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Abstract

Rethinking and introspection are important elements of hu-
man intelligence. To mimic these capabilities, counterfactual
reasoning has attracted attention of AI researchers recently,
which aims to forecast the alternative outcomes for hypotheti-
cal scenarios (“what-if”). However, most existing approaches
focused on qualitative reasoning (e.g., causal-effect relation-
ship). It lacks a well-defined description of the differences be-
tween counterfactuals and facts, as well as how these differ-
ences evolve over time. This paper introduces a new problem
formulation — counterfactual dynamics forecasting — which
is described in middle-level abstraction under the structural
causal models (SCM) framework and derived as ordinary dif-
ferential equations (ODEs) as low-level quantitative compu-
tation. Based on it, we propose a method to infer counterfac-
tual dynamics considering the factual dynamics as demon-
stration. The experimental results on two dynamical systems
demonstrate the effectiveness of the proposed method.

Introduction
“It may happen that small differences in the initial condi-
tions produce very great ones in the final phenomena” —
Henri Poincaré, 1908

Looking back to the past, we often imagine how things
could have been different if the situation was changed. With
regret or relief, we learn the lessons for better future deci-
sions. While the estimation of the antecedents’ development
are often not accurate in human brains, in fact, optimists’
and pessimists’ assessment might be worlds apart. Recently,
Artificial General Intelligence (AGI) has engaged in imi-
tating this important capability of human intelligence. Al-
though it is challenging to equip AI agents with the counter-
factual imagination, by nature they have advantages of pre-
cise and large-scale computation.

The term “counterfactual” has been used to define several
different tasks in machine learning field. Counterfactual Ex-
planation (Verma, Dickerson, and Hines 2020) seeks to pro-
vide the explanations that what changes in the input (e.g.,
visual features) are needed to alter the decision of the ma-
chine (e.g., predicted class labels). The inputs can be images
(Sauer and Geiger 2021), tabular vectors (Wachter, Mittel-
stadt, and Russell 2017), sequential actions (Tsirtsis, De, and
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Rodriguez 2021), graph data (Bajaj et al. 2021) and so on.
The task targets on the interpretability of machine learning
algorithm. Counterfactual data augmentation aims to gen-
erate more training instances by sampling from a counter-
factual data distribution (Kaushik, Hovy, and Lipton 2019)
(Pitis, Creager, and Garg 2020). Counterfactual treatment
effect estimation infers the expected difference between out-
comes with and without the treatment assignment from ob-
servational data (Lu et al. 2020). Only partial observation
on potential outcomes can be made because individual in-
stances cannot receive and refuse intervention assignment
simultaneously. Moreover, the intervention is not indepen-
dent. It is affected by instance features and latent exogenous
variables. Counterfactual regret minimization solving Im-
perfect Information Games aims to plan the successive strat-
egy under uncertainty about the opponent’s information (Li
et al. 2019). However, none of these problem statements fo-
cus on simulating the procedure of human rethinking, which
consists of three aspects: a) there is factual observation as
reference or demonstration; b) limited differences lie be-
tween factual and counterfactual initial conditions; c) the
imagination world can be described as a dynamical system
of multiple subjects with continuous evolution and instanta-
neous interactive events between them.

Therefore, this paper defines a new problem formulation
— counterfactual dynamics forecasting. In this task, a data
instance is a pair of sequences: one is the factual observa-
tion, and the other is the counterfactual series to be esti-
mated based on its first slot. The two initial slots of factual
sequence and counterfactual sequence differ in a constrained
extent. The research (Byrne 2019) classifies counterfactu-
als into four types: additive, subtractive, better-world and
worse-world. Such categorization is based on the evidence
of psychology and cognitive science about human reason-
ing. On the basis of this study, we explore further the fea-
sible categorization in the context of quantitative reasoning.
By formulating the differences between initial values of fac-
tual and counterfactual series, we characterize three types
of counterfactuals as observation counterfactuals (Type I),
covariate counterfactuals (Type II) and subtractive counter-
factuals (Type III). Figure 1 gives an illustration of counter-
factual types by using a bouncing ball system as example.
Figure 1a shows the factual trajectories of three balls. The
observation variables include location and velocity of each
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(a) Factual data (b) Observation counterfactuals
(Type I)

(c) Covariate counterfactuals
(Type II)

(d) Subtractive counterfactuals
(Type III)

Figure 1: Example of different types of counterfactuals.

ball, and the invisible covariates include mass, friction coef-
ficients and restitution coefficients. In Figure 1b, the orange
ball is moving in a smaller velocity (observation counterfac-
tual) so that it is too late to collide with the blue one. Figure
1c describes what would happen if the orange ball becomes
heavier enough (covariate counterfactual). Figure 1d shows
the alternative outcome if one of the balls is removed (sub-
tractive counterfactual).

All the three types of counterfactuals have some existing
applications. For example in computer vision regime, Co-
Phy (Baradel et al. 2020) instantiates the factual sequences
as videos, where four cubes are stacked into a tower in an un-
stable state, and the subsequent falling down trajectories of
all cubes are recorded. The observation counterfactuals are
made by changing the horizontal location of the top cube.
The task is to predict whether the tower will collapse or not,
and estimate the corresponding trajectories of cubes. Com-
Phy (Chen et al. 2022) considers videos of multi-object sys-
tem under covariate counterfactual scenario. The dynamical
system consists of the continuous dynamics which are mo-
tions of objects and the instantaneous events which are po-
tential collisions between objects. The goal is to predict the
behaviour of objects if their mass and charge are changed.
An application of Type III counterfactual is the video ques-
tion answering task. CLEVRER (Yi et al. 2020) uses the
same system as that of ComPhy but queries about what
would happen if one of objects is removed. Furthermore,
CRAFT (Ates et al. 2020) introduces static objects — ramp,
platform, basket, wall and ground into the system, and ex-
tends the interactive events to include entering basket.

To simulate the procedure of human counterfactual rea-
soning, the proposed problem formulation supports to take
factual observation as demonstration and differentiate the
initial conditions of factual and counterfactual series in three
constrained extents. Now the important question is how
to realize the imagination world into these series. Inspired
by (Russell and Norvig 2020) which treats AI system as
dynamic agents, we use multi-body rigid dynamical sys-
tem as the realization. It consists of multiple objects with
continuous- and discrete-time dynamical processes analo-
gous to individual evolution and interactive events in the real
world. The dynamical system can be illustrated by factor
graph (e.g., Figure 2). There are two types of nodes repre-
senting observational objects and latent covariates. An edge
links two objects if there is an interaction between them.
As shown in Figure 2, observation nodes (Xis) change their
states separately in Markov processes depending on the pre-

vious states and unobservable covariates (Uis). Type I to III
counterfactual happens when an intervention is made on ob-
servation nodes (DI in Figure 2b), covariate nodes (DII) and
edges (DIII) respectively. Type III intervention is to remove
one object. It can be realized as cutting off all edges linked
to the object.

For the proposed counterfactual dynamic forecasting on
multi-body systems problem, we design an intuitive so-
lution. The continuous dynamics are modelled by a La-
grangian network (Finzi, Wang, and Wilson 2020) and in-
stantaneous interactions are modelled by a neural contact
layer (Zhong, Dey, and Chakraborty 2021). They are com-
bined as a forecasting module to be trained end-to-end. Two
such forecasting modules are trained simultaneously: one for
factual series; and the other for counterfactual series. The
two modules share all parameters except the covariate neu-
rons to be intervened. Moreover, a component is installed
to capture the difference between two series and coordinate
them at each time step. As the problem setting is under a su-
pervised fashion, the forecasting performance mainly bene-
fits from using the factual series as additional information.
However, successful solutions for this task will provide two
new capabilities for AI agents: learning to generalize for a
limited different scenario; avoiding potential risks for safe
planning by estimating the counterfactual outcomes.

The two contributions of this paper are:

• Introduced a new formulation for counterfactual reason-
ing which provides a quantitative definition of counter-
factual conditions, and formulates the task as dynamics
forecasting.

• Proposed an intuitive solution based on deep networks
for the new problem statement.

Related Work
Counterfactual treatment effect estimation investigates the
effect of intervention in terms of the expected difference be-
tween outcomes with and without the treatment assignment.
For instance in healthcare application, this technique is used
to estimate the effect of a drug for a certain patient. (Lu et al.
2020) used a variational auto-encoder to model the causal ef-
fects of latent confounders. (Kaddour et al. 2021) extended
the intervention from binary to structural, so that more gen-
eral treatment assignments such as graph, image and text are
supported. (Lewis and Syrgkanis 2021) extended the treat-
ment from fixed to time-varying. (De Brouwer, Gonzalez,
and Hyland 2022) studied the problem on time series data,

1765



(a) Graphic model of the system. (b) Graphic models for different types of intervention.

Figure 2: Graphic models of counterfactual dynamics.

which is close to our problem setting. However, in their task,
before each treatment assignment, common historial series
for both factual and counterfactual observations are given as
inputs.

Causal inference is a research direction with a long his-
tory, but causal relationship is not point of focus in this
paper. Approaches about manipulating the intervention on
latent covariates, graph representation and dynamical data
are related. (Yang et al. 2021) targeted on discovering dis-
entangled factors of images under assumption that these
factors are causally dependent. Therefore, an intervention
can be assigned to a certain factor to generate desired im-
ages. (Huang, Sun, and Wang 2021) focused on social event
graphs that are varying over time. They proposed a coupled
neural ODEs to model the objects’ dynamics, graphs’ dy-
namics and the mutual influence between each other.

Neural ODEs and Hamiltonian/Lagrangian networks
model the physical dynamics based on deep neural net-
works. Neural ODEs (Chen et al. 2018) made a big step
towards neural learning of ODEs. The integration solver
of initial value problem is adapted to be differentiable so
that ODEs can be learned as a network layer end-to-end.
Following that, many variants are invented. Hamiltonian
(Greydanus, Dzamba, and Yosinski 2019) and Lagrangian
networks (Lutter, Ritter, and Peters 2018) take into ac-
count the energy conservation of systems in network train-
ing. They optimize scalar functions (Hamiltonians and La-
grangians) instead of the differential equations. Further-
more, constrained Hamiltonian/Lagrangian networks (Finzi,
Wang, and Wilson 2020) simplified the constraints of sys-
tems in generalized coordinates into Cartesian coordinates.
However, all above methods are only able to model the con-
tinuous dynamics. Learning instantaneous interaction be-
tween objects in dynamical systems by neural networks are
challenging. A recent work (Zhong, Dey, and Chakraborty
2021) developed a differentiable contact model by using a
convex optimization layer, so that the continuous and instan-
taneous dynamics can be learned together end-to-end.

The Problem Statement
To instantiate quantitative counterfactual reasoning, we
consider the sequential forecasting task for uncontrolled
Markov processes under the supervised learning scheme.
The training dataset has N samples, and each sample is

a pair of multivariate time series 〈X(t), X ′(t)〉 : t =

1, · · · , T , where X(t) ∈ Rm×d, X ′(t) ∈ Rm′×d. The ob-
servation vector X(t) at the time point t consists of m inde-
pendent d-dimensional subvectors Xi(t) for m objects. For
example, in a 2d 3-body rigid dynamical system,X(t) ∈ R6

are the concatenated 2d coordinates of the three bodies
X1(t), X2(t), X3(t) ∈ R2. X(t) : t = 1, · · · , T is the fac-
tual series. The first slot of X ′(t) (i.e., X ′(1)) is defined as
the counterfactual initial in relation to the first slot of factual
series, X(1). In the testing phase, given the available obser-
vation 〈X∗(t = 1, · · · , T ), X∗

′
(1)〉, the goal of the coun-

terfactual dynamics forecasting is to estimate the future tra-
jectory starting from X∗

′
(1), i.e., X∗

′
(t = 2, · · · , T ). Thus,

in each data sample, the factual dynamics X(t) is given as a
demonstration, and the target is to predict the counterfactual
outcomes specified by X ′(1).

The difference between X(1) and X ′(1) describes how
far the imaginary condition is away from the fact. Based
on three possible types of the differences, three respective
counterfactual settings are defined and studied in this paper,
which are formulated in a unified framework by using deter-
ministic structural causal models (SCM) (Pearl 2009). The
task can be represented by a SCMM = 〈V,U,F〉 with di-
rected acyclic graph G:
• Xt = {Xi(t), Xi(t + 1)}mi=1 are the observational vari-

ables (nodes of G).
• U = {Ui}mi=1 is the set of unobservable covariate vectors

(nodes of G), one for each object. It is assumed that the
covariates of any one object are independent from those
of others, i.e., Ui ⊥⊥ Uj , ∀i, j.

• E = {Eij}mi,j=1;i6=j is the set of unobservable contact
covariates (associated to the edges of G), where Ei,j is
related to both object i and j, e.g., friction coefficients of
contacts between object i and j.

• F = {fi|fi : Ui×E·i×Pa(Xi(t+ 1)) 7→ Xi(t+ 1)} is
the set of “structural equations” (incoming edges to node
Xi(t + 1) in G), where Pa(Xi(t + 1)) are parents of
Xi(t+ 1) in Xt.

The graphic model is shown in Figure 2a, where Xi(t)
can be the coordinates of an object in multi-body system.
Due to the Markov property, Xi(t + 1) depends on Xi(t)
but not further previous time points. Possible interactions
between objects in the system lead to potential connections
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between nodes, which are drawn as dotted arrows in the fig-
ure. AllXi(t), Xi(t+1) variables are observable, which are
displayed in grey colour. Unobservable covariates Ui (e.g.,
mass) and Eij (e.g., coefficients of friction) determining the
dynamics of Xi(t) are assumed to be fixed over time.

Definition 1 Observation counterfactuals (Type I) An in-
tervention DI (as shown in Figure 2b) is given to one or
more observable variables Xi(t) at t = 1, so that ∆Xi =
X ′i(1) − Xi(1) 6= 0 and the number of objects m = m′.
It should be pointed out that only the treatment on t = 1 is
considered, but not on every time t in the graphic model of
Figure 2b.

Intuitive Example 1 This Type I counterfactuals respect to
human’s imagination about the observations, for example,
to answer the question: “What would happen if the cup is
moved closer to the boundary of the table?” or “To what
extent, the cup will not drop off if it is placed close to the
boundary of the table?”

Definition 2 Covariate counterfactuals (Type II) An in-
tervention DII is given to one of the unobservable variables
Ui, i.e., ∆Ui = U ′i − Ui 6= 0. The changes of latent factors
U will affect the dynamical behaviours of objects.

Intuitive Example 2 An example question is “Could we
avoid sliding if the plastic was replaced by a blanket?”

Definition 3 Subtractive counterfactuals (Type III) The
intervention DIII in Figure 2b is to remove one of objects in
the system, i.e., m′ = m − 1. This treatment is realized by
masking out all edges linked into and out from the object i.

Intuitive Example 3 Imagine that “If the car had not
swerved and hit the wall, would the passenger have been
injured?”

Algorithm
The generative relationship Xi(t+ 1)|Xi(t), Ui, Xj(t), Eij
in Figure 2 is represented by the structural equation fi :
Ui × E·i × Pa(Xi(t + 1)) 7→ Xi(t + 1)}. This paper uses
ODEs to realize fi. Following the common practice (Grey-
danus, Dzamba, and Yosinski 2019) (Lutter, Ritter, and Pe-
ters 2018), in addition to object state p, first-order deriva-
tive v := ṗ is also included as observation, i.e., X(t) =(

p(t)
v(t)

)
. For instance, in the system of Figure 1, p(t) is

the object location in X-Y plane, and v(t) is the velocity
vector in X-Y directions.

Let hθ be the differential equation of continuous-time dy-
namics implemented by a neural network with parameter θ.
Eq. 1 defines the ODEs describing the continuous-time dy-
namics of the system.(

p̃(t+ 1)
v̂(t+ 1)

)
=

(
p(t)
v(t)

)
+

∫ t+1

t

hθ(p(t),v(t), U)dt

(1)

where p(t),v(t) ∈ Rm×d are concatenated observations
of all objects i = 1, · · · ,m at the time step t, and p̃(t +
1), v̂(t + 1) are estimated states of the next time step. U is
learnable parameter representing the invisible covariates.

Before evolving to the next time step t + 1, a differen-
tiable contact layer contact() (Zhong, Dey, and Chakraborty

Figure 3: The proposed network architecture.

2021) is embedded to update v̂ as discrete-time dynamics:

ṽ(t+ 1) = v̂(t+ 1) + contact(p̃(t+ 1), v̂(t+ 1), E)

(2)

where E is a matrix with learnable elements Eij as the con-
tact covariates. contact() function detects possible interac-
tions based on p̃(t + 1) first. If there is no interaction, it
returns zero. Otherwise, it computes the velocity changes
before and after the interaction. Denoting X̃(t + 1) :=(

p̃(t+ 1)
ṽ(t+ 1)

)
, the composite function of Eq. 1 and Eq. 2

is a vector function f : U × E × X(t) 7→ X̃(t + 1) where
each fi(Ui, Ei, Xi(t)) is the structural equation for object i.

The basic assumption in counterfactual reasoning is that
the factual and counterfactual evolution obey the same rules.
Therefore, in the realized dynamical system,X(t) andX ′(t)
follow the same ODEs. From the learning perspective, the
only difference between these two series is that X(t) : t =
2, · · · , T are given as inputs while X ′(t) : t = 2, · · · , T are
values to be predicted. Therefore, for X ′(t), f ′ : U ′ × E′ ×
X̃ ′(t) 7→ X̃ ′(t+ 1) takes the previous step estimation X̃ ′(t)
as input and is composited by the two steps in Eq. 3:(

p̃′(t+ 1)
v̂′(t+ 1)

)
=

(
p̃′(t)
ṽ′(t)

)
+

∫ t+1

t

hθ(p̃
′(t), ṽ′(t), U ′)dt

ṽ′(t+ 1) = v̂′(t+ 1) + contact(p̃′(t+ 1), v̂′(t+ 1), E′)

(3)

where p̃′(1) = p′(1) and ṽ′(1) = v′(1).
To benefit from the demonstration of X(t) during train-

ing, the evolution of difference between X(t) and X ′(t) is
modelled by Eq. 4:(

p̃′∆(t+ 1)
v̂′∆(t+ 1)

)
=

(
p(t+ 1)
v(t+ 1)

)
+

(
p̃′∆(t)− p(t)
ṽ′∆(t)− v(t)

)
+

∫ t+1

t

gφ(p̃
′
∆(t)− p(t), ṽ′∆(t)− v(t), U, U ′)dt

ṽ′∆(t+ 1) = v̂′∆(t+ 1) + contact(p̃′∆(t+ 1), v̂′∆(t+ 1), E′)

(4)

where gφ is a neural network and p̃′∆(1) = p′(1), ṽ′∆(1) =
v′(1). In a simple case, if gφ(p̃′∆(t) − p(t), ṽ′∆(t) −
v(t), U, U ′) := hθ(p

′
∆(t), ṽ′∆(t), U ′) − hθ(p(t),v(t), U),

for interaction free periods, i.e., v̂′∆(t) = ṽ′∆(t), Eq. 4
can be rewritten as X̃ ′∆(t + 1) = X(t + 1) − X(t) −
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(a) Factual observation (b) Type I counterfactuals (c) Type II counterfactuals (d) Type III counterfactuals

Figure 4: The counterfactual dataset of the Bouncing Point Mass system.

(a) Factual observation (b) Type I counterfactuals (c) Type II counterfactuals (d) Type III counterfactuals

Figure 5: The counterfactual dataset of the Chained Pendulums with Ground system.

Algorithm 1: Counterfactual Dynamics Forecasting

Input: {〈X(t), X ′(t)〉}, 〈X∗(t), X∗′(1)〉 : t = 1, · · · , T
Output: X̃∗

′
(t) : t = 2, · · · , T

1: Create learnable parameter U,E.
2: if Type I then
3: Set U ′ = U,E′ = E
4: else if Type II then
5: Create learnable parameter U ′; Set E′ = E.
6: else
7: Create learnable parameter U ′;

X ′(t) := mask(X ′(t)); E′ := mask(E)
8: end if
9: Initialize network parameter θ, φ for hθ and gφ.

10: while epoch < MAX do
11: while t < T do
12: Compute X̃(t+ 1) by Eq. 1 and Eq. 2.
13: Compute X̃ ′(t+ 1) by Eq. 3.
14: Compute X̃ ′∆(t+ 1) by Eq. 4.
15: end while
16: Compute L by Eq. 5.
17: Back propagate and update θ, φ, U , U ′, E and E′.
18: end while
19: return X̃∗

′
(t) = f ′(X̃∗

′
(t− 1), U ′, E′).

∫ t+1

t
hθ(X(t), U)dt + X̃ ′∆(t) +

∫ t+1

t
hθ(X̃

′
∆(t), U ′)dt

where X̃ ′∆(t) :=

(
p̃′∆(t)
ṽ′∆(t)

)
. This adds an additional su-

pervision at each time t asX(t), X(t+1) are known inputs.
The final estimations onX(t) andX ′(t) are optimized by

the mean absolute error:

L =
∑

〈X,X′〉∈D

T∑
t=2

||X̃(t)−X(t)||1 + ||X̃ ′(t)−X ′(t)||1

+ ||X̃ ′∆(t)−X ′(t)||1 (5)

where || · ||1 is `1 norm.

Figure 3 illustrates the pipeline. X and X ′ are inputted
into two neural networks hθ which share all parameters.
odeint is the integration solver (Chen et al. 2018) of initial
value problem with hθ as differential functions and X(t)
(X ′(t)) as initial value. The following contact layers model
interactions. Finally, the three predictions of X̃(t), X̃ ′(t),
and X̃ ′∆(t) are supervised by the L1 loss. The training pro-
cedure is summarized in Algorithm 1. For Type I counterfac-
tuals, U,E are shared by the two networks. While for Type
II counterfactuals, separate U and U ′ are used. For Type III,
the numbers of objects in X and X ′ are set as same m first.
Before feeding into the neural network, a mask is applied to
cut all edges linked into and out from the intervened object.

Experiments
Benchmark Systems
Two physical systems are used in the experiments. Bouncing
Point Mass and Chained Pendulums with Ground are bench-
marking simulated systems with different types of interac-
tions and dimensions. Figure 4 and Figure 5 give pictorial
examples of the systems respecting to the defined counter-
factual scenarios.

• Bouncing Point Mass. Several balls are bouncing in a
box as shown in Figure 4a. Each ball is a 2d circle with
mass at the center and rotation is not considered. The
sizes of balls in the figure represent their relative mass.
Possible collisions may occur between balls or between
the balls and walls.

• Chained Pendulums with Ground. Three chained pen-
dulums are simulated above a ground. The interactions
include possible collisions between the lowest pendulum
and the ground, and the joint constraints between adja-
cent pendulums.

In the Bouncing Point Mass system, the factual observa-
tion X(t) are constructed from the trajectories of five balls
recording their motion and interaction (as shown in Figure
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(a) RMSEt of Chained Pendulums
with Ground system

(b) MAPEt of Chained Pendulums
with Ground system

(c) RMSEt of Bouncing Point
Mass system

(d) MAPEt of Bouncing Point
Mass system

Figure 6: Errors over time of Type I counterfactuals

(a) RMSEt of Chained Pendulums
with Ground system

(b) MAPEt of Chained Pendulums
with Ground system

(c) RMSEt of Bouncing Point
Mass system

(d) MAPEt of Bouncing Point
Mass system

Figure 7: Errors over time of Type II counterfactuals

(a) RMSEt of Chained Pendulums
with Ground system

(b) MAPEt of Chained Pendulums
with Ground system

(c) RMSEt of Bouncing Point
Mass system

(d) MAPEt of Bouncing Point
Mass system

Figure 8: Errors over time of Type III counterfactuals

4a). The state X(t) consists of 2d locations and velocities of
all balls at time t, i.e., X(t) ∈ R5×4. Type I counterfactuals
are drawn from different initial states of all balls. Therefore,
the samples 〈X(t), X ′(t)〉 are made of the pair of trajecto-
ries as Figure 4a (X(t)) and Figure 4b (X ′(t)). In Type II
counterfactuals, the mass of one object Ui is changed. The
initial observation values X ′(1) are randomly sampled dif-
ferently from X(1) to avoid that if no collision occurs in the
testing phase, the predictions X ′(t = 2, · · · , T ) are equal to
X(t = 2, · · · , T ), which are known as inputs. In Type III
counterfactuals, one ball is removed from the system, e.g.,
X(t) as shown in Figure 4a and X ′(t) as shown in Figure
4d are paired as an instance. The dataset for Chained Pendu-
lums systems is constructed by the same strategy. For each
dataset, 800, 100 and 100 pairs of trajectories are used as
the training, validation and testing set respectively follow-
ing (Zhong, Dey, and Chakraborty 2021).

Evaluation Metrics
Root mean squared error (RMSE) and mean absolute per-
cent error (MAPE) are used as performance indexes in the
experiments. The error is computed over the 50 forecast-
ing time steps as well as on the whole predicted trajecto-
ries. Eq.6 lists their definitions, where X̃ ′(t)i is the predicted

value for i-dimension of X ′(t).

RMSEt:
1

|D|
∑
X′∈D

√√√√m×d∑
i=1

(X ′(t)i − X̃ ′(t)i)2

RMSE:
1

T − 1

t=T∑
t=2

RMSEt

MAPEt:
1

|D|
∑
X′∈D

m×d∑
i=1

∣∣∣∣X ′(t)i − X̃ ′(t)i
X ′(t)i

∣∣∣∣
MAPE:

1

T − 1

t=T∑
t=2

MAPEt

(6)

Baselines and Implementation
Three forecasting baselines are compared:

• CLNNwC (Zhong, Dey, and Chakraborty 2021) models
physical systems by a constrained Lagrangian neural net-
work (LNN) and a differentiable contact layer. The for-
mer tackles the continuous evolution, the latter handles
instantaneous interaction. They are trained end-to-end.
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Figure 9: Mean errors of Type I counterfactuals on the dif-
ferent systems

• MLP-CLNN (Finzi, Wang, and Wilson 2020) uses the
same LNN as that in CLNNwC to learn the ODEs, while
replaces the contact layer with a MLP to estimate the
changes of state values before and after contacts.

• IN-CP-SP (Battaglia et al. 2016) is the interaction net-
works proposed for modelling interactive events, which
requires to input the physical properties (mass, coeffi-
cients of friction and restitution).

All network backbones are implemented in the same way
as (Zhong, Dey, and Chakraborty 2021). Code and data are
available on https://github.com/yanzhuliu/cf lnn.

Results for Observation Counterfactual
Type I setting assumes that the same underlying latent co-
variates and differential equations are shared by the factual
series and counterfactual series. The only difference is the
sampled initial state in the observation space. Therefore, tra-
ditional forecasting models can also be applied by consider-
ing X ′(t) as data samples instead of pairs 〈X(t), X ′(t)〉.
In the testing phase, only first frame X ′(1) is given for all
methods, and the states in 50 time steps ahead are to be pre-
dicted.

Figure 6 reports the RMSE@t and MAPE@t errors over
the time horizon in log scale. MLP-CLNN and IN-CP-SP
perform worse mainly because the learning of contact(·, ·, ·)
in Eq. 4 is not accurate. The contact modules predict the
changed velocity during the collision or limit constraints of
pendulum strings, which will dramatically affect future con-
tact detection. Therefore, it can be observed that at some
points, the error of MLP-CLNN goes out of scope as shown
in Figures 6a and 6b.

The proposed method outperforms CLNNwC on Chained

Figure 10: Mean errors of Type II counterfactuals on the dif-
ferent systems

Pendulum system and is comparable on Bouncing Point
Mass system. It performs similarly to CLNNwC because
both ODEs and contact module are same. Figure 9 reports
the average error for 10 time steps ahead. For both systems,
the proposed model outperforms all baselines.

Results for Covariate Counterfactual
The Type II counterfactuals make changes on latent vari-
ables to affect the dynamics. In the experiments, we only
change the mass of one object, and keep other properties are
remained same. The unobservable covariates in the counter-
factuals are learned by supervising both factual and counter-
factual dynamics. Figure 7 and Figure 10 show the perfor-
mance comparison. It is observed that the proposed method
produces several obvious peak errors, but in the earlier time
steps the curves are smoother than those of CLNNwC. The
benefit comes from one-step supervision onX(t) prediction.
To estimate X(t + 1) by hθ(·) on each step t, the input is
the ground truth of X(t) and whether there is interaction in
X(t) at this time step t is known, which enhances the learn-
ing of the continuous part of the dynamics.

Results for Subtractive Counterfactual
For the Bouncing Point system, the properties and network
parameters for same number of objects are shared for X(t)
and X ′(t), but the object removed in X ′(t) is set as zero ve-
locity and masked out from any collisions. For the Chained
Pendulum system, the case is different. Because it is not rea-
sonable to set an invisible linked object forX ′(t), the trajec-
tory of the removed object is directly deleted fromX(t). But
the actual collisions with it are left in theX(t), and may hurt
the performance of the cross-supervision with X ′(t). Figure
8 and Figure 11 summarize the results on this type of coun-
terfactuals.

Conclusion and Future Work
Counterfactual imagination is a powerful reasoning capabil-
ity. This paper made effort to formulate it in quantitative set-
tings so that AI algorithms can be applied and evaluated.
Based on deep networks, we proposed an approach to solve
the task in a dynamical forecasting problem and the effec-
tiveness is demonstrated in the experiments. The limitations
of current study is the lack of real-world dataset. Down-
stream tasks such as video prediction and video QA as dis-
cussed in introduction are potential applications.

Figure 11: Mean errors of Type III counterfactuals on the
different systems
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