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Abstract

Low-light video enhancement (LLVE) is an important yet
challenging task with many applications such as photograph-
ing and autonomous driving. Unlike single image low-light
enhancement, most LLVE methods utilize temporal informa-
tion from adjacent frames to restore the color and remove
the noise of the target frame. However, these algorithms,
based on the framework of multi-frame alignment and en-
hancement, may produce multi-frame fusion artifacts when
encountering extreme low light or fast motion. In this paper,
inspired by the low latency and high dynamic range of events,
we use synthetic events from multiple frames to guide the en-
hancement and restoration of low-light videos. Our method
contains three stages: 1) event synthesis and enhancement, 2)
event and image fusion, and 3) low-light enhancement. In this
framework, we design two novel modules (event-image fu-
sion transform and event-guided dual branch) for the second
and third stages, respectively. Extensive experiments show
that our method outperforms existing low-light video or sin-
gle image enhancement approaches on both synthetic and real
LLVE datasets. Our code will be available at https://gitee.
com/mindspore/models/tree/master/research/cv/LLVE-SEG.

1 Introduction
The image quality in low-light or under-exposure condi-
tions is often unsatisfactory, so image/video enhancement
in low light has been an active research topic in computer
vision (Wang et al. 2021; Jiang et al. 2022b). However, it
is challenging due to strong noise, detail loss, non-uniform
exposure, etc. These problems become even more serious in
videos taken from dynamic scenes. In this paper, in contrast
to low-light, we loosely call bright-light and day-light im-
ages/videos/events normal-light images/videos/events.

Most of fully-supervised deep-learning based low-light
video enhancement (LLVE) methods (Lv et al. 2018; Jiang
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Figure 1: Comparison between (a) Traditional frames-
based LLVE method and (b) Our event-image fusion LLVE
method. (c) Visual comparison between a recent LLVE
method SDSDNet (Wang et al. 2021) and ours. Our method
can better remove noise, maintain details and avoid mis-
aligned artifacts of multi-frame fusion.

and Zheng 2019; Wang et al. 2021) or video recon-
struction methods (Xue et al. 2019; Wang et al. 2019b;
Isobe et al. 2020; Dai et al. 2022) are based on the
multi-frame alignment-and-enhancement framework. This
pipeline firstly utilizes some techniques, e.g., 3D convolu-
tion (Lv et al. 2018; Jiang and Zheng 2019), deformable
convolution (Isobe et al. 2020; Dai et al. 2022), or flow-
based alignment (Xue et al. 2019), to align the temporal in-
formation from adjacent frames to the reference frame, and
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then uses an enhancement network for noise removal and
illumination correction (see Fig. 1(a)). However, when fac-
ing extreme low light or significant motion in videos, these
algorithms may produce multi-frame fusion artifacts in the
predicted images (see the results of SDSDNet in Fig. 1(c)).

Existing methods face some potential difficulties. First,
sensor noise is not negligible in low signal-to-noise low-
light scenarios. This noise hinders the network from learning
the alignment of temporal features. Second, the interference
between strong noise and image details causes the enhance-
ment network to remove some image details inevitably.

In this paper, inspired by the low latency and high
dynamic range of events, we use synthetic events to
guide the enhancement and restoration of low-light videos.
In general, events are captured by event cameras (e.g.,
DAVIS240C (Mueggler et al. 2017)), which contain sparse
and asynchronous intensity changes of the scene, instead of
the color and intensity as in normal images. Recently, Gehrig
et al. (Gehrig et al. 2020) present a method that can convert
videos recorded with conventional cameras into synthetic re-
alistic events. The pioneering work applying event informa-
tion to low-light enhancement is SIDE (Zhang et al. 2020).
However, their work studies the transformation from real
events to single images, and due to the difficulty of collect-
ing real event-image pairs, it is an unpaired learning method.
Differently, we focus on the fusion between synthetic en-
hanced events and video frames, where the synthetic events
and frames are paired.

Unlike the conventional two-stage video reconstruc-
tion/enhancement pipeline, we propose a three-stage LLVE
pipeline with the guidance of synthetic events: 1) event syn-
thesis and restoration; 2) event-image fusion; 3) low-light
enhancement (see Fig. 1(b)). The first stage is event-to-
event, aiming to obtain normal-light events from low-light
events. Due to the sparsity of events and the interpolation
of fast motion by an event synthesis algorithm, our network
can restore normal-light events well and solve the problems
of noise, color shift, and detail loss based on the enhanced
events (see Fig. 2).

Different from most event-image fusion methods (Pini,
Borghi, and Vezzani 2018; Pini et al. 2019; Han et al. 2020;
Paikin et al. 2021; He et al. 2022), which combine event and
image features by simply concatenating them, we design a
novel Event and Image Fusion Transform (EIFT) module for
better fusing the sparse event features and image features in
the second stage of our pipeline. And in the last stage, we
design an Event-Guided Dual Branch (EGDB) module for
low-light enhancement. Using the mask generated by the en-
hanced events, the image can be divided into areas with little
change and areas with sharp change during a period of time.
Moreover, the proposed global branch and local branch in
EGDB can deal with these two kinds of areas, respectively.
A transformer network is used in the global branch to cap-
ture global illumination information.

In summary, we make the following contributions:
• A novel three-stage pipeline with the guidance of syn-

thetic events for low-light video enhancement is pro-
posed. It consists of event synthesis and restoration, event
image fusion, and low-light enhancement.
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Figure 2: Challenges of low-light image/video enhancement.
When comparing the events of normal-light images and low-
light images, we find that low-light enhancement faces chal-
lenges of strong noise, color shift, and detail loss. These
problems are hard to notice in normal-light images, but are
apparent in the event voxels.

• We design a novel Event and Image Fusion Transform
(EIFT) module for event-image fusion and an Event-
Guided Dual Branch (EGDB) module for low-light en-
hancement.

• Extensive experiments on both synthetic and real LLVE
datasets show that our method outperforms both the
state-of-the-art (SOTA) low-light video and single image
enhancement approaches.

2 Related Work
CNNs and Transformers are playing critical roles in
image/video restoration/reconstruction (Liu et al. 2020a;
Zheng et al. 2020, 2021; Liu et al. 2020b,c; Zheng et al.
2022; Dai et al. 2021; Li et al. 2022; Zhao et al. 2021b; Er-
shov et al. 2022; Wang et al. 2023). This section discusses
the most related methods, including low-light video en-
hancement, event-image fusion, and low-level vision Trans-
formers.
Low-Light Video Enhancement (LLVE). This line of work
focuses on how to utilize temporal information from ad-
jacent frames. They can be divided into paired learning
and unpaired learning. In the former, most methods use the
alignment-and-enhance framework for LLVE. Lv et al. (Lv
et al. 2018) and Chen et al. (Chen et al. 2019) use 3D con-
volution and their networks can combine temporal informa-
tion from image sequences. Wang et al. use a mechatronic
system to collect a dataset named SDSD, where the normal-
light and low-light image pairs are well aligned (Wang et al.
2021). They also use deformable convolutions in the multi-
frame alignment stage. Some approaches try to solve the
LLVE problem by combining an image-based model with
temporal consistency loss (Chen et al. 2019; Zhang et al.
2020). However, most of the temporal consistency losses
in LLVE (Zhang et al. 2021a) or other video restoration
tasks (Yang et al. 2018; Zhao et al. 2021a) are optical-flow
based, which may be limited by the error in optical flow esti-
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mation. As for unpaired learning methods, to solve the lack
of data problem, Triantafyllidou et al. (Triantafyllidou et al.
2020) convert normal-light videos to low-light videos using
two CycleGAN (Zhu et al. 2017) networks. In this frame-
work, normal-light videos are first converted into long expo-
sure videos and then into low-light videos.
Event-Based Image/Video Reconstruction. The event
camera can handle high-speed motion and high-dynamic
scenes because of its dynamic vision sensor. Therefore,
events can be applied to image or video reconstruction
tasks including video deblurring (Jiang et al. 2020), super-
resolution (Han et al. 2021; Jing et al. 2021), joint filter-
ing (Wang et al. 2020), and tone mapping (Simon Chane
et al. 2016; Han et al. 2020). Ours is the first to explore the
use of synthetic events in low-light video enhancement.
Event-Image Fusion. Event features and image features are
of different modals, with different characteristics. Event fea-
tures reflect motion changes, so most values in the scene
at a certain moment are zero. Image features in low light
contain both strong noise and scene structure. Most works
simply concatenate or multiply event features and image
features (Pini, Borghi, and Vezzani 2018; Pini et al. 2019;
Han et al. 2020; Paikin et al. 2021; He et al. 2022; Tomy
et al. 2022). Han et al. (Han et al. 2020) fuse the low-
dynamic-range image features and the event features for
high-dynamic-range image reconstruction. He et al. (He
et al. 2022) concatenate the optical flow, event, and image
together for video interpolation. Tomy et al. (Tomy et al.
2022) multiply the multi-scale image and event features for
robust object detection. Very recently, Cho et al. (Cho and
Yoon 2022) design an event image fusion module for depth
estimation. The differences between these methods and our
work are: 1) we deal with the LLVE task; 2) they mainly use
image features to densify sparse event features, while in our
work, event and image features enhance each other.
Low-Level Vision Transformers. In recent years, Trans-
formers have been applied to many fields (Chen et al. 2022a;
Liu et al. 2022c) including low-level vision, and they can
be divided into multi-task and task-specific Transformers.
For multi-task Transformers, Chen et al. (Chen et al. 2021)
and Liu et al. (Liu et al. 2022a) propose IPT and TAPE,
respectively, which are pre-trained on several low-level vi-
sion tasks. Task-specific Transformers also obtain state-of-
the-art performances in many applications including super-
resolution (Yang et al. 2020a; Chen et al. 2022b), derain-
ing (Xiao et al. 2022; Liu et al. 2022b; Jiang et al. 2022a),
inpainting (Zeng, Fu, and Chao 2020), and HDR (Chen et al.
2023). In our paper, we use Transformer in the enhancement
stage to deal with the areas in the videos without fast motion.

3 Method
In this section, we first describe our overall pipeline and then
present the three stages of our method, including event syn-
thesis and restoration, event-image fusion, and low-light en-
hancement.

As shown in Fig. 3, firstly, the original event voxels are
obtained by synthesizing light sequences (Sec. 3.1). And the
restored event voxels are generated from a U-Net (Sec. 3.1).
The image and the restored event voxels are encoded to deep

EIFT

Low Light Image

Restored
Event Voxels

EGDB

Original Event Voxels

Event Restoration

Predicted Image

Low Light Video

Event 
Synthesis

Figure 3: Architecture of our overall network. The original
event voxels pass the event restoration network and generate
the restored event voxels. And the low-light image and the
restored event voxels are combined to obtain the final en-
hanced normal-light results.

features, fused by the EIFT module (Sec. 3.2) and enhanced
by the EGDB module (Sec. 3.3). Finally, the decoder outputs
the enhanced images.

3.1 Events Synthesis and Restoration
Event Synthesis. To synthesize original event voxels, we
have the following three steps: frame upsampling, event gen-
eration, and event voxel generation. In the first step, we use
an off-the-shelf up-sampling algorithm (Xiang et al. 2020)
to get N ′ up-sampled frames with the same resolution (with
N ′ adaptively chosen) from N frames (N ′ > N ). In the
second step, two adjacent frames (from N ′ frames) are sub-
tracted to obtain dx,y,t, and whether an event ei is gener-
ated is determined by the difference. If dxi,yi,ti exceeds a
threshold, we generate an event ei = (xi, yi, ti, pi), where
(xi, yi) and ti are the location and time of the event and
pi = ±1 (pidxi,yi,ti > 0). We use one threshold for low-
light events (set to 2) and another for normal-light events (set
to 5). This is because setting a higher threshold when gen-
erating low-light events will lose some useful events. In the
third step, in order to make the events processed by neural
networks better, it is necessary to convert the discrete event
values {0,+1,−1} into floating-point event voxels. Follow-
ing (Zhu et al. 2019; Weng, Zhang, and Xiong 2021), we
generate the voxels E ∈ RB×H×W as:

Ek=

n∑
i=0

pi max

(
0, 1−

∣∣∣∣k− ti−t0
tn−t0

(B−1)

∣∣∣∣) , k ∈ {1, ..., B},

(1)
where t0 and tn denote the start and end moments of the
events, respectively. B equals to 2N × 3, where N is the in-
put frame number, 2 corresponds to the positive and negative
event voxels, and 3 corresponds to the r-g-b color channels.
This equation shows that we use temporal bilinear interpo-
lation to obtain B voxels of the event temporal information.

Event Restoration. In the event restoration, we aim to
generate restored events from the original events using an
CNN. To the best of our knowledge, there is no available
neural network to transfer low-light events to normal-light
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Figure 4: Architecture of the EIFT module. All the ReLU layers are omitted for clarity.

event voxels. We design a network (see the supplementary
materials) that is able to predict an event probability map
P ∈ RB×H×W and an event voxel map V ∈ RB×H×W

simultaneously. Finally, the restored event voxels are calcu-
lated as:

Er = M(P )V, (2)
where the element Mi(Pi) of M(P ) is 1 when Pi ≥ 0.5 and
0 otherwise. The loss functions that constrain M and V will
be described in Sec. 3.4.

3.2 Event-Image Fusion
Different from most event-image fusion methods (Pini,
Borghi, and Vezzani 2018; Pini et al. 2019; Han et al. 2020;
Paikin et al. 2021; He et al. 2022), which combine event and
image features by concatenating them simply, we design a
novel Event and Image Fusion Transform (EIFT) module for
better fusing the sparse event features and dense image fea-
tures. Our EIFT is based on the mutual attention mechanism,
where the event features and the image features modulate
each other. Specifically, the event feature modulates the im-
age feature by hinting where fast motion happens and distin-
guishing between strong noise and image details; the image
feature modulates the event feature by introducing the color
or semantic information. In our EIFT, such modulation is
achieved by generating the channel transform map and the
spatial attention map from the modulated features. The maps
have values between 0 and 1 indicating the importance of
every element.

Fig. 4 is the designed network structure of EIFT. Each
EIFT module contains two EIFT blocks. In the first block,
F 0
E and F 0

I serve as the main feature and the modulation
feature, respectively. Inspired by (Zamir et al. 2022), to re-
duce computational complexity, our modulation is divided
into cross-channel transform (CCT) and element-wise prod-
uct (EWP). In CCT, the modulation feature passes two par-
allel convolution blocks and generates Q ∈ RHW×C and
K ∈ RC×HW . The dot product of K and Q is performed,
and the Softmax function is applied to generate a C × C
channel transform map. Then it is multiplied by the main
feature. The whole CCT can be formulated as:

X = f1(FE) · Softmax{f3(f2(FI)) · f4(f2(FI))}. (3)

In EWP, the modulation feature first passes through some
convolution blocks to generate a spatial attention map. And
the element-wise multiplication product between the spatial

attention map and the main feature is carried out, which can
be formulated as:

F = σ (f5(X))⊙ f6(f2(FI)). (4)

fi in Eqn. 3 and Eqn. 4 are the convolution blocks indi-
cated in Fig. 4. σ and ⊙ denote the Sigmoid function and
the element-wise production, respectively.

In the second EIFT block, the inputs (outputs of the first
EIFT block) are swapped, where F̃n

E is the modulation fea-
ture and F̃n

I is the main feature. The final outputs of the
EIFT module are Fn

E and Fn
I for the n-th EIFT module. In

this paper, n is set to 2.

3.3 Low-Light Enhancement
In low-light image/video enhancement, illumination estima-
tion/enhancement is important. The previous LLVE methods
often process the whole image using convolution networks.
However, the difficulties for illumination enhancement in ar-
eas with little motion and in areas with fast motion are quite
different. Especially when there is fast motion, where the
illumination will change, the estimated illumination is of-
ten inaccurate. We make two improvements: 1) we use two
branches to deal with these two kinds of areas (with fast
motion, and without fast motion) respectively for illumina-
tion enhancement; 2) we use a Transformer to enhance the
brightness.

Mask Generation. Given the restored event voxels, Er ∈
R(2N×3)×H×W , generated from the first stage (Sec. 3.1), we
use the positive voxels Er,+ ∈ R(N×3)×H×W for generat-
ing the mask M ′, which is computed by:

Mc = max{Er,+
c,1 , Er,+

c,2 , ..., Er,+
c,N}, c ∈ {r, g, b}, (5)

M ′ = max{Mr,Mg,Mb} ∈ RH×W , (6)

where M ′ is then resized to the same resolution as the input
of EGDB. Finally, M ′ is changed to a binary 0-1 mask with
a threshold 0.9.

Network Details. In Fig. 5, EGDB consists of a global
branch and a local branch. In the global branch, we first con-
catenate the Fn

E and the masked image feature (1−M ′)Fn
I

from the event-image fusion stage and perform the adaptive
average pooling to get the feature F ∈ R32×32×2C . Be-
cause of the color uniformity and texture sparsity of these
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Figure 5: Architecture of the EGDB module with the global
branch (upper part) and the local branch (bottom part). All
the ReLU layers are omitted for clarity.

kinds of areas, down-sampling can reduce network parame-
ters without loss of performance. The feature F is then re-
shaped, splited into m feature patches Fi ∈ Rp2×2C , i =
{1, . . . ,m}, where p is the patch size and m = H

p × W
p ,

and passes a self-attention layer and a feed-forward layer of
the conventional Transformer 1. The global branch outputs
Fg with the same size of Fn

E . The local branch with two
residual blocks receives M ′Fn

I and outputs the feature Fl.
Finally, the EGDB module outputs Fc, which is the concate-
nation of Fg and Fl.

3.4 Training and Loss Functions
The training contains two stages. In the first stage, with the
low-light event voxels and the normal-light event voxels, we
train the event restoration network using

Ls1 = Lm + λ1Lv, (7)

where the first term is the binary cross-entropy loss be-
tween the predicted event probability map P and the binary
normal-light voxel mask MG (generated by the normal-light
event voxel ground truth G with a threshold 0.1):

Lm=− 1

HW

HW∑
i=1

MG
i log (Pi) +

(
1−MG

i

)
log (1−Pi) ,

(8)
where Pi ∈ P and MG

i ∈ MG. The second term Lv is the
L1 loss between Er and G.

After the first stage, the parameters of the event restora-
tion network are fixed, and the other networks are trained.
The loss function is defined as:

Ls2 = L1 + λ2Lvgg, (9)

where L1 and Lvgg are respectively the L1 loss and the per-
ceptual loss (Justin, Alexandre, and Li 2016) between the
predicted normal-light image and its ground truth.

4 Experiments and Analysis
In this section, we conduct an ablation study and compare
with state-of-the-art methods.

1See the supplementary materials for more network details.

PSNR↑ SSIM↑ LPIPS↓ Network Size

Image-based
method

DeepUPE 21.82 0.68 – 0.59M
ZeroDCE 20.06 0.61 – 0.08M
DeepLPF 22.48 0.66 – 1.77M
DRBN 22.31 0.65 – 1.12M
Uformer* 23.46 0.72 0.202 20.4M
STAR* 23.39 0.70 0.283 0.03M
SCI* 19.67 0.69 0.298 0.01M
LLFlow* 24.90 0.78 0.182 5.43M

Video-based
method

MBLLVEN 21.79 0.65 0.190 1.02M
SMID 24.09 0.69 0.213 6.22M
SMOID 23.45 0.69 0.187 3.64M
SDSDNet 24.92 0.73 0.138 4.43M
SGZSL* 23.89 0.70 0.308 28.1M

Ours 25.81 0.80 0.126 3.51M

Table 1: Quantitative frame-based low-light enhancement
comparison on SDSD (Wang et al. 2021). The best results
are in bold, and * denotes methods implemented by us using
their official models and other results are cited from (Wang
et al. 2021).

4.1 Datasets and Implementation Details
Datasets. For a real low-light video dataset, we adopt
SDSD (Wang et al. 2021) which contains 37,500 low- and
normal-light image pairs with dynamic scenes. SDSD has
an indoor subset and an outdoor subset. For a fair compar-
ison, we use the same training/test split as in (Wang et al.
2021). We do not consider the real LLVE datasets which are
not released (Jiang and Zheng 2019; Wei et al. 2019) or only
contain static scenes (Chen et al. 2019). In order to have ex-
periments on more scenes and data, following the work (Tri-
antafyllidou et al. 2020), we also perform experiments on
Vimeo90k (Xue et al. 2019). We select video clips whose
average brightness is greater than 0.3 (the highest brightness
is 1) as normal-light videos, and then use the method in (Lv,
Li, and Lu 2021) to synthesize low-light video sequences 2.
We finally get 9,477 training and 1,063 testing sequences,
each with 7 frames, from Vimeo90k.

Implementation Details. We implement our method in
the MindSpore (MindSpore 2022) framework, and train and
test it on two 3090Ti GPUs. The network parameters are ran-
domly initialized with the Gaussian distribution. In the train-
ing stage, the patch size and batch size are 256 and 4, respec-
tively. We adopt the Adam (Kingma and Ba 2015) optimizer
with momentum set to 0.9. The input number of frames N
is set to 5.

4.2 Comparison with State-of-the-Arts
State-of-the-Art Methods. We compare our work with
7 low-light single image enhancement methods (Deep-
UPE (Wang et al. 2019a), ZeroDCE (Guo et al. 2020),
DeepLPF (Moran et al. 2020), DRBN (Yang et al. 2020b),
STAR (Zhang et al. 2021c), SCI (Ma et al. 2022) and
LLFlow (Wang et al. 2022a), one SOTA transformer-
based general image restoration method (Uformer (Wang
et al. 2022b)), and 5 low-light video enhancement meth-
ods (MBLLVEN (Lv et al. 2018), SMID (Chen et al. 2019),
SMOID (Jiang and Zheng 2019), SDSDNet (Wang et al.

2More details are shown in the supplementary materials.

1696



SMID: 22.16ZeroDCE:24.32DeepUPE: 20.32DeepLPF:23.80 SMOID: 25.61

SDSDNet: 25.73 Ours: 27.27SCI: 22.78 Uformer: 23.71 STAR: 25.86 Ground Truth

Input

SGZSL:22.07

LLFlow:25.98

SDSDNet OursSCI Uformer STAR Ground TruthSGZSL

SMIDZeroDCEDeepUPEDeepLPF SMOIDInput LLFlow

Figure 6: Visual comparison between other SOTA methods and ours on two patches of one example from SDSD. The numbers
are PSNR values on the whole image.

Model PSNR↑ SSIM ↑ LPIPS ↓ Network size

ZeroDCE 24.56 0.7533 0.202 0.08M
STAR 24.72 0.7595 0.195 0.03M

Uformer 30.29 0.9203 0.058 20.4M
MBLLVEN 27.06 0.8706 0.083 1.02M

SMOID 29.74 0.9239 0.059 3.64M
SDSDNet 29.06 0.9233 0.064 4.43M

Ours 30.53 0.9254 0.038 3.51M

Table 2: Quantitative frame-based low-light enhancement
comparison on the Vimeo90K dataset.

Model MBLLVEN SMID SMOID SDSDNet SGZSL Ours

FID↓ 0.533 0.552 0.521 0.368 0.722 0.370
Warping Error↓ 2.98 2.85 2.62 4.36 6.13 2.61

Table 3: Quantitative video-based low-light enhancement
comparison on the SDSD dataset. The best results are in bold
and the second best are underlined.

2021) and SGZSL (Zheng and Gupta 2022)). In these meth-
ods, SCI and Zero-DCE are un-supervised, and the models
marked by ∗ in Table 1 and all the models in Table 2 are
implemented using their official models.

Quantitative Results. For frame-based comparison, we
use PSNR and SSIM (Wang et al. 2004), and Learned Per-
ceptual Image Patch Similar (LPIPS) (Zhang et al. 2018) to
compare the restored images. For video-based comparison,
we adopt FID and Warping Error for video-based methods.
These two metrics can well reflect the quality and stabil-
ity of the predicted videos. As shown in Table 1 and Table

Model PSNR ↑ SSIM↑ LPIPS↓
EIFT → UNet 25.54 0.79 0.135

W/o CCT 25.46 0.78 0.141
W/o EWP 25.52 0.79 0.138

W/o Event Guidance 25.49 0.78 0.143
W/o Global Branch 25.34 0.77 0.167
W/o Local Branch 25.42 0.78 0.162

PCD+EGDB (W/o EG) 24.27 0.73 0.185

Full Model 25.81 0.80 0.126

Table 4: Ablation study on SDSD. EG: event guidance.

2, our method obtains the best performances on both SDSD
and Vimeo90K for frame-based comparisons. In Table 3, for
video-based comparison, our method gets the 2nd on FID
(only 0.002 lower than the best method) and the 1st on Warp-
ing Error without using any stability loss like SMID.

Qualitative Results. In Fig. 6, we show visual compar-
isions on SDSD. Most single-image enhancement methods
either produce some noise (DeepLPF, ZeroDCE, Uformer
and STAR) or have color shift (DeepUPE and SCI). As for
the video-based methods, SMID does not restore the color
well, SMOID blurs the details. The deviation of noise map
estimation by SDSDNet results in a certain degree of noise
in the prediction. With the help of events, our method re-
stores the color and removes the noise simultaneously. We
show other visual results on Vimeo90K in the supplemen-
tary materials, where ours also outperforms the others.

4.3 Ablation Study
In this section, we do an ablation study based on the SDSD
dataset and show the results in Table 4.
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Ground Truth Events
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Figure 7: Illustration of how the synthetic events help the
restoration of low-light videos. EG: event guidance.

Network Architecture. First, we analyze the effective-
ness of the network architecture.

EIFT. We construct three models: 1) EIFT → UNet. We
replace the EIFT module with the UNet (Ronneberger, Fis-
cher, and Brox 2015) which has a similar model size with
EIFT in the event-image fusion. The two feature maps, F i

E

and F i
I , i = 0, 1, are concatenated and used as the input

to the UNet. 2) W/o CCT. We remove the cross-channel
transform operation in EIFT. 3) W/o EWP. We remove the
element-wise product operation in EIFT. The PSNR value of
these models drops 0.27dB, 0.35dB and 0.29dB respectively.
This result shows the effectiveness of our EIFT module.

EGDB. In the low-light enhancement stage, we also build
three modified models for ablation study. 1) W/o Event
Guidance, which means that the map generation block is re-
moved and the input image features are not masked. 2) W/o
Global Branch, which removes the global branch in EGDB.
Note that we increase the number of the residual blocks in
‘W/o Global Branch’ to make the network parameter amount
equal to the full model. 3) W/o Local Branch, which re-
moves the local branch in this model. The PSNR value of
these models drop 0.32dB, 0.47dB, and 0.39dB respectively.
The result shows the effectiveness of our EGDB module.

Effectiveness of the Event Guidance. To show the ef-
fectiveness of the event guidance, we build a model named
‘PCD+EGDB (W/o EG)’ in Table 4. The input of this model
is five consecutive frames, and the network size is similar
to the full model. The first part of ‘PCD+EGDB (W/o EG)’
is the PCD module in (Wang et al. 2021) and the EGDB
module of the second part is without the events (the same
as W/o Event Guidance). We can see that the PSNR de-
creases sharply by 1.54dB, which shows the effectiveness
of the event guidance and our pipeline.

4.4 Visualization of the Restored Event Voxels
In Fig. 7, we give some results of restored event voxels
to show how the restored events help to enhance the low-
light videos. On the low-light voxels in the top row, we
can see that the events contain noise and color shift. Our

Figure 8: Visual comparison between some SOTA methods
and ours on the Loli-Phone dataset.

event restoration network successfully removes these arti-
facts. Our result has much fewer artifacts compared with
the prediction of ‘PCD+EGDB (w/o EG)’. The bottom row
example demonstrates that with less noise in the restored
events, our result is sharper and keeps better details.

4.5 Generalization to Other Real Videos
To verify the generalization ability of our method on other
real low-light videos, we also test it and some SOTA
low-light enhancement methods (including MBLLVEN,
SMOID, KinD++ (Zhang et al. 2021b), RetinexNet (Wei
et al. 2018), and RRDNet (Zhu et al. 2020)) on the Loli-
Phone dataset (without ground truth) (Li et al. 2021). Two
examples are shown in Fig. 8. From the images, we can see
that the enhancement of low-light videos by MBLLVEN and
RRDNet is limited. KinD++ and RetinexNet produce some
color artifacts. The results of SMOID contain multi-frame
fusion artifacts (zooming in to see the upper left part of the
first result by SMOID). The prediction by our method does
not have the issues of those methods. Another advantage of
our method is that with the help of events, it better deals with
the white balance problem in low light. Under natural light,
the floor and wall should appear white or gray. However, the
results predicted by other methods are yellowish, while our
results are gray.

5 Conclusions
We propose to use synthetic events as the guidance for low-
light video enhancement. We design a novel Event and Im-
age Fusion Transform (EIFT) module for event-image fu-
sion and an Event-Guided Dual Branch (EGDB) module for
low-light enhancement. Our method outperforms both the
state-of-the-art low-light video and single image enhance-
ment approaches. It takes extra time to synthesize the events
(about 20% of the total inference time). Future work in-
cludes exploring better ways to restore the events in low-
light conditions and fusing events and images.
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