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Abstract

Blur was naturally analyzed in the frequency domain, by es-
timating the latent sharp image and the blur kernel given a
blurry image. Recent progress on image deblurring always
designs end-to-end architectures and aims at learning the dif-
ference between blurry and sharp image pairs from pixel-
level, which inevitably overlooks the importance of blur ker-
nels. This paper reveals an intriguing phenomenon that sim-
ply applying ReLU operation on the frequency domain of
a blur image followed by inverse Fourier transform, i.e.,
frequency selection, provides faithful information about the
blur pattern (e.g., the blur direction and blur level, implic-
itly shows the kernel pattern). Based on this observation, we
attempt to leverage kernel-level information for image de-
blurring networks by inserting Fourier transform, ReLU op-
eration, and inverse Fourier transform to the standard Res-
Block. 1 × 1 convolution is further added to let the network
modulate flexible thresholds for frequency selection. We term
our newly built block as Res FFT-ReLU Block, which takes
advantages of both kernel-level and pixel-level features via
learning frequency-spatial dual-domain representations. Ex-
tensive experiments are conducted to acquire a thorough anal-
ysis on the insights of the method. Moreover, after plugging
the proposed block into NAFNet, we can achieve 33.85 dB
in PSNR on GoPro dataset. Our method noticeably improves
backbone architectures without introducing many parame-
ters, while maintaining low computational complexity. Code
is available at https://github.com/DeepMed-Lab/DeepRFT-
AAAI2023.

Introduction
Image deblurring aims at removing blurring artifacts to re-
cover sharp images (Cho et al. 2021). The blurring of an im-
age can be caused by many factors, e.g., camera shake, ob-
jects movement, out-of-focus optics, etc. The blurry image
leads to visually low quality and hampers subsequent high-
level vision tasks, ranging from security, medical imaging to
object recognition (Chen et al. 2020).

Image deblurring by frequency domain operations was
very popular decades ago, based on a simple assumption that
image blur may be due to the Point Spread Function (PSF)
of the sensor, sensor motion, and other reasons (Banham and
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Figure 1: PNSR vs. computational cost on the GoPro dataset
(Nah, Kim, and Lee 2017). Our method performs much bet-
ter than baseline methods: MIMO-UNet (Cho et al. 2021)
and NAFNet (Chen et al. 2022), and other state-of-the-arts.

Katsaggelos 1997). Thus, the motion blurred image is ex-
pressed by convolving a latent sharp image with the PSF,
which can be most easily instantiated in the frequency do-
main (Chakrabarti, Zickler, and Freeman 2010; Xu, Zheng,
and Jia 2013; Hu et al. 2014; Pan et al. 2016). Here we take
a simple example and assume that the blur kernel does not
vary spatially: B(ω) = F (ω)G(ω) + N(ω), where F (ω),
G(ω), B(ω) and N(ω) are Fourier transforms of the sharp
image, the blur kernel (PSF), the blurry image and the sen-
sor noise, respectively, and ω ∈ [−π, π]2. This gives us an
important cue that frequency domain offers us abundant in-
formation on image deblurring tasks which should not be
overlooked.

Deep networks are popular for their end-to-end learning
ability. The field of image deblurring has made significant
advances riding on the wave of deep networks. DeepDeblur
(Nah, Kim, and Lee 2017), pioneers the technique of end-
to-end trainable methods, directly mapping a blurry image
to its paired sharp image by a Convolutional Neural Net-
work (CNN). It designs a multi-scale architecture, and uses
a modified residual network structure (He et al. 2016) called
ResBlock (see Fig. 4 (a)) to focus on learning the difference
between blurry and sharp image pairs. Thereafter, end-to-
end learning strategy with ResBlock is proven to be effective
in image deblurring, and becomes a mainstream approach in
recent years (Tao et al. 2018; Zhang et al. 2019; Gao et al.
2019; Park et al. 2020; Yuan, Su, and Ma 2020; Zamir et al.
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2021; Chen et al. 2021; Zou et al. 2021; Purohit et al. 2021;
Cho et al. 2021; Chen et al. 2022). But, these methods over-
look the importance of blur kernels.

In this paper, we reveal an intriguing phenomenon that
taking the inverse Fourier transform on frequency selection
(e.g., ReLU on the frequency domain) of a blurry image acts
as learning blur pattern from the blurry image, indicating
the blur direction and blur level, implicitly showing the ker-
nel pattern. The faithful blur kernel information provided
by such operations motivates us to insert Fourier transform,
ReLU, and inverse Fourier transform to the standard Res-
Block to take advantages of both kernel-level and pixel-level
features via fusing frequency-spatial dual-domain represen-
tations. Furthermore, we investigate ReLU on the frequency
domain from a new perspective, and experiments show that
setting different thresholds instead of 0 + j0 (0 + j0 is for
ReLU) for frequency selection give different deblurring re-
sults. With this new viewpoint, we find that adding convo-
lution after Fourier transform helps the network modulate
flexible thresholds for selecting frequencies and can further
promote image deblurring performance. To sum up, we pro-
pose a new, efficient and plug-and-play ResBlock, termed as
Residual (Res) Fast Fourier Transform (FFT)-ReLU Block,
to replace standard ResBlock. Our Res FFT-ReLU Block in-
serts a FFT-ReLU stream, consisting of 4 simple operations:
2D real FFT, 1×1 convolutions, ReLU and inverse 2D real
FFT, into ResBlock.

The effectiveness of the Res FFT-ReLU Block is com-
pared and verified by plugging in different architectures on
three datasets: GoPro (Nah, Kim, and Lee 2017), HIDE
(Shen et al. 2019) and RealBlur (Rim et al. 2020) datasets.
Substantial ablation studies are conducted to explore in-
sights of the FFT-ReLU stream. It is worth mentioning that
after plugging the proposed stream to MIMO-UNet+ (Cho
et al. 2021) and NAFNet (Chen et al. 2022), the new mod-
els, which are termed as FMIMO-UNet+ and FNAFNet, can
achieve 33.52 dB and 33.85 dB respectively in terms of
PSNR on GoPro dataset. Our method noticeably improves
backbone architectures without introducing too many pa-
rameters, while maintaining low computational complexity.
The PSNR vs. FLOPs (G) compared with state-of-the-art
methods are shown in Fig. 1.

Related Works
Deep Image Deblurring Deep learning methods have
achieved significant success in image deblurring (Sun et al.
2015; Nah, Kim, and Lee 2017) as well as other low-level
vision tasks such as image denoise (Cheng et al. 2021; Za-
mir et al. 2020), image deraining (Jiang et al. 2020) and im-
age super-resolution (Mei, Fan, and Zhou 2021; Dong et al.
2016; Zhang et al. 2018b; Guo et al. 2020). Sun et al. (Sun
et al. 2015) propose to estimate the spatially-varying ker-
nels of motion blur by a CNN. But, since the characteris-
tics of blur are complex, the blur kernel estimation method
is not practical in real scenarios. Later, DeepDeblur (Nah,
Kim, and Lee 2017) directly maps a blurry image to its sharp
counterpart. Scale-recurrent network (Tao et al. 2018) pro-
poses an encoder-decoder structure to yield training feasi-
bility. Adversarial training(Kupyn et al. 2018, 2019; Zhang

et al. 2020) and Recurrent Neural Networks(Zhang et al.
2018a; Park et al. 2020) also have been extensively studied.
Most of these networks perform CNNs on the spatial do-
main to recover the sharp image. MAXIM (Tu et al. 2022)
proposes MLP-based building blocks, which requires a big
batch size for training. NAFNet (Chen et al. 2022) designs
computationally efficient networks from the baseline, which
even achieves 33.69 dB PSNR on GoPro. Instead of design-
ing a brand-new end-to-end image deblurring architecture,
we reveal an intriguing phenomenon on frequency selection,
and shed new light on improving the deblurring performance
by incorporating faithful information about the blur pattern.

Transformer/non-local has strong global context model-
ing ability and has shown its great promise in various com-
puter vision tasks. Some transformer-based image restora-
tion methods have been proposed, such as SwinIR (Liang
et al. 2021), Restormer (Zamir et al. 2022) and Uformer
(Wang et al. 2022). But the considerable computational
complexity usually hampers their usage in efficient image
restoration. We test the model of SwinIR (Liang et al. 2021)
and Restormer (32.92 dB on GoPro) (Zamir et al. 2022)
on GoPro dataset, which take 1.99s and 1.14s per image,
respectively, even much slower than MPRNet, while our
FMIMO-UNet (33.08 dB) takes 0.339s per image.

End-to-end Deblur Model with ResBlock DeepDeblur
(Nah, Kim, and Lee 2017) designs a residual block (Res-
Block) based on Conv-ReLU-Conv structure. Thereafter,
ResBlock has become one fundamental block in image de-
blurring (Tao et al. 2018; Zhang et al. 2019; Park et al. 2020;
Purohit and Rajagopalan 2020; Cho et al. 2021). Various
efforts have been devoted to modifying the ResBlock, e.g.,
the content-aware processing module proposed by SAPHN
(Suin, Purohit, and Rajagopalan 2020), the channel attention
block proposed by MPRNet (Zamir et al. 2021), the HIN
block proposed by HINet (Chen et al. 2021), and the dilated
conv block proposed by SDWNet (Zou et al. 2021).

Applications of Fourier Transform In recent years, some
methods extract information from the frequency domain to
fulfill different tasks (Chi et al. 2019; Rippel, Snoek, and
Adams 2015; Zhong et al. 2018; Yang and Soatto 2020; Rao
et al. 2021; Suvorov et al. 2022). FDA (Yang and Soatto
2020) swaps the low-frequency spectrum between images to
mitigate the influence caused by the images’ style change for
image segmentation. GFNet (Rao et al. 2021) learns long-
term spatial dependencies in the frequency domain for im-
age classification. LaMa (Suvorov et al. 2022) applies the
structure of fast Fourier convolution (Chi, Jiang, and Mu
2020) to image inpainting. In image deblurring, SDWNet
(Zou et al. 2021) introduces wavelet transform into deep net-
works. In this paper, we reveal an intriguing phenomenon of
frequency selection for image deblurring.

Method
Empirical Findings of Frequency Selection via
ReLU Operation
We will describe the main observation insights of this pa-
per in this section. The blurry image can be modeled as
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Figure 2: Given a top-hat function f on the left, its
F−1(|F(f)| is plotted on the right, with obvious peaks,
where F(·) and F−1(·) mean discrete Fourier and inverse
Fourier transform.

convolving the latent sharp image with the blur kernel. For
simplicity, we elaborate the deviation in 1D scenario. The

“unknown” sharp image is defined as f(t) =

{
1 |t| < τ
0 |t| > τ

The blur kernel of a simple motion blur can be denoted as
g(t) = δ(t)+δ(t+ϵ), where δ(·) is the Direct delta function,
and ϵ is a very small value.
Remark 1: Based on the above assumption, let’s define a
blurry image b = g ⊗ f , where ⊗ means convolution, and
we drop t for simplicity. Taking the inverse Fourier trans-
form (i.e., F−1(·)) after ReLU (i.e., σ(·)) on the blurry im-
age in the frequency domain (F(·) means Fourier transform)
is written as b̂ = F−1(σ(F(b))), which can separate blur
pattern component from other components. ReLU is applied
to the real and imaginary parts respectively.

More details to support Remark 1 are given in the supple-
mentary material. One can easily decompose b̂ and obtain a
separate component from b̂ as (δ(t) + 1/2(δ(t− ϵ) + δ(t+
ϵ)))⊗F−1(|F(f(t))|).

We observe that an absolute operation on Fourier trans-
form of a top-hat function will produce peaks after inverse
Fourier transform, as examples shown in Fig. 2. We plot the
discrete Fourier transform. Based on the phenomenon re-
vealed in Fig. 2, F−1(σ(F(g ⊗ f))) will separate a compo-
nent containing the convolution of g and some peak values,
when f is a top-hat function.

Without loss of generality, we can extend Remark 1 to
more complicated scenarios. Fig. 3 shows examples of fea-
ture selection derived from a clean and blurry images caused
by blur kernels with different blur direction, blur levels and
mixtures of blur. As may be observed, taking inverse Fourier
transform on frequency selection via ReLU acts as a sort of
learning blur pattern directly from the blurry image.

Simple Fourier Transform with ReLU Stream
Basic Building Block for Image Deblurring The resid-
ual building block in image deblurring tasks is called Res-
Block. Specifically, standard ResBlock learns pixel-level
features, consisting of two 3 × 3 convolutional layers and
one ReLU layer in between, as shown in Fig. 4 (a). Using
inverse Fourier transform after selecting frequency from a
blurry image F−1(σ(F(b))) generates blur patterns, implic-
itly showing the kernel pattern (see Eq. 3 in supplementary

material and Fig. 3, F−1(σ(F(b))) can be considered as a
linear combination of a blur pattern image F−1(|F(b)|) and
b). If such operations can be inserted into an end-to-end im-
age deblurring network, the network will be able to learn
both kernel-level and pixel-level information. Many meth-
ods can be applied to fuse kernel-level blur pattern features
generated by F−1(σ(F(b))) and the pixel-level features. In-
stead of designing a complicated fusion block, we simply
replace the identity mapping by F−1(σ(F(Z))) for the sake
of light computation, i.e., replace the identity mapping in
Fig. 4(a) by the left most stream, termed as simple-FFT-
ReLU stream in Fig. 4(b). The position of simple-FFT-ReLU
stream w.r.t. the standard ResBlock (see Fig. 5(a)) can be
changed, and our experiments show that fusing kernel-level
and pixel-level features either in parallel or sequentially can
boost the results (see Table 1).

Analysis of ReLU on Frequency Domain from A New
Perspective We analyze ReLU in frequency domain from
another perspective. The phase and amplitude of a com-
plex number z = mejβ are ejβ and m ≥ 0 respectively.
A Fourier transformed feature gives the phase and ampli-
tude components. Applying ReLU (denoted as σ(·)) on the
frequency domain of a feature is defined as σ(mejβ) =
mσ(ejβ). This is considered as applying ReLU on the phase
of the feature. As suggested by Pan (Pan et al. 2019), the
phase of a blurry image plays an important role for de-
blurring, providing faithful information about the motion
pattern. Applying ReLU indicates setting T = 0 + j0 as
the selective threshold. What will happen if we change the
threshold for frequency selection? As shown in Table 2 in
the experiment, setting different thresholds on ReLU, i.e.,
mσ(ejβ− T

m )+T , gives different results, e.g., T = 100(1+
j) leads to a better result compared with original ReLU. A
proper threshold for selecting frequency is important for de-
blurring. But T has to be set manually. To let the network
modulate flexible thresholds for selecting frequencies, con-
volution can be further added after Fourier transform. For
the sake of simplicity, let a ·kejβ+b denote the feature after
1×1 conv in frequency, where a and b are learnable complex
values. mσ(ejβ− T

m )+T is then replaced by mσ(a·ejβ+ b
m )

(ReLU after convolution).

Res FFT-ReLU Block
From the above analysis, we propose a Residual Fast Fourier
Transform with ReLU Block (Res FFT-ReLU Block) to re-
place the widely-used ResBlock. As shown in Fig. 4(c), dif-
ferent from Fig. 4(b), we keep the identity mapping which
assists network training.

As shown in Fig. 4(c), besides a normal spatial residual
stream, we simply add another stream based on a channel-
wise FFT (Brigham and Morrow 1967). DFT is widely
used in modern signal processing algorithms, whose 1D
version can be derived by X[k] =

∑N−1
n=0 x[n]e−j 2π

N kn,
where x[n] is a sequence of N complex numbers, X[k] in-
dicates the spectrum at the frequency ωk = 2πk/N , and
j represent the imaginary unit. It is clear that the spec-
trum at any frequency has global information. Noted that
the DFT of a real signal x[n] is conjugate symmetric, i.e.
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X[N − k] =
∑N−1

n=0 x[n]e−j 2π
N (N−k)n = X∗[k]. The same

applies to 2D DFT, which performs sequential row and col-
umn 1D DFT on a 2D signal whose size is M × N , i.e.,
X[M − u,N − v] = X∗[u, v]. Since the results of a real
array’s DFT has symmetric properties, the right half of the
results can be derived from the left half. The FFT algorithms
reduce the complexity and calculates the DFT in a more ef-
ficient way. Let Z ∈ RH×W×C be the input feature volume,
where H , W , and C indicate the height, width and chan-
nel of the feature volume. The left stream in Res FFT-ReLU
Block, called FFT-ReLU stream (see Fig. 4(c)) is processed
as follows:

(1) computes 2D real FFT of Z and obtain Z̃ = F(Z) ∈
CH×W/2×C , where C means complex domain.

(2) uses two stacks of 1 × 1 convolution layers (convo-
lution operator ⊗) with a ReLU layer in between:
h(Z̃;Θ(1),Θ(2)) = ReLU(Z̃ ⊗ Θ(1)) ⊗ Θ(2) ∈
CH×W/2×C , where Θ(1),Θ(1) ∈ CC×C are parame-
ters in complex values, and h(·;Θ(1),Θ(2)) is the net-
work block parameterized by Θ(1) and Θ(2). We apply
ReLU to the real and imaginary parts respectively.

(3) applies inverse 2D real FFT to transform
h(Z̃;Θ(1),Θ(2)) back to spatial domain:
Yfft = F−1

(
h(Z̃;Θ(1),Θ(2))

)
∈ RH×W×C .

Then the final output of Res FFT-ReLU Block is calculated
via Y = Yfft +Yres +Z, where Yres uses the same compu-
tation as that in the original ResBlock. The code of realizing
Θ(1) on Z is:

w_real = nn.Parameter(torch.Tensor(C, C))
w_imag = nn.Parameter(torch.Tensor(C, C))
w_c = torch.complex(w_real,w_imag)
Z_o = Z @ w_c # @ is matrix multiplication

Global Context Learning Ability
Convolution on Frequency Does Not Bring the Global
Context Learning Ability Mathematically, given x[n],
which is a sequence of N numbers. For S × 1 convolu-
tion on the spatial domain, weights are denoted as w[a],
where a ∈ Nn(S), and Nn(S) indicates a S × 1 neighbor-
hood of x[n]. We have y =

∑
a x[n − a] · w[a]. If we con-

duct S × 1 convolution on the frequency domain, we have
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y = F−1(
∑

a X[k − a]w[a]) =
∑

a w[a] · x[n] · ej2πan/N ,
where X[k] is from Res FFT-ReLU Block section. This in-
dicates that linear convolution operation on frequency do-
main is only used to extract features, which cannot introduce
global context learning ability to the network.

ReLU on Frequency Brings the Global Context Learn-
ing Ability for the Network ReLU is a non-linear op-
eration. The output feature on the rth spatial location
after converting to the spatial domain is calculated by
x[r] = 1

N

∑N−1
k=0

(
σ(
∑N−1

n=0 x[n]e−j2πkn/N )ej2πrk/N
)

.
Since ReLU is nonlinear, unlike convolution, it is not possi-
ble to simplify this equation by eliminating any x[n]. Thus,
introducing ReLU in the frequency domain brings the global
context learning ability for the network. We will show in Ta-
ble 1 that ReLU in frequency domain not always helps im-
prove performance, whose location matters.

Experiments
Experimental Setup
Dataset Three datasets are mainly evaluated: GoPro (Nah,
Kim, and Lee 2017), HIDE (Shen et al. 2019) and RealBlur
(Rim et al. 2020) datasets. Since existing methods adopt
different experimental settings, we summarize them and re-
port two groups of results: (I) train on 2,103 pairs of blurry
and sharp images in GoPro dataset, and test on 1,111 im-
age pairs in GoPro (follow (Cho et al. 2021)), 2,025 image
pairs in HIDE (follow (Zamir et al. 2021)), 980 image pairs
in RealBlur-R test set, and 980 image pairs in RealBlur-J
test set (follow (Zamir et al. 2021)), respectively; (II) train
on 3,758 image pairs in RealBlur-R, and test on 980 image
pairs in RealBlur-R (follow (Zamir et al. 2021)), and train on
3,758 image pairs in RealBlur-J, and test on 980 image pairs
in RealBlur-J (follow (Zamir et al. 2021)). Besides, we also
show the effectiveness of Res FFT-ReLU Block on REDS
dataset (Nah et al. 2021), with 24,000 and 3,000 images for
training and testing, respectively (follow (Tu et al. 2022)).

Loss Function We unify the loss function for all exper-
iments. Ŝ, S and ε denote the predicted sharp image, the
groundtruth sharp image, and a constant value 10−3, respec-
tively. Two kinds of loss functions are adopted: (1) Charbon-

nier loss (Zamir et al. 2021): Lc =

√
||Ŝ− S||2 + ε2, and

(2) Frequency Reconstruction (FR) loss (Cho et al. 2021; Tu
et al. 2022): Lfr = ||F(Ŝ)−F(S)||1. Finally, the loss func-
tion is L = Lc + α1Lfr, where α1 is a tradeoff-parameter
and is empirically set to 0.01.

Implementation Details We adopt the training strategy
used in MPRNet (Zamir et al. 2021) unless otherwise speci-
fied. I.e., the network training hyperparameters (and the de-
fault values we use) are patch size (256× 256), batch size
(16), training epoch (3,000), optimizer (Adam (Kingma and
Ba 2015)), initial learning rate (2×10−4). The learning rate
is steadily decreased to 1×10−6 using the cosine anneal-
ing strategy (Loshchilov and Hutter 2017). Following (Za-
mir et al. 2021), horizontal and vertical flips are randomly
applied on patches for data augmentation. For testing, we

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ PSNR Params (M)

✓ × × × × × - - 28.06 0.30
✓ ✓ × × × × - - 29.17 0.30
✓ × ✓ × × × - - 29.77 0.30
✓ × × ✓ × × - - 29.73 0.30
✓ × × × ✓ × - - 29.08 0.30
× × × × ✓ × - - 29.51 0.30
✓ × × × × ✓ - - 27.78 0.30

- - - - - - × × 30.30 0.36
- - - - - - ✓ × 30.17 0.35
- - - - - - ✓ ✓ 29.96 0.33

Table 1: Ablation on GoPro dataset with RSNet (Nah, Kim,
and Lee 2017) for Fig. 5(a) (upper area) and Fig. 5(b) (bot-
tom area). “×” for ⑤ means the left stream is totally re-
moved in Fig. 5(a). Result worse than RSNet is in italics.

adopt the same dataset slicing crop method as used in SD-
WNet (Zou et al. 2021), where we utilize a step of 256 to
perform 256×256 size sliding window slicing, and compen-
sate slicing on the edge part.

Evaluation metric The average performance of PSNR
and SSIM over all testing sets are computed by using the
official software released by (Zamir et al. 2021). We report
number of parameters, FLOPs, and testing time per image
(see supplementary material) on on a workstation with Intel
Xeon Gold 6240C CPU, NVIDIA GeForce RTX 3090 GPU.

Position Ablation on Simple-FFT-ReLU Stream
We discuss how the position of simple-FFT-ReLU stream
on the ResBlock changes the deblurring performance. Ex-
periments are conducted on GoPro dataset (Group I setting).
The backbone architecture we use is a simplified version of
DeepDeblur (Nah, Kim, and Lee 2017), which contains 16
ResBlocks, and termed as RSNet in the paper. As shown
in Fig. 5(a), the position of simple-FFT-ReLU is changed
w.r.t. ResBlock. Results are reported in Table 1. If we in-
sert simple-FFT-ReLU in postion ⑥, the performance drops,
compared with RSNet (27.78 vs. 28.06). If we replace the
identity mapping by the simple-FFT-ReLU stream, PSNR
increases compared with RSNet (29.51 vs. 28.06). This veri-
fies our claim on the effectiveness of replacing identity map-
ping by simple FFT-ReLU stream, as marked in gray in
Table 1. Based on this observation, we further change the
threshold for filtering out frequencies. We conduct simple
statistics and find that the real/imag values after FFT are
mainly around −10, 000(1 + j) to +10, 000(1 + j). Thus,
instead of setting 0 + j0 as the threshold, we try differ-
ent thresholds, and also apply inverse ReLU (filter out fre-
quency components larger than 0 + j0). Results are shown
in Table 2. Inverse ReLU achieves similar results with ReLU
(29.47 vs. 29.51). A positive threshold such as +100(1 + j)
achieves better performance. Replacing ReLU by selecting
high-/low- frequency components are not helpful at all, al-
though all are non-linear operations. We also conduct abla-
tion study on the position of 1×1 convolution with simple-
FFT-ReLU (see Fig. 5 (b)). Results are shown in Table 1.
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ReLU, where ① means we keep the identity mapping, and ⑥
indicates replacing ReLU with simple-FFT-ReLU. The oth-
ers means the position where we insert simple-FFT-ReLU.
⑦ and ⑧ mean we put 1×1 Conv before Real FFT2d or af-
ter inv Real FFT2d.

Thre Freq PSNR

−1000(1 + j) - 28.71
+1000(1 + j) - 29.32
−100(1 + j) - 28.78
+100(1 + j) - 29.60

inv. ReLU - 29.47

- HF (1/8) 27.81
- LF (1/8) 27.83

Table 2: Ablation on GoPro dataset with RSNet (Nah, Kim,
and Lee 2017), for selecting frequency by different thresh-
olds (upper), or replacing ReLU by high/low frequency se-
lection (bottom) for the setting highlighted in Table 1.

Ablation Study on FFT-ReLU Stream
Quantitative Results We conduct extensive ablation
study on GoPro dataset (Group I setting) to have a thor-
ough investigation on the proposed FFT-ReLU stream. We
can summarize the following conclusions from Table 3. (1)
Using RSNet with only our FFT-ReLU stream leads to ob-
vious performance drop, compared with RSNet (25.64 vs.
28.06), but adding FFT-ReLU stream to RSNet leads to sig-
nificant improvement (30.30 vs. 28.06). This indicates that
our FFT-ReLU stream is an add on stream, which should
be trained in conjunction with the pixel-level spatial domain
CNN. We will illustrate the reason by visualizing neurons in
the next subsection. (2) It is expected to see that w/o ReLU
w/ two 1×1 convolution layers, the performance does not
change too much, compared with RSNet (28.59 vs. 28.06).
(3) If we change the complex convolution into real convo-
lution, the performance drops a little due to the decrease
of parameter numbers (29.91 vs. 30.30). (4) Noted that we
propose a complex convolution in frequency domain. An al-
ternative is to first concatenates the real part R(F(Z)) and
the imaginary part I(F(Z)) along the channel dimension
to acquire Z̃ = R(F(Z)) ⊙C I(F(Z)) ∈ RH×W/2×2C ,

RSNet

RSNet w/ 
only FFT-

ReLU
Stream

RSNet w/ 
FFT-ReLU

Stream

RSNet w/ 
FFT-ReLU

Stream 
(Concat 3x3)

Layer 1 Layer 8 Layer 16 Layer 1 Layer 8 Layer 16

Figure 6: Visualization of example features of three layers
of different networks. In each layer, to maximize the neu-
ron on location [ 14H, 1

4W ], we show visualizations from one
random gradient descent run for channel C = 16.

ResBlock FFT-ReLU Stream PSNR Params
Z Yres FFT Conv ReLU Conv iFFT (dB) (M)

✓ ✓ × × × × × 28.06 0.30
× × ✓ ✓ ✓ ✓ ✓ 25.64 0.07
✓ × ✓ ✓ ✓ ✓ ✓ 26.00 0.07
✓ ✓ × ✓ ✓ ✓ × 28.16 0.33
✓ ✓ ✓ × ✓ × ✓ 29.08 0.30
✓ ✓ ✓ ✓ × ✓ ✓ 28.59 0.36
✓ ✓ ✓ ✓ × × ✓ 28.60 0.33
✓ ✓ ✓ Real ✓ Real ✓ 29.91 0.33
✓ ✓ ✓ ✓ ✓ × ✓ 30.06 0.33
✓ ✓ ✓ ✓ ✓ ✓ ✓ 30.30 0.36
✓ ✓ ✓ ✓ GeLU ✓ ✓ 30.42 0.36
✓ ✓ ✓ Concat ✓ Concat ✓ 30.32 0.43
✓ ✓ ✓ 3×3 ✓ 3×3 ✓ 31.15 1.48

Table 3: Ablation on FFT-ReLU stream on GoPro dataset
with RSNet (Nah, Kim, and Lee 2017). “Real” means the
weights in 1×1 convolution are all real values, instead of
the default complex values. “Concat” means after applying
FFT, we concatenate the real part R(F(Z)) and the imag-
inary part I(F(Z)) along the channel dimension, so the
weights of subsequent convolution operations are all real
values. Gray areas indicate RSNet and RSNet w/ FFT-ReLU
stream. Results worse than RSNet are in italics.

where ⊙C represents concatenation through the channel di-
mension. Then we can simply use two stacks of 1 × 1 con-
volution layers (convolution operator ⊗) with a ReLU layer
in between: h(Z̃;Θ(1)

real,Θ
(2)
real) = ReLU(Z̃ ∗Θ(1)

real)⊗Θ
(2)
real ∈

RH×W/2×2C . The inverse 2D real FFT can be applied af-
terwards. We term this alternative as “Concat”. Using Con-
cat, the weights in convolution are all real values, and the
performance does not change compared with our complex
convolution (30.32 vs. 30.30), but the number of parameters
increases. (5) We further replace 1×1 convolution by 3×3
convolution, which can be easily implemented in “Concat”
setting. A further improvement is oberved (31.15 vs. 30.32).
But, Concat 3×3 increases the model parameters by 4 times,
compared with Concat 1×1.

Visualizations of Neurons We visualize neurons to bet-
ter understand how our FFT-ReLU stream works. In (Yosin-
ski et al. 2015), the learned features computed by individual
neurons at any layer of the network can be visualized by gen-
erating the input image such that the corresponding neurons
activation value is maximized. Similarly, given a feature vol-
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Model FFT GoPro HIDE Params FLOPs
DeepDeblur × 31.15 29.17 11.71 336.03

✓ 32.37 30.86 12.65 363.19

RSNet × 28.06 26.01 0.30 19.48
✓ 30.30 28.87 0.36 23.84

U-Net × 29.20 27.15 0.62 12.18
✓ 30.39 28.71 0.76 14.86

MPRNet × 31.09 29.66 2.14 80.70
-small ✓ 32.50 30.82 2.43 94.24

MIMO-UNet × 31.90 29.62 6.80 67.17
✓ 32.71 30.85 8.17 80.21

NAFNet32 × 32.95 30.60 17.1 16.00
✓ 33.12 30.76 17.8 23.10

Table 4: Evaluation of Res FFT-ReLU Block (Group I set-
ting) in PSNR. FFT means the ResBlock is replaced by Res
FFT-ReLU Block. × means the original architecture. All
models are trained by ourselves for fair comparison.

ume Zi ∈ RH×W×C in Layer i, where H , W and C mean
the height, width and the channel, we show visualizations of
neurons on spatial location of [ 14H, 1

4W ] from one random
gradient descent run for C = 16 in Layer 1, 8, 16, using a
public repository1. As shown in Fig. 6, to maximize the neu-
ron on [ 14H, 1

4W ], RSNet only gathers information from its
local neighborhood. RSNet w/ only FFT-ReLU stream can
learn global context, but using only FFT-ReLU stream lacks
pixel-level localization ability, i.e., there is not a clear acti-
vation region on [ 14H, 1

4W ]. This explains the reason why
it can only obtain 26.00 dB in PSNR in Table 3. RSNet
w/ FFT-ReLU stream can learn both kernel-level and pixel-
level representations. Another interesting observation is that
though FFT-ReLU stream has the ability to learn global con-
text, in the lower layers, e.g., Layer 1, local information is
more important, like Transformer (Raghu et al. 2021). Other
details are provided in the supplementary material.

Evaluation of Res FFT-ReLU Block

Quantitative Results Res FFT-ReLU Block is plug-and-
play. We plug it into various architectures: DeepDeblur
(Nah, Kim, and Lee 2017); U-Net (one backbone network
used in MPRNet (Zamir et al. 2021)); MPRNet-small (Zamir
et al. 2021), whose number of channels is three times smaller
than original MPRNet due to limited computation resource;
MIMO-UNet (Cho et al. 2021); NAFNet (Chen et al. 2022).
NAFNet uses a different ResBlock, and we show the build-
ing block of NAFNet w/ Res FFT-ReLU Block in the sup-
plementary material. PSNRs on GoPro and HIDE datasets in
Group I setting are summarized in Table 4. Replacing Res-
Block by our Res FFT-ReLU Block leads to remarkable per-
formance gains in various architectures. Besides, RSNet and
RSNet w/ Res FFT-ReLU Block on REDS dataset are tested.
Results are 26.78 and 27.79↑1.01 dB respectively.

GoPro HIDE RealBlur-R/J
Method PSNR SSIM PSNR SSIM PSNR PSNR

CVPR
DeepDeblur(17) 29.08 0.914 25.73 0.874 32.51 27.87
SRN(18) 30.26 0.934 28.36 0.915 35.66 28.56
DMPHN(19) 31.20 0.940 29.09 0.924 35.70 28.42
DBGAN(20) 31.10 0.942 28.94 0.915 33.78 24.93
MPRNet(21) 32.66 0.959 30.96 0.939 35.99 28.70
Restormer(22) 32.92 0.961 31.22 0.942 36.19 28.96
Uformer(22) 33.06 0.967 30.90 0.953 36.19 29.09

ICCV
DeblurGANv2(19) 29.55 0.934 26.61 0.875 35.26 28.70
MIMO-UNet+(21) 32.45 0.957 29.99 0.930 35.54 27.63

ECCV
MT-RNN(20) 31.15 0.945 29.15 0.918 35.79 28.44
NAFNet64(22) 33.69 0.967 31.32 0.943 -

Ours
FMIMO-UNet 33.08 0.962 31.19 0.943 35.96 28.72
FMIMO-UNet+ 33.52 0.965 31.66 0.946 36.11 28.88
FNAFNet32 33.12 0.962 30.76 0.938 36.07 28.78
FNAFNet64 33.85 0.967 31.12 0.944 -

¶MPRNet - - 39.31 31.76

¶FMIMO-UNet - - 40.01 32.65

Table 5: Comparison on GoPro, HIDE and RealBlur datasets
(Group I and II settings). Group II results are with ¶. Num-
bers in the bracket indicate the published year.

Evaluation of FMIMO-UNet and FNAFNet
MIMO-UNet and NAFNet are most recent ResBlock-based
models with remarkable speed advantages among existing
networks. We design FMIMO-UNet based on MIMO-UNet
and MIMO-UNet+, acquiring FMIMO-UNet and FMIMO-
UNet+. We design FNAFNet based on NAFNet. FMIMO-
UNet and FNAFNet are compared with other state-of-the-
arts in Table 5. Res FFT-ReLU block is only added to a
few encoder/decoder blocks. See detailed analysis, compu-
tational cost comparisons and visualizations in the supple-
mentary material.

Conclusion
In this paper, we reveal an intriguing phenomenon that fre-
quency selection can provide faithful information about the
blur pattern. With this viewpoint, we propose a plug-and-
play block called Res FFT-ReLU Block based on FFT-ReLU
stream. Res FFT-ReLU Block allows the image-wide re-
ceptive field which is able to capture the long-term interac-
tion. Plugging Res FFT-ReLU Block into MIMO-UNet and
NAFNet achieves remarkable superior performance com-
pared with state-of-the-arts, on three well-known public im-
age deblurring datasets.

1https://github.com/utkuozbulak/pytorch-cnn-visualizations
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