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Abstract

Recently, the self-supervised pre-training paradigm has
shown great potential in leveraging large-scale unlabeled data
to improve downstream task performance. However, increas-
ing the scale of unlabeled pre-training data in real-world sce-
narios requires prohibitive computational costs and faces the
challenge of uncurated samples. To address these issues, we
build a task-specific self-supervised pre-training framework
from a data selection perspective based on a simple hypoth-
esis that pre-training on the unlabeled samples with simi-
lar distribution to the target task can bring substantial per-
formance gains. Buttressed by the hypothesis, we propose
the first yet novel framework for Scalable and Efficient vi-
sual Pre-Training (SEPT) by introducing a retrieval pipeline
for data selection. SEPT first leverage a self-supervised pre-
trained model to extract the features of the entire unlabeled
dataset for retrieval pipeline initialization. Then, for a spe-
cific target task, SEPT retrievals the most similar samples
from the unlabeled dataset based on feature similarity for
each target instance for pre-training. Finally, SEPT pre-trains
the target model with the selected unlabeled samples in a
self-supervised manner for target data finetuning. By decou-
pling the scale of pre-training and available upstream data
for a target task, SEPT achieves high scalability of the up-
stream dataset and high efficiency of pre-training, resulting in
high model architecture flexibility. Results on various down-
stream tasks demonstrate that SEPT can achieve competitive
or even better performance compared with ImageNet pre-
training while reducing the size of training samples by one
magnitude without resorting to any extra annotations.

Introduction
To reduce the demand for collecting large-scale labeled
data for each target application, supervised pre-training on
large-scale datasets, e.g., ImageNet (Deng et al. 2009) and
then finetuning on the target tasks have become a success-
ful and standard paradigm in many applications (He et al.
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Figure 1: (a) The general pipelines of our proposed SEPT.
(b) The down-stream task classification accuracy of SEPT
with 0.1m images and ImageNet 1k baselines. The ratio de-
notes the number of pre-training samples under the same
training epoch setting.

2017; Long, Shelhamer, and Darrell 2015; Sun et al. 2017).
To avoid such expensive annotation costs, self-supervised
learning (SSL) methods (Doersch, Gupta, and Efros 2015;
Zhang, Isola, and Efros 2016; Noroozi and Favaro 2016;
Komodakis and Gidaris 2018; Kingma and Welling 2013;
Bao et al. 2021) have shown that models can be trained with
freely available supervision from raw data itself. Recent ad-
vances of SSL methods (Caron et al. 2021; He et al. 2022;
Zhou et al. 2021) can achieve comparable or even superior
performance to their supervised pre-training version in solv-
ing the downstream task.

Several works (Goyal et al. 2021; Kolesnikov et al. 2020;
Pham et al. 2021; Dumoulin et al. 2021) suggest that scal-
ing up the pre-training dataset can bring continuous ad-
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vancement of the state-of-the-art (SoTA) performance on the
downstream tasks. Despite the promising prospects in col-
lecting unlabeled data, the scalability of unlabeled datasets
for SSL methods still suffers from three aspects of chal-
lenges in real-world applications.

Firstly, linearly increasing pre-training computation over-
head limits the flexibility of model architecture as differ-
ent application scenarios may request the model with differ-
ent architectures and scales; thus, it is prohibitively expen-
sive to perform large-scale pre-training for each customized
model. Secondly, training on the entire massive unlabeled
data raises the risk of introducing potential bias (Caron et al.
2019; Tian, Henaff, and van den Oord 2021) because the
unlabeled samples collected from the real-world scenario
might be low-quality or without specific semantic infor-
mation. Lastly, some studies (Ngiam et al. 2018; Ge and
Yu 2017) point out the redundancy in the large-scale pre-
training for downstream tasks by showing that models pre-
trained on a subset can achieve comparable even better to
the ones pre-trained on the entire dataset. Therefore, some
unlabeled samples can be inessential to a downstream task
in self-supervised learning.

An intuitive way to address these issues is to decou-
ple the scales of the pre-training dataset by performing
the data selection. Accordingly, in the supervised pre-
training pipelines, NDS (Yan, Acuna, and Fidler 2020) and
SNDS (Cao et al. 2021) have been proposed to select the rel-
evant subset according to the downstream task data for su-
pervised pre-training using a data recommendation system.
However, existing research seldom explored such a prob-
lem in self-supervised pre-training. In this work, we explore
an alternative to the existing pre-training paradigm and pro-
pose a novel self-supervised Scalable and Efficient visual
Pre-Training (SEPT) framework (See Fig. 1(a)). It aims at
optimizing the pre-training efficiency while maintaining the
scalability of the pre-training dataset scale. SEPT is based on
a hypothesis that training self-supervised learning methods
on a subset having similar distribution to the downstream
target task should improve performance on the target task,
inspired by the domain adaptation theory (Ben-David et al.
2010; Ganin and Lempitsky 2015).

Supported by the hypothesis, we use the target dataset to
perform the instance search via feature similarity for col-
lecting a relatively small task-specific self-supervised pre-
training dataset. Specifically, SEPT consists of three steps:
retrieval pipeline initialization, task-specific instance search,
and task-specific self-supervised learning. SEPT first builds
a retrieval pipeline using a self-supervised pre-trained model
on a subset of the dataset. Notably, the retrieval pipeline can
be easily reused for different target tasks. Intuitively, the
retrieval model serves as a distribution discrepancy metric
to minimize the distribution gap between pre-training and
the target dataset. In task-specific instance search, SEPT
uses the retrieval model to search the most similar sam-
ples for each task sample from the entire upstream dataset
to construct a small subset according to the computational
constraints. Finally, SEPT self-supervised pre-train a target
model with the retrieved unlabeled subset and then finetune
the target model on the task data.

We conduct experiments on seven classification and three
detection tasks with limited labeled samples. Compared
with ImageNet 1k pre-training baselines, our SEPT achieves
competitive or better performance on classification tasks,
Flowers, Food101, Stanford Cars, and Places365 with only
100k unlabeled images for pre-training and few shot images
for finetuning (See Fig. 1(b)).

Related Work
Self-Supervised Representation Learning Self-supervised
representation learning has shown promising results in
model pre-training with freely available supervision from
raw data recently (Jing and Tian 2020; Liu et al. 2021a).
Early works mainly focus on designing handcrafted pretext
tasks (Doersch, Gupta, and Efros 2015; Zhang, Isola, and
Efros 2016; Noroozi and Favaro 2016; Komodakis and Gi-
daris 2018) using prior knowledge. More recent works can
be categorized in discriminative (Dosovitskiy et al. 2014;
Bachman, Hjelm, and Buchwalter 2019; He et al. 2020;
Chen et al. 2020a) or generative (Kingma and Welling 2013;
Xie et al. 2021b; Bao et al. 2021; He et al. 2022) fashion.
In the discriminative fashion, contrastive methods (Dosovit-
skiy et al. 2014; Bachman, Hjelm, and Buchwalter 2019;
He et al. 2020; Chen et al. 2020a) force the representation
of different views of the same image closer and push rep-
resentations of views from different images away, which
achieves comparable performance to its counterpart of su-
pervised pre-training. We notice that the models pre-trained
with contrastive learning have strong instance discrimina-
tive power. Therefore we exploit such ability for building
the retrieval pipeline to help downstream tasks find visually
similar samples from the general data pool.
Data Selection for Pre-training In the context of image
pre-training, there are also several works dedicated to im-
proving the performance (Ngiam et al. 2018; Ge and Yu
2017) or efficiency (Yan, Acuna, and Fidler 2020; Cao
et al. 2021) from the perspective of selecting the appropri-
ate training data instead of the entire dataset. (Ge and Yu
2017) greedily selects the most similar categories from the
source dataset to be used for pre-training using a proposed
similarity metric between the source and target categories.
(Ngiam et al. 2018) proposes to use a model pre-trained
on the source dataset to obtain pseudo labels for target im-
ages and uses the pseudo to re-weight the source exam-
ples. NDS (Yan, Acuna, and Fidler 2020) represents source
datasets with the mixture-of-experts model and employs it
to perform data search by finding the dataset with similar
behavior to the mixture-of-experts. SNDS (Cao et al. 2021)
proposes to use intermediary datasets to train mixture-of-
experts for indexing the growing scale of the source dataset.

Despite their promising results, the scalability of source
datasets in these supervised pre-training methods is still lim-
ited by the extensive human labeling (Cao et al. 2021) and
high computation cost on upstream dataset (Ngiam et al.
2018; Ge and Yu 2017; Yan, Acuna, and Fidler 2020).
Differently, our work explores a new self-supervised pre-
training paradigm with a highly scalable unlabeled dataset
and efficient pre-training computation overhead on a task-
specific subset.
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Methodology
Preliminaries
Problem Definition. Consider a general unlabeled dataset
U = {xi}Ni=0 where xi is an image and a labeled task
dataset T = (xi, yi)i where xi is an image and yi is the
ground truth, we assume |U| ≫ |T |. Our goal is to train
a model θ that fits well on the task T with the help of an
unlabeled dataset U by finding the most informative subset.
Formally, we seek an optimal unlabeled subset U∗ that can
help enhance the target task performance with the labeled
task dataset T :

U∗ = argmin
Û⊆U

Ex∼T
[
L
(
y|θÛ∪T (x)

)]
(1)

where θÛ∪T denotes that θ is trained with the union of se-
lected unlabeled subset Û and labeled task data. Intuitively,
the whole learning system does not involve any annotation
from a general unlabeled dataset U , which means U can be
simply scaled up by raw data itself without any human prior.
Theoretical Insight. SEPT is based on a hypothesis that
training self-supervised learning methods on a subset hav-
ing similar distribution to the downstream target task
should improve performance on the target task. Therefore,
our research question is also related to the domain adaptation
problem (Pan and Yang 2009), where the general unlabeled
dataset can be viewed as a source domain covering various
unknown semantics categories while the target domain re-
spects the specific task. Unlike the existing domain adapta-
tion methods with well-defined source and target datasets,
the general dataset in our problem setting is more uncurated
and realistic. From the perspective of domain adaptation,
SEPT focuses on sampling the informative source samples
to proximate the target distribution, i.e., finding the desired
source distribution for better domain adaptation.

Given by (Ben-David et al. 2010), let H be a hypothe-
sis space, the generalization errors of a function f ∈ H on
the target domain T and the source domain S as ϵt and ϵs,
respectively. Then, for any function f ∈ H, we have the
following generalization bound,

ϵt(f) ≤ ϵs(f) + dH∆H(S, T ) + ϵ∗ (2)

where dH∆H(S, T ) is H∆H-Divergence which measures
the discrepancy between the two domains:

dH∆H(S, T ) = sup
f,f ′∈H

∣∣Ex∼S [f(x) ̸= f ′(x)]

− Ex∼T [f(x) ̸= f ′(x)]
∣∣ (3)

The key problem of domain adaptation is to minimize the
distribution discrepancy dH∆H(S, T ). However, in our set-
ting, the source domain S is a subset of the unlabeled dataset
S ∈ P (U) required to select. Therefore, we first need to
introduce a pre-defined and generalized metric for measur-
ing the distribution discrepancy. In (Ganin et al. 2016), a
domain classifier is introduced to measure the distance be-
tween two distributions by recognizing the domain category
of samples, and the dH∆H(S, T ) is reformulated as follow,

dHp∆Hp
(S, T ) ≤ 2 sup

h∈Hd

∣∣α(h)− 1| (4)

Algorithm 1: Task-specific Instance Search
Input: an unlabeled dataset U , a target dataset T , a budget
(number of images) of pre-training dataset K and a feature
extractor θR well trained on subset Û ⊆ U .
Output: a task-specific pre-training subset Dsearch.

1: Fu ← θR(x
∗), ∀x∗ ∈ U

2: for xi in T do
3: Fi ← θR(xi)
4: RankedList(xi)← Sorted(sim(Fi, Fu))
5: end for
6: Dsearch ← ∅
7: for j in K do
8: for xi in T do
9: if Dsearch ∩RankedList(xi)[j] is ∅ then

10: Dsearch ← Dsearch ∪RankedList(xi)[j]
11: if |Dsearch| ≥ K then
12: Exit
13: end if
14: end if
15: end for
16: end for
17: return selected subset Dsearch

where Hd is the hypothesis space of the domain classifier
and α(h) is the optimal classifier. Inspired by the design of
the domain classifier, we argue that it is possible to find a
general domain discriminator for an arbitrary target task.
In practice, SEPT uses a retrieval pipeline based on fea-
ture similarity to proximate the domain discrimination pro-
cess. Intuitively, for each target instance, SEPT selects the
most similar source sample that mostly confuses the general
domain discriminator and thus minimizes the dH∆H(S, T )
with a measurement selected by prior knowledge. After se-
lecting the source samples, SEPT adapts the most straight-
forward strategy, pre-training and fine-tuning, to perform
domain adaptation for simplicity.

Proposed Framework
Overview. SEPT is a pre-training framework aiming to find
a task-relevant subset from a massive unlabeled image pool
given a specific task with limited samples. The framework
consists of three steps: retrieval pipeline initialization, task-
specific instance search, and task-specific self-supervised
learning. In the first step, we extract and store features of
the entire unlabeled dataset U with a self-supervised model.
In the second step, we perform the instance search based
on feature similarity for each sample in T to aggregate the
most similar subset Û from U . In the last step, a downstream
model is self-supervised, pre-trained on the selected subset
Û , and then fine-tuned with target data T only with the task
objective. Fig. 2 shows the overall pipeline.
Retrieval Pipeline Initialization. To be consistent with
our self-supervised pre-training framework, we use a self-
supervised pre-trained model as the retrieval model for fea-
ture extraction. Theoretically, pre-training a giant model
across the entire U should be the optimal solution. However,
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Figure 2: Framework Overview. SEPT consists of three steps: a) retrieval pipeline initialization, b) task-specific instance search,
and c) task-specific self-supervised learning. SEPT first trains a self-supervised model on a subset from a large-scale unlabeled
data pool. Then, given a few task data, SEPT retrievals are the most similar subset. Finally, SEPT self-supervised pre-trains a
target model on the selected subset and fine-tunes the pre-trained model with task samples and their annotations.

we argue that it is critical to introduce certain prior knowl-
edge for building retrieval models for two reasons. Firstly,
the retrieval model only needs to be trained once during ini-
tialization, which makes the computational cost of initial-
ization not contribute to the marginal cost of indexing or
queries and scaling up the data pool. Secondly, training on
the entire massive unlabeled data raises the risk of introduc-
ing potential bias to retrieval models because it is impossi-
ble to know the visual concept distribution of the data pool.
Recent self-supervised methods (Chen et al. 2020b; Caron
et al. 2021; Zhou et al. 2021) have shown promising instance
discrimination on the unlabeled images and provided lots
of successful practice on the ImageNet with various archi-
tectures. Therefore, we use ImageNet self-supervised pre-
trained model f as the feature extractor for retrieval to avoid
the computation cost and the risk of introducing noise. The
retrieval model can be viewed as a replaceable module in
our framework and can be integrated with the latest tech-
niques in this area as they emerge. In our experiments, we
train the feature extractor using ibot (Zhou et al. 2021) with
ViT-S (Dosovitskiy et al. 2020).

Task-specific Instance Search. As depicted in Algorithm
1, for each image in the task data xi ∈ T , we retrieve a
set of image Ûi from the given general data pool U . The
set Ûi represents the top-K similar images to xi in U . Re-
trieved data for all images xi are combined to obtain a subset
Û = Union(Û0, ..., Ûi). Considering the computation cost
produced during the retrieval on a large-scale data pool,e.g.,
150 million in our setting, we keep our retrieval approach
as simple as possible by calculating the similarity between
two samples. Specifically, we use a self-supervised retrieval
model f to measure the similarity sim(f(xi), f(xu)), xu ∈
U between the task sample and unlabeled samples. SEPT
can handle the different budget constraints of the model pre-
training by setting the scale of retrieved samples for real-
world applications. Our data retrieval method only depends
on the raw images xi itself and does not leverage any task-
specific labels.

Task-specific Self-Supervised Learning. After obtaining
the retrieval dataset, we conduct self-supervised pre-training

on them by optimizing the following objective:

θ∗ = argmin
θ

Ex∼Û [Lself (x)] (5)

Note that task-specific self-supervised learning is decoupled
from the self-supervised retrieval models. Therefore, the for-
mer can use the latest techniques or various backbones in
this area as they emerge.

When transferring to the downstream target task, only
task data is used for fine-tuning the pre-trained backbone.
The exploration of improving performance by joint training
with retrieval and task data is left for future work. Given the
task-specific self-supervised models, we train a task model
using the pre-training model as initialization with the fol-
lowing loss, formulated as:

θ∗ = argmin
θ

Ex∼T [Lsup (y|x)] (6)

Experiments Setup
Datasets and Setup
Datasets for Retrieval Pipeline. We combine three large-
scale datasets, ImageNet-22k(IN22k) (Deng et al. 2009), IN-
TERN (Shao et al. 2021) and YFCC-100m (Thomee et al.
2016), to construct an unlabeled data pool with totally 155
million images, called SEPT-155m. IN22k collected 14.2
million images from 21,841 classes and has a widely used
subset ILSVRC2012 (IN1k), which consists of 1.2 mil-
lion images from 1,000 classes. The INTERN classifica-
tion dataset consists of 40m images with more than 115K
concepts. YFCC-100m contains approximately 99.2 million
photos. The default retrieval model is self-supervised pre-
trained on IN1k, which can be viewed as a subset of the
entire unlabeled data pool. Note that we do not access any
annotation information during the experiments.
Datasets of Target Task. We provide an extensive evalu-
ation of our approach on seven classification datasets. We
randomly sample 5-shot or 10-shot from each category for
all datasets to construct our target tasks. The first four tasks
are built from Flowers(Nilsback and Zisserman 2008), Stan-
ford Cars(Krause et al. 2013), Food101(Bossard, Guillau-
min, and Gool 2014), Places365(Zhou et al. 2017), respec-
tively. To comprehensively simulate complex tasks on a
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Task
Dataset

Number
Classes Scale Cross SC Testing

Samples
Flowers102 102

Small

✗ 6149
Stanford Cars 196 ✗ 8041

Food101 101 ✗ 25250
Place365 365 ✗ 36500
iNat-P1k 1000

Large
✗ 17157

iNat-I1k 1000 ✗ 17598
iNat-M1k 1000 ✓ 18646

Table 1: Statistical information of target task datasets.

scale of IN1k (1k categories), the last three tasks, INat-P1k,
INat-I1k, and INat-M1k, are all constructed from iNatural-
ist 2017(Van Horn et al. 2018) by sampling different 1,000
categories to build a subset. All categories in INat-P1k/INat-
I1k are sampled from the same super-category of Plantae/In-
secta. Differently, categories in INat-M1k are evenly sam-
pled from 13 different supercategories. The statistical infor-
mation of classification datasets is summarized in Table 1.
More details about these datasets are summarized in the
appendix. In each of them, the SEPT’s goal is to improve
the performance of its target task by transferring knowledge
from a set of relevant unlabeled images.
Baselines and Evaluation. In this regime, we compare our
framework with the random initialization, IN1k supervised
pre-training, and IN1k self-supervised pre-training models
since they are widely adopted standard practices in various
vision applications. To demonstrate the effectiveness of data
selection, we also provide the baseline pre-trained with ran-
domly sampled images from an unlabeled data pool. For a
fair comparison, we evaluate all the pre-training baselines
and SEPT under 300 epochs pre-training protocol and re-
port the performance under the same finetuning setting ex-
pect different pre-trained model initialization.

Implementation Details
Retrieval Pipeline. The retrieval model uses ViT-S (Doso-
vitskiy et al. 2020) pre-trained on IN1k using self-supervised
methods ibot(Zhou et al. 2021) for 800 epochs. We use the
combination of the [CLS] token and patch tokens as features
for an image with a dimension of 768. To perform efficient
searching, we use milvus (Wang et al. 2021) to build the
retrieval pipeline. Specifically, we use IVF SQ8H as index
type, set the nlist of index to 16384, and use 256 nprobe for
searching. The images used for feature extraction are resized
to 256×256 and then center cropped with 224×224.
Target Task Pre-training. All experiments are conducted
on Swin-T (Liu et al. 2021b). The self-supervised pre-
training follows MoBy (Xie et al. 2021a) in 300 epochs set-
ting with batch size 512 on 8 Tesla V100 GPUs. The pre-
training adopts AdamW (Loshchilov and Hutter 2018) with
a fixed learning rate of 0.001 and a fixed weight decay of
0.05. The key queue size is set to 4096, the temperature is
set to 0.2, and the drop path rate is set to 0.2.
Target Task Finetuning. All finetuning experiments use
the same 100-epoch finetuning setting on single Tesla V100
GPU. In finetuning, we set the batch size to 64 and em-

ploy an AdamW optimizer with a base learning rate of 5e-3,
weight decay of 0.05, a stochastic depth ratio of 0.1, and a
layer-wise learning rate decay of 0.9. We also adopt a cosine
learning rate scheduler with 10 epochs warm-up and follow
the same data augmentation used in (Xie et al. 2021b).

Main Results
Pre-training with 100k Images. Table 2 shows the main
results that compare SEPT in scales of 100k pre-training
images and the according baselines. In conclusion, the pre-
training samples selected by SEPT provide helpful knowl-
edge to all target datasets compared to the random sampling
baseline. In all small-scale downstream datasets, SEPT can
achieve results that are better than or comparable to the su-
pervised or self-supervised IN1k baselines with 1/12 of the
scale of pre-training samples. As the large-scale downstream
dataset with one thousand visual concepts, the results indi-
cate that general knowledge learned from IN1k pre-training
still is a plus for these complex tasks. Moreover, the per-
formance on three large-scale datasets indicates that SEPT
has the edge over fine-grained classification tasks. Specifi-
cally, the performance gaps between SEPT and IN1k base-
lines on datasets collected from single super categories iNat-
P1k and iNat-I1k are relatively small than iNat-M1k, includ-
ing multiple super categories images. Note that 100k im-
ages might not be sufficient enough to solve such complex
tasks with intensive categories. Moreover, the performance
gap between supervised and self-supervised IN1k baseline
indicates that the ground truth also plays a crucial role in
transferring knowledge for different downstream tasks.
Scaling Up the Number of Pre-training Images. Table 3
shows the comparison across different scales of pre-training
samples. In the cases shown, the model pre-trained on SEPT
outperforms the baseline using random sampling images in
all scales of pre-training samples at a large margin. Remark-
ably, when SEPT is pre-trained with 1000k selected im-
ages, a comparable size to IN1k, it outperforms IN1k super-
vised pre-training baseline around 30% in Food101 under 5-
shot settings. We observe that SEPT models pre-trained with
500k samples outperform the IN1k self-supervised baseline
on three downstream datasets. In addition, the increased per-
formance, along with the growing scale of pre-training sam-
ples, provides strong evidence of the scalability of SEPT in
the size of pre-training samples. Moreover, SEPT achieves
more performance gains on the fine-grained dataset iNat-
I1k than iNat-M1k, indicating that SEPT is a fine-grained
friendly solution for downstream tasks. Interestingly, IN1k
supervised pre-training still is a strong baseline for complex
tasks like iNat-M1k, whose classes are across super cate-
gories. Nevertheless, our methods can be scaled up by re-
trieving more unlabeled images.

Ablation Study
Retrieval Models. Table 4 compares different retrieval
methods (i.e., ViT-S, ViT-B, and Vit-L) using IN22k as an
unlabeled data pool. We find that given the same data pool,
the high capacity of the retrieval model trained with more
diverse data can usually provide more performance gain.
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Pre-Train Samples Rand Init (0) IN1k Sup (1200k) IN1k SSL (1200k) Random (100k) SEPT (100k)
Datasets Fine-tune Samples Top 1 accuracy

Flowers 5-shot 19.90 89.17 90.18 73.77 98.73
10-shot 31.20 95.12 95.54 85.80 99.09

Stanford Cars 5-shot 2.81 24.92 31.09 9.48 35.75
10-shot 3.74 51.01 61.45 23.62 59.52

Food101 5-shot 4.78 42.58 40.57 23.91 55.59
10-shot 7.48 56.66 54.96 35.97 64.70

Place365 5-shot 2.87 23.70 21.40 17.30 24.08
10-shot 5.12 30.08 28.06 23.32 29.94

iNat-P1k 5-shot 2.73 30.30 29.47 16.50 32.33
10-shot 5.74 47.08 46.60 29.54 45.82

iNat-I1k 5-shot 1.67 33.60 30.70 13.71 28.58
10-shot 4.10 49.92 46.57 26.12 38.55

iNat-M1k 5-shot 2.85 36.40 31.90 15.72 24.93
10-shot 5.51 48.57 43.96 25.03 33.65

Table 2: Results with 100k images pre-training on SEPT-155m. IN1k Sup, IN1k SSL, and Random denote the IN1k supervised
pre-training, IN1k self-supervised pre-training, and SSL with the randomly selected sample.

Number of
Samples Method Food101 iNat-I1k iNat-M1k

5-shot 5-shot 5-shot

1200k IN1k Sup 42.58 33.60 36.4
IN1k SSL 40.57 30.70 31.90

100k Random 23.91 13.71 15.72
SEPT 55.59 28.58 24.93

500k Random 32.70 20.12 22.88
SEPT 69.72 44.43 33.74

1000k Random 34.53 22.76 24.84
SEPT 72.17 49.95 37.19

Table 3: Results with different scales of pre-training data.
IN1k Sup, IN1k SSL, and Random denote the IN1k su-
pervised pre-training, IN1k self-supervised pre-training, and
self-supervised pre-training with random samples.

Retrieval
Model

Pre-train
Setting

IN1k
Linear Val

Food101
5-shot 10-shot

ViT-S IN1k
800 epochs

77.9 49.68 60.99
ViT-B 79.5 52.25 62.60
ViT-L 81.0 51.10 61.43
ViT-B IN22k

80 epochs
79.0 49.83 62.15

ViT-L 82.3 53.64 64.66

Table 4: Results with different retrieval models under 100K
pre-training setting using IN22k as unlabeled data pool.

Specifically, ViT-L trained with IN22k can bring 4% im-
provement in both 5-shot and 10-shot settings compared to
the ViT-S trained with IN1k. Our framework can be up-
graded using more powerful self-supervised methods trained
with higher capacity and a larger dataset scale, depending on
the budget for building the retrieval pipeline.
Sizes of Retrieval Unlabeled Data Pool. To study the per-
formance gains brought by the increasing scale of the un-
labeled data pool, we verify our method on four different
scales of the data pool by combining different datasets. Re-
sults of 100k pre-training settings with different scales of

unlabeled data pool are shown in Table 5. Our methods sur-
pass the random sampling at a large margin on all scales
of data unlabeled data pool. Increasing the data pool size
can consistently improve performance on most downstream
tasks, demonstrating the advantage of scaling up the pre-
training dataset. It also can be observed that the performance
gain becomes trivial when we further increase the image
pool size from 55 million to 155 million. To further verify
SEPT in a more realistic setting, we provide results only on
YFCC-100m, significantly less curated datasets. The SEPT
and random sampling baseline from YFCC-100m are rela-
tively weak compared to others, which indicates that the dis-
tribution shift of unlabeled data can raise the risk of decreas-
ing the representation quality in pre-trained models. Never-
theless, SEPT still can achieve substantial performance com-
pared to a random sampling baseline in YFCC-100m setting.

Analysis of Hypothesis and Generalization
Redundancy in IN1k. Fig. 3 shows results on the Food101
dataset with different proportions of IN1k samples for pre-
training. SEPT using 500k images for pre-training achieves
comparable performance against the full IN1k dataset set-
ting, meaning that not all the pre-training samples are infor-
mative for a specific task. The performance gaps between
SEPT and a random sample further verify the superiority of
our method across different settings.
Generalization with More Downstream Samples. Table 6
shows the results using 10-shot SEPT pre-trained models un-
der 50% and 100% Food101 dataset (about 70,000 images)
finetuning setting. The results show that SEPT surpasses all
the random baselines in different scales of pre-training when
using more labeled images. Consistent with the few shot set-
ting, SEPT pre-trained with 500k images can achieve even
better results against IN1k pre-trained baseline. We also no-
tice that the performance gaps between different pre-trained
models will significantly reduce when the model can access
more labeled images. It motivates us to propose a more chal-
lenging yet practical few-shot setting for evaluation.
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Data Pool Scale Method Food101 iNat-I1k iNat-M1k
5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

IN1k 1.2m Random 26.57 38.50 16.40 28.80 16.98 26.26
SEPT 33.71 48.80 17.96 31.44 22.39 32.19

IN22k 14m Random 25.81 38.66 14.57 26.69 16.99 26.43
SEPT 49.68 60.99 23.44 36.24 24.44 33.34

IN22k+INTERN 55m Random 26.03 38.70 15.25 28.15 17.46 26.47
SEPT 54.82 64.80 27.46 38.14 24.68 33.40

IN22k+INTERN+YFCC-100m 155m Random 23.91 35.97 13.71 26.12 15.72 25.03
SEPT 55.59 64.70 28.58 38.55 24.93 33.65

YFCC-100m 100m Random 21.69 33.62 10.38 22.76 14.26 23.33
SEPT 51.49 61.90 23.48 35.45 24.37 32.77

Table 5: Results on various scales of unlabeled data pool under 100K pre-training setting.

Figure 3: The comparison of using different numbers of
IN1k pre-training images in Food101 tasks.

Generalization on Detection. To investigate the genera-
tion ability of SEPT on other tasks, we conduct experiments
on object detection under similarly limited labeled images
setting. The detection datasets include CityScapes (Cordts
et al. 2016), VOC (Everingham et al. 2010) and LogoDet-
3k (Wang et al. 2022). For all detection tasks, we randomly
sample 1,000 images from the original training set for our
experiments. In LogoDet-3k task, we create a miniature ver-
sion of the dataset, called Logo-100, with a 100 class sub-
set for our experiments. Given the annotation of bounding
boxes, we evaluate SEPT with two retrieval strategies, in-
cluding using the whole image as a query and the instance as
a query. When using an instance for retrieval, each instance
will be cropped and resized to a fixed size for feature ex-
traction. Table 7 shows the results of detection. Our method
outperforms the random sampling baseline under 100k and
300k pre-training settings. The results indicate that using an
instance as a query can bring more performance gain from
SEPT. In CityScapes task, SEPT can achieve comparable
performance to IN1k baselines under 300k pre-training. In
VOC and Logo dataset, IN1k pre-training still is a strong
baseline. On the one hand, all the categories in VOC task
are collected in IN1k, resulting in the strong generalization
ability of IN1k pre-training models. On the other hand, we
also find that some logos are very rare in our unlabeled data
pool by visualizing the retrieval result, which suggests that
IN1k pre-training still is a decent option when SEPT can not
validly collect enough relevant pre-training data.

Pre-train
Samples

IN1k
SSL Rand SEPT Rand SEPT

1200k 100k 500k
50% 90.08 84.34 88.11 88.57 91.74

100% 92.31 88.44 90.64 91.57 93.15

Table 6: More downstream samples on Food101.

Method Pre-train
Samples CityScapes VOC Logo-100

Random Init 0 11.5 13.9 33.8
IN1k Sup 1200k 33.2 67.5 69.5
IN1k SSL 1200k 33.4 67.8 69.9
Random 100k 26.3 47.0 55.3

SEPT-Image 100k 29.9 55.6 64.3
SEPT-Instance 100k 31.4 57.4 64.6

Random 300k 30.0 60.2 61.5
SEPT-Image 300k 33.4 60.6 65.9

SEPT-Instance 300k 34.9 63.3 65.2

Table 7: Results for object detection using 1,000 samples for
each dataset. Performance is measured in mAP.

Conclusion
In this work, we revisited the scalability and efficiency
of transfer learning in the context of scaling up the pre-
training datasets. We proposed a pre-training framework,
SEPT, which takes full advantage of the enormous scale
of datasets without prohibitively expensive annotations by
selecting the task-specific subset to perform efficiently pre-
training via the similarity search. SEPT only conducts self-
supervised pre-training on the retrieval data; thus, it leaves
much space for future work to design a more effective al-
gorithm to boost downstream tasks’ performance with the
retrieval data. It could also be extended to more different
tasks, e.g., segmentation, and more modalities, e.g., vision-
language. Finally, we hope our work could inspire more re-
search about from the data perspective for the community.
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