing. In AAAI.
Kirkpatrick, D. G.; and Radke, J. D. 1985. A framework
for computational morphology. In Machine Intelligence and
Pattern Recognition, volume 2, 217–248. Elsevier.
Kudo, T.; and Richardson, J. 2018. Sentencepiece: A simple
and language independent subword tokenizer and detokenizer
for neural text processing. arXiv preprint arXiv:1808.06226.

Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed,
A.; Levy, O.; Stoyanov, V.; and Zettlemoyer, L. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension. In
ACL.
Li, B.; Qi, X.; Lukasiewicz, T.; and Torr, P. H. S. 2020. Mani-
GAN: Text-Guided Image Manipulation. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 7877–7886.
Li, J.; Xu, Y.; Lv, T.; Cui, L.; Zhang, C.; and Wei, F. 2022. Dit:
Self-supervised pre-training for document image transformer.
ACM Multimedia 2022.
Lin, C.-Y. 2004. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, 74–81.
Lin, T.-H.; Bui, T.; Kim, D. S.; and Oh, J. 2020a. A Multi-
modal Dialogue System for Conversational Image Editing.
ArXiv, abs/2002.06484.
Lin, T.-H.; Rudnicky, A.; Bui, T.; Kim, D. S.; and Oh, J.
2020b. Adjusting image attributes of localized regions with
low-level dialogue. arXiv preprint arXiv:2002.04678.
Lin, T.-H.; Rudnicky, A. I.; Bui, T.; Kim, D. S.; and Oh, J.
2020c. Adjusting Image Attributes of Localized Regions
with Low-level Dialogue. In LREC.
Manuvinakurike, R.; Brixey, J.; Bui, T.; Chang, W.; Artstein,
R.; and Georgila, K. 2018a. Dialedit: Annotations for spoken
conversational image editing. In Proceedings 14th Joint
ACL-ISO Workshop on Interoperable Semantic Annotation,
1–9.
Manuvinakurike, R. R.; Brixey, J.; Bui, T.; Chang, W.; Kim,
D. S.; Artstein, R.; and Georgila, K. 2018b. Edit me: A Cor-
pus and a Framework for Understanding Natural Language
Image Editing. In LREC.
Manuvinakurike, R. R.; Bui, T.; Chang, W.; and Georgila,
K. 2018c. Conversational Image Editing: Incremental In-
tent Identification in a New Dialogue Task. In SIGDIAL
Conference.
Mokady, R.; Hertz, A.; Bermano, A. H.; and . 2021. ClipCap:
CLIP Prefix for Image Captioning. ArXiv, abs/2111.09734.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from nat-
ural language supervision. In International Conference on
Machine Learning, 8748–8763. PMLR.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, I.; et al. 2019. Language models are unsupervised
multitask learners. OpenAI blog, 1(8): 9.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; Liu, P. J.; et al. 2020. Explor-
ing the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140): 1–67.
Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.;
and Savarese, S. 2019. Generalized intersection over union: A
metric and a loss for bounding box regression. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, 658–666.

1921

Rothe, S.; Narayan, S.; and Severyn, A. 2020. Leverag-
ing Pre-trained Checkpoints for Sequence Generation Tasks.
Transactions of the Association for Computational Linguis-
tics, 8: 264–280.
Shi, J.; Xu, N.; Bui, T.; Dernoncourt, F.; Wen, Z.; and Xu,
C. 2020. A Benchmark and Baseline for Language-Driven
Image Editing. In Proceedings of the Asian Conference on
Computer Vision.
Shi, J.; Xu, N.; Xu, Y.; Bui, T.; Dernoncourt, F.; and Xu,
C. 2021. Learning by Planning: Language-Guided Global
Image Editing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 13590–13599.
Shi, J.; Xu, N.; Zheng, H.; Smith, A.; Luo, J.; and Xu, C.
2022. SpaceEdit: Learning a Unified Editing Space for
Open-Domain Image Color Editing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 19730–19739.
Singh, A.; Natarajan, V.; Shah, M.; Jiang, Y.; Chen, X.; Batra,
D.; Parikh, D.; and Rohrbach, M. 2019. Towards vqa models
that can read. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 8317–8326.
Wang, J.; Lu, G.; Xu, H.; Li, Z.; Xu, C.; and Fu, Y. 2022.
ManiTrans: Entity-Level Text-Guided Image Manipulation
via Token-wise Semantic Alignment and Generation. ArXiv,
abs/2204.04428.
Williams, R. J.; and Zipser, D. 1989. A learning algorithm for
continually running fully recurrent neural networks. Neural
computation, 1(2): 270–280.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2018. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826.
Yang, Z.; Chen, T.; Wang, L.; and Luo, J. 2020. Improv-
ing One-stage Visual Grounding by Recursive Sub-query
Construction. ArXiv, abs/2008.01059.
Yao, T.; Pan, Y.; Li, Y.; and Mei, T. 2018. Exploring visual
relationship for image captioning. In Proceedings of the
European conference on computer vision (ECCV), 684–699.

1922

