
Fast Fluid Simulation via Dynamic Multi-Scale Gridding

Jinxian Liu1, Ye Chen1, Bingbing Ni1*, Wei Ren2, Zhenbo Yu1, Xiaoyang Huang1

1Shanghai Jiao Tong University, Shanghai 200240, China
2Huawei Hisilicon

{liujinxian, chenye123, nibingbing}@sjtu.edu.cn
renwei.ai@huawei.com, {yuzhenbo, huangxiaoyang}@sjtu.edu.cn

Abstract

Recent works on learning-based frameworks for Lagrangian
(i.e., particle-based) fluid simulation, though bypassing iter-
ative pressure projection via efficient convolution operators,
are still time-consuming due to excessive amount of parti-
cles. To address this challenge, we propose a dynamic multi-
scale gridding method to reduce the magnitude of elements
that have to be processed, by observing repeated particle mo-
tion patterns within certain consistent regions. Specifically,
we hierarchically generate multi-scale micelles in Euclidean
space by grouping particles that share similar motion pattern-
s/characteristics based on super-light motion and scale esti-
mation modules. With little internal motion variation, each
micelle is modeled as a single rigid body with convolution
only applied to a single representative particle. In addition, a
distance-based interpolation is conducted to propagate rela-
tive motion message among micelles. With our efficient de-
sign, the network produces high visual fidelity fluid simula-
tions with the inference time to be only 4.24 ms/frame (with
6K fluid particles), hence enables real-time human-computer
interaction and animation. Experimental results on multiple
datasets show that our work achieves great simulation accel-
eration with negligible prediction error increase.

Introduction
Simulations of complex physics are invaluable to many sci-
ence and engineering disciplines, e.g., computational fluid
dynamics, computer graphics. A wide range of physical pro-
cesses such as the motion of water-like fluids shows its great
application value in animation and the human-computer in-
teraction. These applications put forward high requirements
for the efficiency of simulation systems.

As we know, most physical processes such as fluid me-
chanics are described by partial differential equations. Tra-
ditional fluid simulators usually design numerical solvers
to solve the Navier-Stokes equations. However, such meth-
ods require substantial computational resources and are hard
to extend. Thereby, many works (Li et al.; Ummenhofer
et al.; Tompson et al.; Morton et al.; Battaglia et al.; Mrowca
et al.; Sanchez-Gonzalez et al.; Kim et al.) seek learning-
based methods for help. Training simulators directly from

*Corresponding Author: Bingbing Ni.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

observed data is an attractive alternative to traditional simu-
lators, due to that learning-based methods often show bet-
ter generalization ability and are more extensible. There
are some choices of fluid representations, among which La-
grangian representations based on particles are particularly
popular and widely used. However, a fluid sample usually
contains thousands of particles and even tens of thousands
of particles when the scene is complicated. To build a high-
precision and physical-level fluid simulation system, con-
volutions are usually performed on each particle to facil-
itate particle-wise motion prediction. Although some effi-
cient convolution operators (Thomas et al.; Ummenhofer
et al.) have been proposed, performing convolutions on such
kinds of irregular data is still expensive, especially when the
number of particles is large. We can sacrifice some precision
and achieve a significant speedup in some application-level
scenarios that only pursue visual fidelity simulation such as
animation and the human-computer interaction.

To this end, we develop a dynamic multi-scale gridding
method and modify the second-order Runge-Kutta for faster
and high visual fidelity fluid simulation. The framework of
our method is shown in Figure 1. During training, we gen-
erate multi-scale micelles by grouping particles that share
similar motion patterns for training data based on the Oc-
tree generation algorithm. Specifically, we first partition all
particles in Euclidean space into eight octants. Then we de-
fine a physical quantity named velocity-entropy to describe
the chaos (i.e., the degree of internal motion variation) of
each octant. We iteratively partition the space into multi-
scale octants/grids/micelles until the chaos of all octants
is lower than a threshold and return the depth of octant to
which each particle belongs. Through this procedure, a La-
grangian fluid sample is divided into multi-scale local ar-
eas and each area contains particles that share similar mo-
tion patterns. Next, we approximately take each micelle as
a rigid body, and perform the efficient Continuous Convo-
lution (Ummenhofer et al.) on each micelle by taking its
gravity center as the center point and particles in this mi-
celle as neighbors. Fast linear interpolation between gravity
centers and fluid particles is applied to propagate message
between micelle features and extract particle-wise features.
Finally, we construct a lightweight ConvNet to learn fluid
mechanics. However, computing velocity-entropy is time-
consuming for inference. Hence we train the ConvNet to

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

1675

Dynamic

Step !
Fluid Particles Multi-scale Micelles

Simulator

"#

"#$%∆'

Next Step

Micelles-CConv

+

Micelle

C
C

onv

…

MLP

ℱ
)
*+,--,.

ℱ
/012*+-,.

Linear
Interpolation

Gridding

Time
Integration

"

Fluid
Particles

C
C

onv
M

-
C

C
onv

Static
Particles +

!×32

!×3
!×10

∆'

M
-

C
C

onv

M
-

C
C

onv!×32

+!×64

!×64

M
-

C
C

onv
M

-
C

C
onv

Architecture of the simulator M-
CConv

Step	! + 1
Fluid Particles

Figure 1: The overall framework of our method. CConv and M-CConv denote Continuous Convolution and our proposed
Micelle-CConv respectively. Static denotes the static particles sampled from box. The number represents the channel length.

predict a scale factor supervised by the depth returned dur-
ing multi-scale gridding for each particle. During inference,
we efficiently generate multi-scale micelles directly accord-
ing to the statistics of the predicted scale factors. To achieve
further acceleration, we double the time-step and modify the
second-order Runge-Kutta to be adaptive to learning-based
method and improve accuracy during inference. Our method
achieves high visual fidelity fluid simulation with extremely
fast speed. Moreover, our proposed multi-scale gridding al-
gorithm can be easily combined with most learning-based
Lagrangian simulation systems and achieves acceleration.

Related Work
Conventional Fluid Simulation
Smoothed Particle Hydrodynamics (SPH) (Monaghan) is
one popular particle-based method, which evaluates pres-
sure and viscosity forces around each particle, and up-
dates velocities and positions of particles accordingly. Many
variants of SPH (Solenthaler and Pajarola; Bender and
Koschier) have also been widely used to model complex
real-world phenomena for visual effects. Position-based dy-
namics (PBD) (Müller et al.) and Material point method
(MPM) (Sulsky, Zhou, and Schreyer) are methods designed
for interacting, deformable materials. Incompressibility and
collision dynamics involve resolving pairwise distance con-
straints between particles, and directly predicting their posi-
tion changes in PBD. The hybrid Eulerian/Lagrangian MPM
uses a continuum description of the governing equations and
utilizes user-controllable elasto-plastic constitutive models.
Recently, some differentiable particle-based simulators (Hu
et al.; Holl, Thuerey, and Koltun) have been proposed to
solve simulation and control problems. Although these con-
ventional simulation systems are robust and mature, they re-
quire substantial computational resources.

Learning-based Fluid Simulation

Recently, numerous works (Ladicky et al.; Kim et al.; Li
et al.; Ummenhofer et al.; Sanchez-Gonzalez et al.) have
been proposed to learn fluid simulators using neural net-
works. They show that learning-based methods are capable
of synthesizing plausible fluid simulations. Besides, compu-
tational efficiency improvement is the most attractive ben-
efit for these families of methods, which enable fluid sim-
ulations to gain accelerations on the order of one or two
compared with conventional simulators. A fast SPH simu-
lation developed in (Ladicky et al.) depends on hand-crafted
features and uses regression forests to regress motion vec-
tors. It is not an end-to-end learning-based system. As for
other learning-based fluid simulators, there are three main
sets of methods, GAN-based, CNN-based and GNN-based
methods, which utilize different kinds of deep learning tech-
niques. Kim et al. (Kim et al.) propose a generative network
to conduct fluid simulations, and it is reported to gain 700X
performance speed-ups compared with conventional CPU
solvers. Ummenhofer et al. (Ummenhofer et al.) present a
simple, novel and effective N-D convolution to the continu-
ous domain (i.e., Continuous Convolution), which can be ap-
plied to perform particles-based fluid simulation. The Con-
vNet constructed in (Ummenhofer et al.) shows obviously
lower error compared to previous learning-based methods
such as DPI-Nets (Li et al.), which indicates its ability to
capture better inherent physics. Moreover, the Continuous
Convolution outperforms previous convolutions (Schenck
and Fox; Wang et al.; Fey et al.; Thomas et al.) designed for
point cloud learning and as reported it accelerates simula-
tions several times. (Sanchez-Gonzalez et al.; Pfaff et al.) are
GNN-Based methods, and they perform better in generaliza-
tion and have more flexibilities. However, GNN-based meth-
ods are usually computational inefficient. Although these

1676

learning-based methods are relatively more efficient than
conventional methods, it is hard to apply these learning-
based methods to real-time applications. In this work, we
propose an efficient particle and learning based system to
perform fast and high visual fidelity fluid simulation.

Preliminary: Fluid Simulation with
Continuous Convolutions

Ummenhofer et al. (Ummenhofer et al.) present an efficient
ConvNet based on Continuous Convolution (i.e., CConv) for
particle-based fluid simulation. We choose this architecture
as the backbone of our method due to its efficiency, thereby
we review it in this section. CConv performs better than
more complicated representations (Schenck and Fox; Wang
et al.; Fey et al.; Thomas et al.), despite its simplicity. With
the help of simple linear interpolation, the grid-based filter
representation usually used for discrete convolutions is ex-
tended to the continuous domain. It can assign varying fil-
ter values to points at arbitrary/continuous positions while
retaining the compactness and efficiency, only by efficient
lookup of a parameter grid.

A lightweight ConvNet is established by stacking CConvs
to perform fluid simulation. The input fluid particle is repre-
sented as (xn

i , [1,v
n
i , νi]), where xn

i denotes the position of
particle pni at time-step n, vn

i and νi denote the correspond-
ing velocity and viscosity. The intermediate positions xn∗

i
and velocities vn∗

i are computed as:

vn∗
i = vn

i +∆taext, (1)

xn∗
i = xn

i +∆t
vn
i + vn∗

i

2
. (2)

The vector aext represents the acceleration controlled by ex-
ternal forces such as gravity. Then the ConvNet is applied
to pass message among fluid particles and handle collisions
with the environment. The particles on the boundaries of the
scene are sampled and treated as static particles sj , whose
normals nj are taken as input features. The ConvNet takes
both intermediate fluid particles and static particles as in-
puts, and predicts correction of the position which results
from all particle interactions including the collision handling
with the scene.

[∆x1, ...,∆xN] = ConvNet({pn∗1 , ..., pn∗N }, {s1, ..., sM}).
(3)

Given the position correction, positions and velocities for
next time-step n+ 1 are updated as:

xn+1
i = xn∗

i +∆xi, (4)

vn+1
i =

xn+1
i − xn

i

∆t
. (5)

Methodology
Dynamic Multi-Scale Gridding
CConv is a relatively efficient convolution operator designed
for irregular particle sets, and its neighborhood searching
module is based on a fully optimized spatial hashing on

Iteration 1

Fluid Particles Multi-scale micelles Multi-scale micelles

Iteration 2

Figure 2: The process of multi-scale gridding. The input 2D
fluid particles are first divided into 4 quadrants according
to their positions. Then we compute the velocity-entropy for
each quadrant. The velocity of the particle is denoted by blue
arrows in the figure, whose direction and length indicate the
direction and magnitude of the velocity respectively.

GPU. However, a real-world Lagrangian fluid sample usu-
ally contains an excessive amount of particles, thereby ap-
plying CConv for each particle is still a very time-consuming
procedure. To achieve further acceleration and realize ex-
tremely rapid fluid simulations, we propose a Dynamic
Multi-Scale Gridding algorithm to divide a large-scale fluid
sample into multi-scale micelles according to their positions
and velocities. We hold a point that particles share simi-
lar motion patterns could be approximately taken as a rigid
body. Hence we group particles into micelles with different
scales, and apply continuous convolutions for each micelle.

Our dynamic multi-scale gridding algorithm is based on
the Octree data structure. Specifically, we first partition the
space by subdividing it into eight octants. Then we com-
pute the velocity-entropy of particles for each octant. The
velocity-entropy is used to measure the internal motion vari-
ation and it is calculated by computing average L2 distance
of velocity vectors in pairs, which is formulated as:

e =

Nh∑
i=1,j=1,i ̸=j

||vn∗
i − vn∗

j ||2

Nh × (Nh − 1)
. (6)

Nh denotes the number of particles in the octant h. The to-
tal number of divided octants is denoted by H . e implies
the velocity difference of particles in an octant, i.e., the de-
gree of relative motion among particles. There is obvious
relative motion when particles move in the same direction
with different velocity magnitudes or in different directions
with the same velocity magnitude. If the velocity-entropy
e is larger than the threshold δ we set, we divide this oc-
tant into a more fine-grained scale. The above process is re-
cursively performed until the velocity-entropy of all octants
in different scales are smaller than δ or the maximal depth
of Octree is larger than our setting. As a result, areas with
large internal motion variation are divided into small scale
micelles. We present a 2D example in Figure 2 to show the
physical meaning of e and overview of multi-scale gridding.

After generating multi-scale micelles, we treat each mi-
celle as a rigid body and set its gravity point gn∗

h as the center
of all particles in this micelle. To generate motion correction
for each fluid particle, we also use the similar ConvNet as
(Ummenhofer et al.). However, we only perform CConv on
each micelle rather than each particle to achieve faster sim-
ulation speed. Note that the number of micelles is related to

1677

motion patterns of particles and the threshold δ. In our ex-
periments, the number of particles is about 10-20 times as
micelles. For each micelle, we compute its features by ap-
plying CConv for its gravity point and taking particles in this
micelle as its neighbors. So we do not need nearest neighbor
search (NNS) to gather neighbors anymore. Moreover, the
interaction among micelles is also a key point for generating
features and predicting the motions of particles. To achieve
this, we use simple and efficient linear interpolation to gen-
erate particle-wise features according to micelle features,
positions of gravity points and particles. We also directly
process the features of each particle via a fully-connected
stream, and merge them with interpolated particle-wise fea-
tures. We name this operator as Micelle-CConv, which is
shown in the lower right of Figure 1.

Learning Scale Factor for Fast Gridding
Although we greatly reduce the number of convolution op-
erations by changing the convolution object from particles
to micelles, the computation of velocity-entropy is time-
consuming due to its high complexity. To address this prob-
lem, we propose a fast version of multi-scale gridding used
for inference. We first generate multi-scale micelles for all
training data using the original algorithm presented in pre-
vious section, and return Octree depth σn

i of each particle.
The larger depth σn

i indicates that the particle pni belongs to
a micelle with a smaller scale. Hence we take σn

i as a factor
that indicates which scale the particle pni belongs to. Then
we use the ConvNet to predict the scale factor σ̃n+1

i of each
particle at next time-step, which is supervised by generated
ground-truth σn+1

i . The ConvNet is based on our proposed
Micelle-CConv and shares a similar structure with (Ummen-
hofer et al.). The predictions of position correction and scale
factors share the same backbone, i.e., the backbone followed
by two parallel heads to predict position correction and scale
factors respectively. The overall framework and the architec-
ture of the simulator are shown in Figure 1. The scale fac-
tors prediction is formulated as a classification task, and the
number of classes is set to the maximal depth of the Octree.

During inference, we generate multi-scale micelles for the
next frame according to the statistics of predicted scale fac-
tors. Instead of computing velocity-entropy for each micelle,
we only calculate the mean and variance of the predicted
scale factors for each micelle. Then we decide whether to
continue dividing each micelle according to the mean and
variance of predicted scale factors. The specific procedure is
shown in Algorithm 1.

The NN-RK2 Time Integration for Faster Inference
An intuitive way to further accelerate simulation is to in-
crease the step size. For example, we can increase the time-
step to 2∆t and train the network to predict xn+2

i , vn+2
i by

taking xn
i , vn

i as inputs. Then we can get the intermediate re-
sults xn+1

i and vn+1
i by interpolation. This process is about

twice as fast as the original version. However, it will re-
sult in a very large prediction error when we directly predict
xn+2
i , vn+2

i with increased time-step (as shown in Table 3).
Actually, it is Euler Method with doubled time-step, hence

Algorithm 1: Dynamic Multi-Scale Gridding (Inference ver-
sion).

Input: A Particle Set P = {pn1 , pn2 , ..., pnN} with corre-
sponding positions and scale factors.

Output: A multi-scale micelles set.
1: Initialization: root={P, center, depth = 0}, root is a

leafnode without children initially;
2: for pni in P do
3: Find corresponding leafnode according to

coordinates;
4: data size← # particles of current node;
5: current depth← # edges from current node to the

root;
6: if data size <16 or current depth = maximal depth

then
7: Put pni into current node;
8: else if data size >100 then
9: Subdivide current node into 8 octants;

10: for each particle in current node do
11: Put particle into corresponding octant according

to coordinates;
12: Put pni into corresponding octant according to

coordinates;
13: else
14: Put pni into current node;
15: mean←Mean (the mean of the scale factors of all

the particles in current node);
16: var← Variance (the variance of the scale factors of

all the particles in current node);
17: if (var >ε) or (mean >current depth) then
18: Subdivide current node into 8 octants;
19: for each particle in current node do
20: Put particle into corresponding octant

according to coordinates;
21: else
22: Continue;

we can ask high-order Runge-Kutta (i.e., a family of high-
precision numerical solutions for Differential Equations) for
help to alleviate this problem. Motivated by the second-order
Runge-Kutta (RK2) with two stage, we modify it to be adap-
tive to our learning-based method and improve prediction
accuracy when we set the time-step to 2∆t. We call it NN-
RK2 and formulate this process as follows:

xn+2
i = xn

i + 2∆tK2, (7)
K1 = f(n,xn

i) = vn
i , (8)

K2 = f(n+ 1,xn
i +∆tK1) = vn+1

i . (9)
Hence we can simplify above formulations as:

xn+2
i = xn

i + 2∆tvn+1
i . (10)

Given the input xn
i and vn

i , we use the ConvNet to predict
xn+1
i and vn+1

i . Then we directly use the Eq. 10 to get the
prediction at time n+2. Experimental results reported in Ta-
ble 3 show that NN-RK2 actually achieves obviously more
accurate prediction compared with Euler Method. By com-
bining the multi-scale gridding method and NN-RK2, the
simulation efficiency is greatly improved.

1678

Method Average pos error (mm) Average distance to Frame inference time (ms)n+1 n+2 closest point dn (mm)
Results on DPI DamBreak

DPI-Nets (Li et al.) 12.73 25.38 22.07 202.56
SPNets Convs (Schenck and Fox) - - - 1058.46

PCNN Convs (Wang et al.) 0.72 1.67 19.79 187.34
SplineCNN Convs (Fey et al.) 0.71 1.65 170.20 67.67

KPConv (Thomas et al.) 2.49 7.05 unstable 47.96
CConv (Ummenhofer et al.) 0.62 1.49 16.98 12.55

CConv* 0.63 1.46 17.03 12.71
Ours (w/o NN-RK2) 0.74 1.78 18.79 6.78

Ours 0.74 1.91 20.05 3.29
Results on DFSPH data (6K particles)

DPI-Nets (Li et al.) 26.19 51.77 unstable 305.55
SPNets Convs (Schenck and Fox) - - - 784.35

PCNN Convs (Wang et al.) 0.67 1.87 32.51 319.17
SplineCNN Convs (Fey et al.) 0.68 1.93 unstable 281.92

KPConv (Thomas et al.) 1.65 4.54 unstable 57.89
CConv (Ummenhofer et al.) 0.56 1.51 29.50 16.47

CConv* 0.56 1.50 29.77 16.86
Ours (w/o NN-RK2) 0.68 1.96 31.04 8.39

Ours 0.68 2.12 32.98 4.24

Table 1: Results on DPI DamBreak and DFSPH dataset. One step, two steps and rollout prediction error are shown. Frame
inference time of our method and others are shown in the table to prove that our method achieves significantly faster simulation.
w/o NN-RK2 represents inference without using proposed NN-RK2 time integration. * denotes our reproduced results. All
runtimes of our results are measured on a system with an Intel Xeon 6150 CPU and an NVIDIA RTX 2080Ti.

Experiments
We conduct experiments on multiple datasets and compare
accuracy and inference time with prior works. Quantitative
and qualitative results show that our method has a compa-
rable fluid simulation capability with obviously faster infer-
ence speed. As the visualization results show, our method
achieves high visual fidelity simulations. Moreover, we per-
form sufficient ablation studies to show the effectiveness of
each component and setting of hyper-parameters.

Experiment Settings
Datasets DPI DamBreak data is generated with FleX,
which is a position-based simulator that targets real-time ap-
plications.This data is used in both (Li et al.) and (Ummen-
hofer et al.). The scene simulates the behavior of a randomly
placed fluid block in a static box. 2000 scenes and 300
scenes are generated for training and testing respectively.
Experiments on a more challenging dataset used in (Um-
menhofer et al.) are also conducted in our work. This dataset
is generated with DFSPH (Bender and Koschier), which pri-
oritizes simulation fidelity over runtime. DFSPH can gen-
erate accurate fluid flows with very low volume compres-
sion. The ground-truth data is generated by randomly plac-
ing multiple bodies of fluid in 10 different box-like scenes,
which are shown in the appendix of (Ummenhofer et al.).
200 scenes and 20 scenes are generated for training and
testing respectively. Following the setting in (Ummenhofer
et al.), a simplified version with a constant number of par-
ticles (6,000) and a single box environment is generated for

quantitative comparisons.
Evaluation Metrics The average error of the particle

positions with respect to the ground truth is used to eval-
uate our method and others. Following the setting in (Um-
menhofer et al.), we compute the deviation from the ground
truth for two subsequent frames, denoted by n+1 and n+2.
Besides, we also report the rollout error, i.e., the average dis-
tance from the ground-truth particles to the closest particle
in the prediction for the whole sequence, to measure long-
term similarity.

Implementation Details We set the threshold δ used
for generating multi-scale micelles for training data to 0.5.
And the threshold ε for test data is set to 0.8. The minimum
and the maximum number of particles of each micelle are
set to 16 and 100 respectively. To limit the size of the mi-
celles, we set the maximum depth of the Octree to 10 when
generating multi-scale micelles for all data. We train our net-
work for 50000 iterations with a batch size of 16 and an ini-
tial learning rate of 0.001. We half the learning rate at steps
[20000, 25000, ..., 45000]. All these settings are the same in
all our experiments unless otherwise noted.

Comparisons with Prior Works
We report our quantitative results involving prediction er-
ror and inference time in Table 1, where results of Contin-
uous Convolution (Ummenhofer et al.) and other state-of-
the-art methods are also shown. We observe that our method
achieves comparable results to other state-of-the-art meth-
ods with significantly faster inference speed. For example,

1679

G
T

O
ur
s

C
co
nv
s

Figure 3: Some visualization results of simulation. Ground-truth and results of ours and CConv are all shown in the figure. Our
method presents high visual fidelity simulations. See the videos in the supplementary for more simulation results.

our method shows a similar prediction error compared with
PCNN Convs (Wang et al.), while whose inference time is
about 75 times as ours. To prove that our method presents
high visual fidelity simulation, we show some qualitative re-
sults of our method and CConvs in Figure 3.

Effectiveness of Dynamic Multi-Scale Gridding

To prove the effectiveness of our proposed dynamic multi-
scale gridding algorithm, we present some visualization re-
sults of generated micelles in Figure 4 and conduct an ab-
lation study to quantitatively prove it. For simplicity and in-
tuition, we directly display the gravity centers of micelles
to show the generated micelles in the Figure 4. By compar-
ing the Lagrangian fluid samples with corresponding gravity
centers of micelles, we see that our method generates more
small scale micelles in areas where the relative motion of
particles is intense (e.g., the region where two objects col-
lide) while generates a small number of large scale micelles
in the areas where the particles move relatively uniformly.
This indicates that our method does partition particles into
multi-scale areas that share similar motion patterns. More-
over, we generate multi-scale micelles only according to the
density of particles just the same as the naive Octree al-
gorithm. To quantitatively analyze the effectiveness of our
method, we present the results of the network trained with
different micelles generation methods on the original DF-
SPH dataset. We set the maximal depth and the maximal
number of particles to 10 and 100 respectively when gen-
erating micelles using the naive Octree algorithm. Results
shown in Table 2 prove that our method achieves obviously
better fluid simulation results.

Time

M
ic
el
le

Fl
ui
d

Figure 4: Visualization of our generated multi-scale mi-
celles. The gravity centers of micelles are shown, whose
density indicates the degree of motion variation.

Method Average pos error (mm)
n+1 n+2

CConv (Ummenhofer et al.) 0.67 1.87
CConv* 0.67 1.88

Ours-Octree 1.02 2.93
Ours-Micelles 0.79 2.20

Table 2: Results on original version of DFSPH dataset. Ours-
Octree denotes that we generate micelles only according to
the density of particles.

Effectiveness of NN-RK2
By comparing results of ours and ours (without NN-RK2) in
Table 1, we can conclude that our proposed NN-RK2 time

1680

(a) (b) (c)

(d) (e) (f)

Figure 5: Results of parameter analyses performed on the simplified version of DFSPH data. Analysis of ε, the maximal depth
and the maximal number of particles of micelle are shown in the subfigure a, b and c respectively, where one and two steps
error are both shown. The corresponding results of inference time are shown in the subfigure d, e and f respectively.

Method Average pos error (mm)
n+1 n+2

CConv (Euler with 2∆t) 1.44 3.75
CConv (NN-RK2) 0.56 1.79

Table 3: Comparison between Euler and NN-RK2.

integration algorithm does accelerate inference and achieves
approximately twice the speed on both two datasets. More-
over, one can make a trade-off between simulation accuracy
and inference time by adjusting the order of Runge-Kutta al-
gorithm. To demonstrate that our proposed time integration
method does perform better than Euler method with doubled
time-step, i.e., train the network with doubled time-step and
predict position and velocity of particles in the farther fu-
ture. We report the results on Table 3, from where we ob-
serve that our method achieves significantly better perfor-
mance. We think the more difficult task (i.e., predict with
doubled time-step) makes it hard for this light-weight model
to predict accurately. And predicting larger numbers (larger
displacement) makes the network unstable.

Parameter Analysis
There are some hyper-parameters introduced by our pro-
posed multi-scale gridding algorithm. We analyze three of

the most important parameters for our method, i.e., ε used
as a variance threshold for generating micelles during infer-
ence, the maximal depth that we set when generating mi-
celles, and the maximal number of particles of each mi-
celle we set when generating micelles. Experiments are con-
ducted on the simplified version of DFSPH data, and the re-
sults are shown in Figure 5, where prediction error and the
corresponding inference time are both shown. We observe
that our method is robust to ε and the maximal depth, and
we set ε to 0.8 and maximal depth to 10 by making a trade-
off between accuracy and inference time. The experimental
results also show that our method is relatively sensitive to
the maximal number of particles of each micelle, i.e., larger
settings result in larger prediction error and too small set-
tings result in too much inference time. In our work, we set
it to 100 for DFSPH and 64 for DPI Dam Break.

Conclusion

We have developed a dynamic multi-scale gridding algo-
rithm for fast fluid simulation. A Lagrangian fluid sample
with an excessive amount of particles is divided into multi-
scale micelles according to internal motion variation, thus
reducing the magnitude of elements that have to be pro-
cessed. By further modifying the second-order Runge-Kutta
algorithm and combine with our method, we achieve high
visual fidelity fluid simulations with an extremely fast speed.

1681

Acknowledgements
This work was supported by National Science Foundation of
China (U20B2072, 61976137). This work was also partially
supported by Grant YG2021ZD18 from Shanghai Jiaotong
University Medical Engineering Cross Research.

References
Battaglia, P. W.; Pascanu, R.; Lai, M.; Rezende, D. J.; and
Kavukcuoglu, K. 2016. Interaction Networks for Learning
about Objects, Relations and Physics. In Advances in Neu-
ral Information Processing Systems 29: Advances in Neural
Information Processing Systems 29, December 5-10, 2016,
Barcelona, Spain, 4502–4510.
Bender, J.; and Koschier, D. 2015. Divergence-Free
Smoothed Particle Hydrodynamics. In Proceedings of the
2015 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation. ACM.
Fey, M.; Lenssen, J. E.; Weichert, F.; and Müller, H. 2018.
SplineCNN: Fast Geometric Deep Learning With Continu-
ous B-Spline Kernels. In 2018 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018, 869–877.
Holl, P.; Thuerey, N.; and Koltun, V. 2020. Learning to Con-
trol PDEs with Differentiable Physics. In 8th International
Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020.
Hu, Y.; Anderson, L.; Li, T.; Sun, Q.; Carr, N.; Ragan-
Kelley, J.; and Durand, F. 2020. DiffTaichi: Differentiable
Programming for Physical Simulation. In 8th International
Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020.
Kim, B.; Azevedo, V. C.; Thuerey, N.; Kim, T.; Gross, M. H.;
and Solenthaler, B. 2019. Deep Fluids: A Generative Net-
work for Parameterized Fluid Simulations. Comput. Graph.
Forum.
Ladicky, L.; Jeong, S.; Solenthaler, B.; Pollefeys, M.; and
Gross, M. H. 2015. Data-driven fluid simulations using re-
gression forests. ACM Trans. Graph., 34(6): 199:1–199:9.
Li, Y.; Wu, J.; Tedrake, R.; Tenenbaum, J. B.; and Torralba,
A. 2019. Learning Particle Dynamics for Manipulating
Rigid Bodies, Deformable Objects, and Fluids. In 7th In-
ternational Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019.
Monaghan, J. J. 1992. Smoothed particle hydrodynamics.
Annual review of astronomy and astrophysics, 30(1): 543–
574.
Morton, J.; Jameson, A.; Kochenderfer, M. J.; and Wither-
den, F. D. 2018. Deep Dynamical Modeling and Control of
Unsteady Fluid Flows. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, 9278–9288.
Mrowca, D.; Zhuang, C.; Wang, E.; Haber, N.; Fei-Fei, L.;
Tenenbaum, J.; and Yamins, D. L. 2018. Flexible neural
representation for physics prediction. In Advances in Neu-
ral Information Processing Systems 31: Annual Conference

on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, 8813–8824.
Müller, M.; Heidelberger, B.; Hennix, M.; and Ratcliff, J.
2007. Position based dynamics. Journal of Visual Commu-
nication and Image Representation, 18(2): 109–118.
Pfaff, T.; Fortunato, M.; Sanchez-Gonzalez, A.; and
Battaglia, P. W. 2021. Learning Mesh-Based Simulation
with Graph Networks. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021.
Sanchez-Gonzalez, A.; Godwin, J.; Pfaff, T.; Ying, R.;
Leskovec, J.; and Battaglia, P. W. 2020. Learning to Simu-
late Complex Physics with Graph Networks. In Proceedings
of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119,
8459–8468.
Schenck, C.; and Fox, D. 2018. SPNets: Differentiable Fluid
Dynamics for Deep Neural Networks. In 2nd Annual Con-
ference on Robot Learning, CoRL 2018, Zürich, Switzer-
land, 29-31 October 2018, Proceedings.
Solenthaler, B.; and Pajarola, R. 2009. Predictive-corrective
incompressible SPH. ACM Trans. Graph., 28(3): 40.
Sulsky, D.; Zhou, S.-J.; and Schreyer, H. L. 1995. Applica-
tion of a particle-in-cell method to solid mechanics. Com-
puter physics communications, 87(1-2): 236–252.
Thomas, H.; Qi, C. R.; Deschaud, J.; Marcotegui, B.;
Goulette, F.; and Guibas, L. J. 2019. KPConv: Flexible
and Deformable Convolution for Point Clouds. In 2019
IEEE/CVF International Conference on Computer Vision,
ICCV 2019, Seoul, Korea (South), October 27 - November
2, 2019, 6410–6419.
Tompson, J.; Schlachter, K.; Sprechmann, P.; and Perlin, K.
2017. Accelerating Eulerian Fluid Simulation With Con-
volutional Networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Syd-
ney, NSW, Australia, 6-11 August 2017, volume 70, 3424–
3433.
Ummenhofer, B.; Prantl, L.; Thuerey, N.; and Koltun, V.
2020. Lagrangian Fluid Simulation with Continuous Convo-
lutions. In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020.
Wang, S.; Suo, S.; Ma, W.; Pokrovsky, A.; and Urtasun, R.
2018. Deep Parametric Continuous Convolutional Neural
Networks. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018, 2589–2597.

1682

