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Abstract

In this paper, we propose a cross-modal distillation method
named StereoDistill to narrow the gap between the stereo
and LiDAR-based approaches via distilling the stereo detec-
tors from the superior LiDAR model at the response level,
which is usually overlooked in 3D object detection distilla-
tion. The key designs of StereoDistill are: the X-component
Guided Distillation (XGD) for regression and the Cross-
anchor Logit Distillation (CLD) for classification. In XGD,
instead of empirically adopting a threshold to select the high-
quality teacher predictions as soft targets, we decompose the
predicted 3D box into sub-components and retain the corre-
sponding part for distillation if the teacher component pilot
is consistent with ground truth to largely boost the number
of positive predictions and alleviate the mimicking difficulty
of the student model. For CLD, we aggregate the probability
distribution of all anchors at the same position to encourage
the highest probability anchor rather than individually distill
the distribution at the anchor level. Finally, our StereoDistill
achieves state-of-the-art results for stereo-based 3D detection
on the KITTI test benchmark and extensive experiments on
KITTI and Argoverse Dataset validate the effectiveness.

Introduction
3D detectors equipped with LiDAR points (Shi, Wang, and
Li 2019; Yang et al. 2020; Deng et al. 2020; Chen et al.
2017b; Huang et al. 2020; Liu et al. 2022) for autonomous
driving have presented outperforming performance. How-
ever, LiDAR sensors usually have a high cost and sensitiv-
ity to weather, which limit their application. Alternatively,
stereo cameras are capturing increasing interest thanks to
their good trade-off in low cost and accuracy. There is still
a huge performance gap between stereo-based and cutting-
edge LiDAR-based 3D detection methods due to the inaccu-
rate depth estimation by stereo matching. A question natu-
rally arises: can the LiDAR model help to improve the per-
formance of the stereo model?

Knowledge distillation (KD) (Hinton et al. 2015) might
be a promising solution for this question, which guides the
student model to mimic the knowledge of the teacher model
for performance improvement or model compression. The
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Figure 1: 3D detection performance (3D mAP) on KITTI valida-
tion set of LIGA (Guo et al. 2021) by replacing the regression and
classification results of the stereo model (student) with the teacher
LiDAR model SECOND (Yan, Mao, and Li 2018).

current KD methods of object detection can be mainly clas-
sified into the feature-based and response-based streams,
in which the former carry out distillation at the feature
level (Zagoruyko and Komodakis 2017; Romero et al. 2014;
Huang and Wang 2017; Heo et al. 2019; Ye et al. 2020; Du
et al. 2020) for enforcing the consistency of feature repre-
sentations between the teacher-student pair whereas the lat-
ter adopts the confident prediction from the teacher model
as soft targets in addition to the hard ground truth supervi-
sion (Yuan et al. 2020; Zheng et al. 2022; Dai et al. 2021).
However, directly migrating the existing KD methods to
LiDAR-to-stereo cross-modal distillation is less effective
due to the huge gap between the two extremely different
modalities. The pioneering work LIGA (Guo et al. 2021)
boosted the performance of stereo-based models by apply-
ing fine-grained feature-level distillation under the guidance
of LiDAR-based models. However, it found little benefit
from the response-based distillation due to the erroneous and
noisy predictions of the LiDAR teacher.

On the contrary, we argue that the response-level distilla-
tion is promising to shrink the gap in the cross-modal do-
main (e.g., LiDAR point cloud and binocular images). For
illustration, we first obtain the upper bound of the stereo
model by replacing its prediction of 3D box regression and
classification with the corresponding outputs of the LiDAR
model (teacher). As shown in Figure 1, the stereo model
with the replaced regression or classification predictions
produces impressive results, demonstrating the potential of
response-based distillation in the cross-modal domain. How-
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ever, directly applying the vanilla response-level distilla-
tion is less effective, either by selecting the high-confident
((Yang et al. 2022)) or high-IoU 3D boxes (box-level) pre-
dicted from the LiDAR model as soft targets (Sun et al.
2020c). The reasons are two-fold: 1) unlike dense 2D im-
ages, much fewer high-IoU or high-confident boxes can be
adopted as soft labels in a 3D scene due to the high sparsity
of LiDAR point cloud; 2) the low-quality boxes discarded
by one-size-fits-all thresholds contain underlying beneficial
components (e.g., center, size, or orientation angle) that have
been overlooked.

To tackle the problem, we propose a novel X-component
Guided Distillation (XGD) from the response level. The key
idea of XGD is to first decompose a 3D box into sub-X-
components (X can be center, size, or orientation angle) and
retain the beneficial subcomponent as the soft targets if the
vector between the teacher’s X-component and the student’s
component is consistent with the vector between the ground
truth and the student’s, i.e., the two vectors are acute-angled.

Moreover, we find that only one out of all anchors at the
same position can be selected as being responsible for a fore-
ground object in most cases due to the fact that there is usu-
ally no overlap among objects in real autonomous driving
scenarios, which is different in the 2D domain. Motivated by
this observation, we propose a simple and effective Cross-
anchor Logit Distillation (CLD) for classification distillation
in our StereoDistill to distill by aggregating the confidence
distribution of all anchors to a unified distribution so as to
highlight the highest probability anchor.

To summarize, our key contributions are as follows.

• We validate that the cross-modal knowledge distillation
at the response level can boost the performance of stereo-
based 3D object detection. The proposed X-component
Guided Distillation (XGD) for regression avoids the neg-
ative effect of erroneous 3D boxes from the LiDAR
model by keeping the beneficial X-component as soft tar-
gets under the guidance of acute-angled vectors.
• Given the fact that there is no overlap among objects in

autonomous driving scenarios, we introduce the simple
yet effective Cross-anchor Logit Distillation (CLD) for
classification to aggregate the probability distribution of
all anchors at the same position rather than distilling the
distribution at anchor level.

Related Works
Stereo-based 3D Object Detection. The earlier meth-
ods (Li, Chen, and Shen 2019; Sun et al. 2020a; Xu et al.
2020) achieve stereo 3D detection based on a strong 2D de-
tector (Ren et al. 2015; He et al. 2017), which does not fully
explore the 3D information, leading to suboptimal perfor-
mance. To introduce more 3D information, (Wang et al.
2019; You et al. 2020; Qian et al. 2020) try to convert the
estimated depth maps combined with the corresponding im-
age to pseudo point clouds and then can apply the existing
LiDAR-based 3D detectors (Yan, Mao, and Li 2018; Lang
et al. 2019) to detect 3D boxes. However, directly applying
pseudo point clouds for 3D detection might bring erroneous
localization due to the limitation of depth estimation, lead-

ing to sub-optimal performance. To tackle this problem, the
recent methods DSGN (Chen et al. 2020), CDN (Garg et al.
2020), DSGN++ (Chen et al. 2022) and PLUME (Wang
et al. 2021) build cost volume (Flynn et al. 2016) to encode
the implicit 3D geometry features instead of the raw pseudo
point representations for 3D object detection. In this paper,
we select the prominent DSGN as our stereo model and keep
the same configuration with LIGA (Guo et al. 2021).
LiDAR-based 3D Object Detection. Due to the plentiful
geometric structure information and accurate depth informa-
tion from LiDAR sensors, LiDAR-based 3D detectors (Shi,
Wang, and Li 2019; Yan, Mao, and Li 2018) usually achieve
superior performance than the camera-based (Brazil and Liu
2019; Chen et al. 2016; Li et al. 2020; Simonelli et al. 2019;
Chen et al. 2020). At present, the mainstream 3D detection
methods are divided into two types according to the input
data format, including point-based and voxel-based detec-
tors. The point-based methods (Shi, Wang, and Li 2019;
Yang et al. 2020) usually apply PointNets (Qi et al. 2017a,b)
to deal with this problem of permutation invariance. The
voxel-based methods (Yan, Mao, and Li 2018; Zhou and
Tuzel 2018; Lang et al. 2019; Liu et al. 2020; Deng et al.
2020) convert the irregular 3D points to the regular voxel
grids and employ 2D/3D convolution operation to estimate
the final 3D boxes. In this paper, to better align the pre-
dictions with the stereo model DSGN (Chen et al. 2020),
we choose the popular voxel-based detector SECOND (Yan,
Mao, and Li 2018) as the LiDAR model.
Knowledge Distillation. Knowledge distillation (KD) is ini-
tially proposed by (Hinton et al. 2015), which can trans-
fer knowledge from a larger network to a small network
to promote the performance or achieve model compression
for lightweight devices. Recently, (Dai et al. 2021; Yang
et al. 2021; Chen et al. 2021; Zhang and Ma 2020) achieve
feature-based distillation by focusing on the foreground area
or considering a weight matrix for the features. LD (Zheng
et al. 2022) implements the difficult problem of localiza-
tion distillation from the response level by converting the
regression of bounding boxes to the probability distribution
representation. Besides, Cross-modal feature distillation ap-
proaches (Chong et al. 2022; Guo et al. 2021) are gaining
popularity as a way to take advantage of the complementar-
ity between different modalities. LIGA (Guo et al. 2021) is
the first attempt to explore the fine-grained feature distilla-
tion from LiDAR to stereo 3D detector. However, LIGA fails
to benefit the stereo model through the response-based dis-
tillation due to the erroneous targets from the LiDAR model.
In this paper, we propose an X-component Guided Distilla-
tion (XGD) to deal with this problem by retaining the bene-
ficial component which is consistent with ground truth.

Method
In this part, we introduce the proposed cross-modal dis-
tillation StereoDistill, which consists of the X-component
Guided Distillation (XGD) and Cross-anchor Logit Distilla-
tion (CLD) at the response level. As shown in Figure 2, we
present the pipeline of our StereoDistill, which employs a
stereo model, DSGN (Chen et al. 2020) for instance, as the
student network and a LiDAR model, SECOND (Yan, Mao,
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Figure 2: The pipeline of our proposed StereoDistill method. The student and the teacher model take the stereo images and
LiDAR points as inputs, respectively. At the response level, X-component Guided Distillation (XGD) and Cross-anchor Logit
Distillation (CLD) are applied to the 3D box regression and classification head, respectively. In XGD, we decompose the 3D
box into sub-components, i.e., size (HWL), center (XYZ) and rotation angle (θ) and keep the components as soft targets if the
vectorial angle between teacher-student and GT-student pair is acute. In CLD, we flatten the confidence scores of all anchors
falling in the same position and convert them to a unified distribution to highlight the most valuable anchor.

and Li 2018) for instance, as the teacher network only for
training. Although StereoDistill contains the feature-level
and response-level distillations, our main contribution fo-
cuses on the response-level distillation since the effective-
ness on the feature-level has been illustrated in LIGA (Guo
et al. 2021). For the feature level, we mainly revise the fea-
ture distillation in LIGA (Guo et al. 2021) by introducing
the attention weight of features (Zagoruyko and Komodakis
2017) and the relationship among instance features (Hou
et al. 2020) to further improve the performance, which is
regarded as our baseline (named Improved LIGA). For more
details, please refer to our supplementary materials.

For the response-based distillation, however, the predicted
boxes (box-level) from a teacher network inevitably contain
false predictions. Therefore, using all predicted boxes di-
rectly without any purifying process is likely harmful to the
student network and results in a sub-optimal solution (Guo
et al. 2021). To resolve this problem, we propose a novel
XGD to preserve the beneficial X-component (e.g., center,
size and angle) decomposed from a box through the pro-
posed positive component updating algorithm. In addition,
we notice that only one out of all anchors at the same po-
sition can usually be selected as being responsible for a
foreground object in autonomous driving scenarios. Thus,
CLD is proposed to highlight the highest probability anchor
across all anchors at the same position. Next, we introduce
the proposed XGD and CLD in detail.
X-component Guided Distillation. As we all know, the Li-
DAR model has an inherent advantage in localization since
the LiDAR sensor can provide more accurate geometrical
information and depth information. However, the final pre-
dictions from the teacher model benefit little from training
the stereo network (Guo et al. 2021). The main reason is that

Right!!

j
c

j
c

j
c

Harmful center

Beneficial center

(a)

(b)

(b)

Student Ground-TruthTeacher

Figure 3: Our X-component Guided Distillation (take the
center component as an example to illustrate whether the
teacher’s prediction is beneficial to the student. Case (a) de-
picts an obtuse angle between the student-to-GT vector and
the student-to-teacher vector, showing that the teacher is in-
consistent with the GT. Conversely, in Case (b) we observe
an acute angle between the two vectors, validating that it is
beneficial to be adopted as soft targets to guide the student
to regress towards the direction of GT.

the erroneous regression of the teacher model may guide the
student model to learn in a detrimental direction. Although
an available solution is to only keep these high-quality boxes
for distillation, it brings two flaws. One is that high-quality
boxes are too few, resulting in inefficient distillation. The
other is that some low-quality discarded boxes can also pro-
vide the estimated beneficial component through further de-
composing a 3D box into three components (the center po-
sition, the size, and the orientation angle). To be more in-
tuitive, we take the center position as an example and show
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Algorithm 1: positive component updating
Input: Boxes of teacher Bt = (Tc, Ts, To), Boxes of student
Bs = (Sc,Ss,So), Boxes of GT Bg = (Gc,Gs,Go). The
number of assigned positive boxes Npos.
Output: Updated boxes of teacher Bt∗.

1: Let Tc∗, Ts∗, To∗ =[], [], []
2: for j ∈ {1, 2, ..., Npos} do
3: Compute cosβj

c , cosβj
s and cosβj

o by the formula (1)
4: for x ∈ {c, s, o} do
5: if cosβj

x > 0 then
6: T j

x∗ ← T j
x

7: else
8: T j

x∗ ← Sjx; # Disable the harmful X-component
9: end if

10: end for
11: end for
Bt∗ = (Tc∗, Ts∗, To∗)

12: return Bt∗

the harmful and beneficial predicted center position from the
teacher model in Figure 3 (a) and (b), respectively.

Motivated by the above observation, we propose a novel
component Guided Distillation (XGD) to tackle this prob-
lem. XGD first obtains all the boxes predicted from the as-
signed positive anchors to keep more valuable 3D boxes.
Then XGD selects the ‘soft boxes’ from these predicted
boxes at the X-component level rather than the box level.
Specifically, for the predicted jth 3D box of the teacher net-
work, we decompose Bjt = (T j

c , T j
s , T j

o ) into three com-
ponents, where T j

c = (xj
t , y

j
t , z

j
t ), T j

s = (wj
t , h

j
t , l

j
t ), and

T j
o = θjt , where T j

c is the center position of the box along
X, Y and Z axes, T j

s represents the size including the width,
height and length of the 3D box and T j

o means the orien-
tation angle of the 3D box. Similarly, we can define the
predicted box Bjs = (Sjc ,Sjs ,Sjo) from the student network
and the corresponding ground-truth (GT) assigned boxes of
Bjg = (Gjc ,Gjs ,Gjo). Then, we can judge whether the esti-
mated center T j

c from the LiDAR model is beneficial to the
stereo model by measuring the cosine value of T j

c −Sjc and
Gjc − Sjc , which can be formulated as:

cosβj
c =

(T j
c − Sjc )(Gjc − Sjc )T

∥T j
c − Sjc∥2∥Gjc − Sjc )T ∥2

(1)

Where βj
c is the angle between the vector of T j

c − Sjc and
Gjc − Sjc . Here, when βj

c is an acute angle (or cosβj
c > 0),

we think the provided center regression T j
c from the teacher

model can guide the student model regress a more accu-
rate center position. Similarly, we can obtain the βj

s and
βj
o for the size and angle components following the formu-

lation (1). Then, the final ‘soft boxes’ Bt∗ is produced by
our positive component updating in Algorithm 1. Finally,
we employ 3D IoU loss (Zhou et al. 2019) with rotation as
the soft regression term since 3D IoU can comprehensively
evaluate the quality of a bounding box. The XGD loss can

Figure 4: The process of the Classical Logit Distillation
and our Cross-anchor Logit Distillation. The confidence
scores from the student network and the teacher network are
marked in blue and green, respectively. And the darker the
color, the higher the confidence.

be computed as:

Lxgd =

Npos∑
j=1

(1− IoU3D(Bjs,B
j
t∗)), (2)

where Npos is the number of the positive anchors in the
stereo model and IoU3D(Bjs,B

j
t∗) denotes the 3D IoU be-

tween Bjs and Bjt∗.
Cross-anchor Logit Distillation. Some distillation meth-
ods (Chen et al. 2017a; Dai et al. 2021; Sun et al. 2020c)
via the classification probability usually bring benefits to fi-
nal results for the 2D detection task, where these distillations
are only carried out for positive boxes. However, our distil-
lation is carried out in all foreground regions since the Li-
DAR model generates fewer positive 3D samples compared
with 2D detection counterparts. Moreover, another distinct
characteristic of the 3D detection task against 2D detection
lies in the fact that it is rare to find a conflict or overlapping
among 3D boxes in autonomous driving scenarios. That is to
say, distinct anchors lying in the same position are designed
for different objects with different scales and aspect ratios,
and hence only one out of these anchors can be selected
as being responsible for a foreground object in most cases.
However, these classical logit distillation approaches (Chen
et al. 2017a; Dai et al. 2021; Sun et al. 2020c) designed for
2D detection tasks treat anchors separately and do not work
well in the 3D detection task, shown in Figure. 4 (a). Given
that, we propose a Cross-anchor Logit Distillation (CLD)
approach to highlight the most representative anchor from
all anchors in the same position by converting the confi-
dence distribution of each anchor to a unified distribution,
whose process is described in Figure. 4 (b). Specifically,
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Modality Method Car AP0.7 Pedestrian AP0.5 Cyclist AP0.5
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

LiDAR MV3D (Chen et al. 2017b) 74.97 63.63 54.00 – – - – – –
SECOND (Yan, Mao, and Li 2018) 83.34 72.55 65.82 – – – – – –

AVOD-FPN (Ku et al. 2018) 83.07 71.76 65.73 50.46 42.27 39.04 63.76 50.55 44.93

Stereo

Stereo R-CNN (Li, Chen, and Shen 2019) 47.58 30.23 23.72 – – – – – –
Pseudo-Lidar (Wang et al. 2019) 54.53 34.05 28.25 – – – – – –

ZoomNet (Xu et al. 2020) 55.98 38.64 30.97 – – – – – –
Pseudo-LiDAR++ (You et al. 2020) 61.11 42.43 36.99 – – – – – –

CDN (Garg et al. 2020) 74.52 54.22 46.36 – – – – – –
SNVC (Li et al. 2022) 78.54 61.34 54.23 – – – – – –

OC-Stereo (Pon et al. 2020) 55.15 37.60 30.25 24.48 17.58 15.60 29.40 16.63 14.72
YOLOStereo3D (Liu, Wang, and Liu 2021) 65.68 41.25 30.42 28.49 19.75 16.48 – – –

Disp-RCNN (Sun et al. 2020a) 68.21 45.78 37.73 37.12 25.80 22.04 40.05 24.40 21.12
DSGN (Chen et al. 2020) 73.50 52.18 45.14 20.53 15.55 14.15 27.76 18.17 16.21

CG-Stereo (Li, Ku, and Waslander 2020) 74.39 53.58 46.50 33.22 24.31 20.95 47.40 30.89 27.23
LIGA (Guo et al. 2021) 81.39 64.66 57.22 40.46 30.00 27.07 54.44 36.86 32.06

StereoDistill (Ours) 81.66 66.39 57.39 44.12 32.23 28.95 63.96 44.02 39.19

Table 1: 3D Detection results on the KITTI test benchmark. APthr means the threshold value of 3D IoU between the prediction
and the ground truth as thr. ‘Mod.’ is short for Moderate.

Method Car AP0.5 Pedestrian AP0.25
3D BEV 3D BEV

SECOND (2018) (T) 80.67 87.06 48.96 49.14
DSGN (2020) (S) 33.68 42.76 8.58 8.95

LIGA (2021) 34.37 45.47 10.76 11.01
Ours 37.55 46.99 13.70 14.04

Table 2: Car and Pedestrian detection results on Argoverse
validation set with the evaluation metric of 11 recall posi-
tions. T and S denote the teacher and the student.

we first reshape the output confidence map of the teacher
network Pt ∈ RNfore×Kc as P ′

t ∈ RMfore×(KcKa), where
Nfore = MforeKa. Here, Mfore, Ka and Kc represent the
number of all foreground positions, the pre-defined anchors
for each position and the categories on the 3D object detec-
tion task, respectively. Then, the softmax function is applied
to further normalize the flattened confidence scores P ′

t along
the dimension of KcKa and obtain the unified confidence
distribution P ∗

t across all anchors at the same position:

P ∗
t = softmax(P ′

t ) (3)

Similarly, we can get the confidence distribution P ∗
s for the

student network. Finally, the CLD loss can be computed by
KL divergence:

Lcld = KL(P ∗
t , P

∗
s ), (4)

Total Loss Function. We train the stereo model in an end-
to-end manner, and the total loss function is as follows:

Ltotal = Lori + Lxgd + Lcld, (5)

where Lori denotes the loss function except the feature dis-
tillation loss in the LIGA (Guo et al. 2021). For training the
LiDAR model, we adopt the same loss function with SEC-
OND (Yan, Mao, and Li 2018).

Experiments
Experimental Datasets and Evaluation Metrics
KITTI. The KITTI dataset (Geiger, Lenz, and Urtasun
2012) includes 7,481 training and 7,518 testing stereo image
pairs with the corresponding LiDAR point clouds. We fur-
ther split the training data into training set with 3712 sam-
ples and a validation set with 3769 samples following (Chen
et al. 2020; Qi et al. 2018; Shi, Wang, and Li 2019). The
evaluation metric (Simonelli et al. 2019) adopts the mean
Average Precision (mAP) with 40 recall positions. If not
specified, the metric of all results in the following tables uses
40 recall positions. In this paper, we evaluate our method on
the validation set and the test benchmark for three categories
of Cars, Pedestrians and Cyclists under three difficulty lev-
els (e.g., Easy, Moderate, and Hard).
Argoverse. The Argoverse dataset (Chang et al. 2019) con-
tains 3D detection and tracking annotations from 113 scenes.
Different from the Waymo (Sun et al. 2020b) and Nusc-
nes (Caesar et al. 2020) datasets, Argoverse provides stereo
image pairs, which can be adopted to verify the generality
of our method. For convenience, we convert the Argoverse
dataset to the format of KITTI following (Wang et al. 2020)
and obtain a training set with 13122 samples and a valida-
tion set with 5015 samples. We adopt the same evaluation
metric with KITTI.

Implementation Details
For the stereo model DSDN (Chen et al. 2020) and the Li-
DAR model SECOND (Yan, Mao, and Li 2018), we use the
same network structure with LIGA (Guo et al. 2021) for
fair comparisons. The stereo model is trained on 4 NVIDIA
V100 GPUs with a batch size of 4 and is optimized by Adap-
tive Momentum Estimation (Adam) (Kingma and Ba 2014)
with the initial learning rate, weight decay, and momentum
factor set to 0.003, 0.01, and 0.9, respectively. Random hor-
izontal flipping is adopted for data augmentation. For both
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# XGD CLD Car AP3D Pedestrian AP3D Cyclist AP3D
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SECOND⋆ (2018) (teacher) 90.72 81.66 78.78 69.45 62.39 56.49 84.97 64.06 60.21
DSGN† (2020) (student) 83.27 64.21 58.61 40.45 34.33 29.07 54.76 32.91 30.04
LIGA⋆ (2021) (paper) 86.84 67.71 62.02 45.54 37.80 32.09 60.00 37.31 34.25

LIGA† (2021) (reproduced) 84.32 67.14 61.93 47.16 38.97 34.09 63.98 38.49 36.01
Improved LIGA† (2021) (baseline) 86.62 67.03 61.94 47.77 40.11 35.19 65.02 40.90 37.81
I ✓ – 86.78 67.65 62.43 52.89 45.37 39.40 66.25 41.38 38.27
II – ✓ 86.67 67.57 62.19 47.81 40.69 35.84 67.77 41.65 38.62
III ✓ ✓ 87.57 69.75 62.92 55.19 46.76 40.42 69.43 42.31 39.10

Improvement over baseline +0.95 +2.72 +0.98 +7.42 +6.65 +5.23 +4.41 +1.41 +1.29

Table 3: Ablation studies for our proposed XGD and CLD on the KITTI validation set. ⋆ and † in this table denote the results
reported in the paper and our reproduced results. ‘Mod.’ is short for Moderate.

Methods Car AP3D Pedestrian AP3D Cyclist AP3D
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars (2019) (teacher) 88.89 78.47 75.38 62.84 56.01 51.87 82.58 62.06 58.37
DSGN (2020) (student) 83.27 64.21 58.61 40.45 34.33 29.07 54.76 32.91 30.04

LIGA (2021) 83.46 63.40 58.29 41.68 35.76 30.38 62.75 37.28 34.25
XGD + CLD 84.74 65.49 60.13 45.98 40.18 34.75 66.67 41.00 37.95

Improvement +1.28 +2.09 +1.84 +4.30 +4.42 +4.37 +3.92 +3.72 +3.70
Improved LIGA (2021) 83.94 64.27 59.00 42.37 36.84 31.54 62.84 37.71 35.12

XGD + CLD 85.24 67.62 60.72 47.81 40.69 34.78 67.10 41.19 38.13
Improvement +1.30 +3.35 +1.72 +5.44 +3.85 +3.24 +4.26 +3.48 +3.01

Table 4: Generality of our StereoDistill (XGD + CLD) on the KITTI validation set. We select the popular LiDAR model
PointPillars (Lang et al. 2019) as the teacher model. ‘Mod.’ is short for Moderate.

the KITTI dataset and the Argoverse dataset, we employ the
range of the detection area to [-30, 30], [-1, 3], [2, 59.6]
meters along the X (right), Y (down), Z (forward) axis in
the camera coordinate. The voxel size of the LiDAR model
is (0.2, 0.2, 0.2) meters and the volume size of the stereo
model is (0.05, 0.1, 0.05) meters. All experiments are con-
ducted on a single model for multiple categories. For more
details, please refer to our supplementary materials.

Comparisons with State-of-the-art Methods
Evaluation on KITTI. In Table 1, we present quantitative
comparison with the leading stereo-based 3D detectors and
several popular LiDAR-based 3D detectors on the KITTI
test benchmark. Our method outperforms the SOTA model
LIGA (Guo et al. 2021) with 1.73%, 2.23% and 7.16% 3D
mAP on Cars, Pedestrian and Cyclists at the moderate dif-
ficulty level, without introducing any extra cost during in-
ference. Our StereoDistill even surpasses the LiDAR-based
method MV3D (Chen et al. 2017b) with 3D mAP of 2.76%
on Cars. These superior results demonstrate the effective-
ness of our StereoDistill. For visualization, please refer to
our supplementary materials.
Evaluation on Argoverse. To further verify the generality
of our proposed method, we conduct experiments on the Ar-
goverse dataset. For fair comparisons, we adopt the same
network of student and teacher models with LIGA (Guo
et al. 2021) and also re-implement LIGA under the same
setting on the Argoverse dataset. In Table 2, we present the

results with the 3D IoU thresholds of 0.5 and 0.25 for both
the BEV and 3D detection on moderate Cars and Pedestri-
ans. Our method exceeds LIGA with 3D mAPs of 3.18%
and 2.94% and BEV mAPs of 1.52% and 3.03% on Cars and
Pedestrians, which validates the generality of our method.

Ablation Studies
Ablation Studies on StereoDistill. In this part, we verify
the effectiveness of the proposed compositions, including
the XGD for regression, CLD for classification, and their
combinations in StereoDistill. The baseline model is our im-
proved LIGA (Guo et al. 2021) by further enhancing the
feature distillation (refer to our supplementary materials).
In Table 3, by comparing (I), (III) with the baseline model,
the proposed XGD and CLD bring consistent improvements
over the baseline on all difficulty levels for three categories,
which demonstrates their effectiveness. Note that the pro-
posed XGD greatly boosts the detection performance on
small objects (e.g., Pedestrians), which requires more accu-
rate regression. It illustrates that the X-component guided
distillation can indeed transfer superior location awareness
from the LiDAR model to the stereo model so as to obtain
better performance. Integrating these two ingredients, Stere-
oDistill in (III) outperforms the baseline with remarkable
margins of 2.72%, 6.65% and 1.41% 3D mAP on the mod-
erate Cars, Pedestrians and Cyclists, respectively.
Generality of StereoDistill. To verify the generality of
StereoDistill, we replace the common teacher network SEC-
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# Methods Cars Pedestrians Cyclists
I Baseline 67.57 40.69 41.65
II XGD-Center 68.22 46.33 42.19
III XGD-Size 68.02 42.46 40.71
IV XGD-Angle 67.84 44.11 41.18
V XGD 69.75 46.76 42.31
VI High-quality boxes 67.72 43.65 42.11
VII Positive anchors (Ours) 69.75 46.76 42.31

Table 5: Ablation studies for XGD. The results are evalu-
ated with 3D mAP on the moderate difficulty level for Cars,
Pedestrians and Cyclists, respectively. XGD-* means the
manner of only adopting * for computing XGD loss.

# Methods Cars Pedestrians Cyclists
I Baseline 67.65 45.37 41.38
II Positive Anchors 67.66 45.71 42.32
III All Foregrounds (Ours) 69.75 46.76 42.31
IV Classical (Chen et al. 2017a) 67.74 46.18 40.69
V CLD (Ours) 69.75 46.76 42.31

Table 6: Ablation studies for CLD. The results are evaluated
with 3D mAP on the moderate difficulty level.

OND (Yan, Mao, and Li 2018) with the other popular 3D de-
tector Pointpillars (Lang et al. 2019). In Table 4, we provide
two baseline settings: the original LIGA (Guo et al. 2021)
in Line 4 and the improved LIGA in Line 7. Not surpris-
ingly, our StereoDistill yields obvious performance gains on
all difficulty levels for three categories, which further the su-
periority and generality of our proposed XGD and CLD.
Analysis of XGD. In Table 5, we conduct extensive abla-
tion studies to analyze the effectiveness of XGD. The base-
line (I) is our StereoDistill without XGD loss. Then, we
decompose the regression of 3D boxes into three compo-
nents including the center position, the size, and the orienta-
tion angle to analyze the effect of each component on XGD.
We observe that XGD with only the center position (II) ex-
hibits the most competitive performance of the three (II, III,
IV), which illustrates the positive guidance of the center po-
sition is the crucial component to help the student model
to acquire more beneficial localization information. Finally,
combined with these three components, XGD (V) exceeds
the baseline (I) with 3D mAP of 2.08%, 6.07% and 0.66%
on moderate Cars, Pedestrians, and Cyclists, demonstrating
the superiority of XGD. Moreover, compared with retain-
ing high-quality boxes in (VI) whose confidence scores are
greater than 0.3 (a proper threshold), our manner of adopting
all positive anchors in (VII) has obvious gains on Cars and
Pedestrians. In the real scene, these two categories usually
occupy a much larger number than Cyclists, which means
that there may be more false positives on Cars and Pedestri-
ans. This demonstrates that our XGD provides a reasonable
workaround to deal with some low-quality boxes by retain-
ing the beneficial X-component but discarding the harmful
X-component decomposed from a 3D box.
Effectiveness of CLD. In Table 6, we first present the re-
sults of distilling the confidence distribution from two alter-
native regions. The way based on the foreground (III) ex-

Methods Cars Pedestrians Cyclists Mean
DSGN (LIGA wo FD) 63.32 34.23 30.26 42.60

+ FD 67.14 38.97 38.49 48.20
Improvement +3.82 +4.74 +8.23 +5.60

+ our RD 67.42 45.28 37.66 50.12
Improvement +4.10 +11.05 +7.4 +7.52
StereoDistill 69.75 46.76 42.31 52.94

Improvement +6.43 +12.53 +12.05 +10.34

Table 7: Comparisons for the feature-based and response-
based distillation. The results are evaluated with 3D mAP
on moderate Cars, Pedestrians and Cyclists. FD and RD are
short for feature-based distillation in LIGA (Guo et al. 2021)
and the response-based distillation in StereoDistill.

ceeds the approach by only considering the positions from
positive anchors (II) on average, which illustrates the im-
portance of introducing the useful foreground positions be-
yond the positions of the positive anchors. Furthermore, we
provide a classical logit distillation (IV) (Sun et al. 2020c)
as a comparison, which individually treats the confidence
distribution of each anchor from each position. It can be
observed that our CLD boosts the performance with mAP
of 2.01%, 0.58% and 1.62% on Cars, Pedestrian and Cy-
clists, clearly demonstrating the effectiveness of underlining
the confidence distribution for the best competitive anchor
from all anchors in a position.
Comparison of Different Distillation. In Table 7, we indi-
vidually present the comparisons for adopting the feature-
based in LIGA (Guo et al. 2021) or response-based distilla-
tion in StereoDistill based on the stereo model DSGN (Chen
et al. 2020). First, these two distillations can consistently
boost performance over the baseline DSGN (Chen et al.
2020). Then, the proposed response-based distillation of
our XGD and CLD in StereoDistill even outperforms the
feature-based distillation in LIGA (Guo et al. 2021) with 3D
mAP of 1.92% on average under the same setting, which
further demonstrates the effectiveness of the proposed XGD
and CLD. Moreover, combined with the response-based dis-
tillation and the feature-based distillation, our StereoDis-
till produces superior performance over the baseline model
DSGN with a 3D mAP of 10.34% on average. This reveals
that superior feature representations often lead to better re-
sponses, which in turn can further facilitate feature learning.

Conclusions
This paper presents an effective cross-modal distillation ap-
proach termed StereoDistill from the response levels for
the stereo 3D detection task. The extension ablation studies
demonstrate the superiority of our proposed X-component
Guided Distillation (XGD) for regression and Cross-anchor
Logit Distillation (CLD) for classification. In the future, we
wish StereoDistill can be applied to more 3D detectors to
improve their performance.
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