
Probability Guided Loss for Long-Tailed Multi-Label Image Classification

Dekun Lin
Chengdu Institute of Computer Applications, Chinese Academy of Sciences, Chengdu 610041, China

University of Chinese Academy of Sciences, Beijing 100049, China
kunonkey@163.com

Abstract

Long-tailed learning has attracted increasing attention in very
recent years. Long-tailed multi-label image classification is
one subtask and remains challenging and poorly researched.
In this paper, we provide a fresh perspective from probability
to tackle this problem. More specifically, we find that exist-
ing cost-sensitive learning methods for long-tailed multi-label
classification will affect the predicted probability of positive
and negative labels in varying degrees during training, and
different processes of probability will affect the final per-
formance in turn. We thus propose a probability guided loss
which contains two components to control this process. One
is the probability re-balancing which can flexibly adjust the
process of training probability. And the other is the adaptive
probability-aware focal which can further reduce the proba-
bility gap between positive and negative labels. We conduct
extensive experiments on two long-tailed multi-label image
classification datasets: VOC-LT and COCO-LT. The results
demonstrate the rationality and superiority of our strategy.

Introduction
Deep convolutional neural networks (CNNs) have
achieved extraordinary success on computer vision so
far (Krizhevsky, Sutskever, and Hinton 2012; Simonyan and
Zisserman 2014; He et al. 2016), which is largely owing to
the artificial balanced datasets (e.g., CIFAR (Krizhevsky
2009), ImageNet ILSVRC (Deng et al. 2009) and MS
COCO (Lin et al. 2014)). However, real-world data often
exhibits long-tailed distribution. Namely, a few dominant
categories have the majority of samples while most of the
classes are instance-scarce. Such a universal phenomenon
poses severe challenges to a number of computer vision
tasks, e.g., image classification (Cui et al. 2019; Zhou et al.
2020), object detection (Tan et al. 2020; Li et al. 2020) and
instance segmentation (Hsieh et al. 2021; Wang et al. 2021).
Models are prone to overfit on minority classes and suffer
from performance decline dramatically.

There are multiple objects in a daily captured image
typically. Multi-label classification (MLC) is to identify
these objects concurrently. Compared to classic single label
classification (SLC) such as ImageNet ILSVRC 2012, the
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Figure 1: Predicted mean probability curves by different
cost-sensitive methods on long-tailed multi-label classifica-
tion dataset VOC-LT during training. H denotes the head
classes, M and T indicate the medium and tail classes, re-
spectively. Both the superscript + and the solid line denote
the probability of positive labels, while subscript − and the
dotted line represent the probability of negative labels.

MLC is undoubtedly more practical and challenging. Long-
tailed multi-label classification (LTMLC) which combines
the characteristics of long-tailed learning and MLC is un-
derestimated to date.

Cost-sensitive learning methods (Elkan 2001; Zhou and
Liu 2005) adjust loss values for various classes during train-
ing for re-balancing. In contrast with complicated model de-
sign, such approaches are more simple, interpretable and
may be even more powerful. CB loss (Cui et al. 2019) cal-
culates class-wise effective samples to re-weight loss and
achieve nice performance on SLC. Ridnik et al. who are
aware of the imbalance between positive and negative labels
in a multi-label setting, i.e., the number of negative labels is
much larger than positive labels, propose the ASL loss (Rid-
nik et al. 2021) to slow down the learning of massive easy
negative labels on MLC. Similarly, Wu et al. put forward the
DB loss (Wu et al. 2020) which focuses more on the learn-
ing of negative labels during training and make remarkable
advance in LTMLC.
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Long-tailed datasets can be split into head classes with
many samples, tail classes with few samples and medium
classes between them. We visualize the mean probability
of both positive and negative labels for these three splitting
classes on LTMLC by several representative cost-sensitive
methods during training as is shown in Fig. 1. For brevity,
we denote the probability of positive labels as positive prob-
ability and term the probability of negative labels as negative
probability. By the naive binary-cross-entropy (BCE) loss,
both the positive and negative probabilities of each category
increase to a big value rapidly. Besides, the probability gap
between positive and negative labels is somewhat large dur-
ing training. While with the focal loss, the probability gap is
significantly reduced and the probability rises at a decreas-
ing rate. The negative probability gets a tremendous suppres-
sion by DB loss who has considered the positive-negative
imbalance between labels.

The above mentioned approaches do have made progress,
we hence can have following hypotheses naturally: 1) slow-
ing down the growth of probability who increases fast helps
to improve performance, scilicet, probability who increases
too fast may suffer from overfitting; 2) it may be beneficial
to narrow the probability gap between positive and negative
labels. Based on the above two points, we can guess that
the remaining problem of focal loss may be that the proba-
bility still increases at a relatively fast rate in early training
stage. With regard to DB loss, the positive probability for tail
classes grows too fast compared to others and the probability
gap between positive and negative labels is large.

In this paper, we discover the key factors that affect
the probability during training and thereby propose a prob-
ability re-balancing scheme which can control the prob-
ability change at will. Moreover, we propose the adap-
tive probability-aware focal to narrow the positive-negative
probability gap dynamically. As is depicted in Fig. 1d, the
predicted probability increase exceedingly slowly during
training and the positive-negative probability gap is quite
narrow by our proposed loss. The main contributions of this
paper can be summarized as follows:

• We propose to handle the LTMLC from a novel per-
spective of probability. Our study reveals how the train-
ing probability influence the performance of models. Ac-
cordingly, we design a probability guided loss to adjust
the probability along a right way during training.
• We conduct systematic experiments on two long-tailed

multi-label classification datasets, the sound results
demonstrate the rationality and validity of our strategy
which outperforms previous state-of-the-art.

Related Works
Multi-Label Classification. Most existing methods aim at
designing particular models to exploit high-level semantic
information for MLC. Traditional approaches like depen-
dency network (Guo and Gu 2011), co-occurrence adja-
cency matrices (Xue et al. 2011) and conditional graph (Li
et al. 2016) explore high order label dependencies. With
the popularity of CNNs all over the tasks in computer
vision, methods resort to the Recurrent Neural Network

(RNN) (Wang et al. 2016, 2017) and Graph Convolutional
Network (GCN) (Kipf and Welling 2016) to similarly ex-
plore relations between labels. These methods usually re-
quire deliberate design and may be hard to optimize. Mean-
while, these approaches cannot have an excellent perfor-
mance on LTMLC. Based on focal loss (Lin et al. 2017),
Ridnik et al. who have been aware to the imbalance be-
tween positive and negative labels propose an asymmetric
loss named ASL (Ridnik et al. 2021). Unfortunately, such a
method cannot generalize well on LTMLC, either.
Long-Tailed Single-Label Classification. As has been
common used in long-tailed classification, re-sampling (He
and Garcia 2009; Shen, Lin, and Huang 2016; Byrd and
Lipton 2019) can alleviate the imbalance problem to some
extent. The basic idea is to over-sample the minority cat-
egories or to under-sample the frequent categories during
training (Han, Wang, and Mao 2005; Buda, Maki, and
Mazurowski 2018). Class-aware sampling (Shen, Lin, and
Huang 2016) chooses samples of each category with equal
probabilities. Re-weighting the loss is another straight strat-
egy. The training loss can be controlled in class-wise level
by re-weighting according to the frequency of each cate-
gory (Huang et al. 2016; Wang, Ramanan, and Hebert 2017;
Cui et al. 2019). A sample-level control of loss can also be
achieved for different samples (Lin et al. 2017; Ren et al.
2018). Recent studies (Kang et al. 2019; Zhou et al. 2020)
decouple the learning of representation and classifier head to
improve the prediction. Despite their effectiveness, the per-
formance on LTMLC is not so satisfactory.
Long-tailed Multi-Label Classification. Methods concern-
ing with the MLC are numerous up to now. In contrast, re-
searches on LTMLC are particularly rare. In common with
the ASL loss (Ridnik et al. 2021) which is proposed for
MLC, Wu et al. (Wu et al. 2020) propose to slow down the
optimization rate of negative labels based on binary-cross-
entropy. Such a design effectively improves the prediction
accuracy on LTMLC. Nevertheless, there is still room for
improvement of it.

Approach

We first briefly introduce the Focal Loss (Lin et al. 2017) and
the negative-tolerance regularization (NTR) of DB Loss (Wu
et al. 2020). Meanwhile, we give corresponding analysis on
how they influence the predicted probability during training.
Subsequently, we propose the probability re-balancing (PR)
to adjust the growth rate of predicted probability for classes
who increase too fast in early training stage. Afterwards, we
present the adaptive probability-aware focal (APAF) which
can adaptively alter the gradient scaling factors in each iter-
ation and eventually effectively narrow the positive-negative
probability gap. Finally, we formally define the Probability
Guided (PG) loss which is composed of PR and APAF.

NTR and Focal Loss

The negative-tolerance regularization (NTR) is one compo-
nent of DB loss (Wu et al. 2020). It is built upon the binary-

1578



Figure 2: The gradient curves on negative labels by BCE,
NTR and Focal Loss. X-axis denotes the logit of negative
labels, and the y-axis is the corresponding gradients.

cross-entropy (BCE) loss. The total loss of BCE is given by:

LBCE(X,Y ) =
N∑
i=1

K∑
c=1

L(pic, y
i
c), (1)

where (X,Y ) is the training set and N is the number of
training samples. The number of classes is K, then we have
yi = [yi1, ..., y

i
K ] ∈ {0, 1}K . Let pic denote the predicted

probability of the cth label of sample xi, it is obtained by
sigmoid function. For brevity we denote the predicted prob-
ability as p and the ground-truth as y. The loss of each label
is given by:

L = −y log(p)− (1− y) log(1− p). (2)
Then the loss of NTR which is based on BCE is given by:

LNT−BCE =

{
1
λ log(1 + eλ(z−v)), y = 0;
log(1 + e−(z−v)), y = 1,

(3)

where λ is the gradient scaling factor for negative labels. The
z is the output logits of classifier and v is the class-specific
bias. Such a design can slow down the learning rate of easy
negative samples while accelerate the hard ones greatly, al-
leviate the problem of imbalance between positive and neg-
ative labels.

The loss of focal loss is given by:

LFocal =

{
−pλ log(1− p), y = 0;
−(1− p)λ log(p), y = 1,

(4)

where λ is the gradient scaling factor for both positive and
negative labels. When λ = 0, it is the BCE loss; when λ > 0,
it becomes the focal loss. The gradient curves of both NTR
and focal loss are depicted in Fig. 2. As can be seen from
it clearly, the common idea behind them is to down-weight
the learning of easy negative samples while up-weight the
hard ones. And this is exactly the key factor that affects the
process of predicted probability during training. The bigger
the scaling factor λ is, the stronger the probability will be
suppressed. The difference lies that NTR which is tailored
for LTMLC focuses only on negative labels, while focal is
a symmetrical design for both positive and negative labels.
Thus the positive-negative probability gap by focal loss is
smaller than by NTR.

scaling factor positive probability negative probability
λ+1 ↑ ↓
λ+2 ↓ ↑
λ−1 ↓ ↓
λ−2 ↑ ↓

Table 1: The effects of different gradient scaling factors in
PR for both positive and negative labels.

Probability Re-Balancing
Our proposed probability re-balancing (PR) is given by:

LPR−BCE =


1
λ−
2

log(1 + eλ
−
1 (z−v)), y = 0;

1
λ+
2

log(1 + e−λ
+
1 (z−v)), y = 1.

(5)

It has four gradient scaling factors: λ−1 , λ
−
2 for negative

labels and λ+1 with λ+2 for positive labels respectively. To
have a closer look at how these four different factors affect
the predicted probability during training, we conduct exper-
iments on two long-tailed datasets: VOC-LT and COCO-LT.
Limited by space, we put only results of VOC-LT here as is
shown in Fig. 5. We can actually draw the same conclusion
by COCO-LT just as VOC-LT without losing generality.

We can see from Fig. 3a and Fig. 3b that when λ+1 in-
creases, the predicted positive probability increases while
the negative probability decreases. On the contrary, the pre-
dicted positive probability decreases and the negative prob-
ability increases when λ+2 increases as shown in Fig. 3e and
Fig. 3f. As for the negative scaling factors, both the positive
and negative probability will decrease when increasing λ−1
as illustrated in Fig. 3c and Fig. 3d. When increasing λ−2 ,
the predicted positive probability increases while the nega-
tive probability decreases. Such a rule is also shown in Tab. 1
to keep things straight.

Actually, PR is a generalized version of NTR, or named
NTR is a special case of PR. When λ−1 = λ−2 , λ

+
1 = λ+2 =

1, it becomes the NTR.

Adaptive Probability-Aware Focal
We propose the adaptive probability-aware focal (APAF) to
reduce the positive-negative probability gap in a more effec-
tive manner, that is to utilize the class-wise predicted posi-
tive and negative probability to generate the gradient scaling
factors. Specifically, we first compute the class-wise mean
positive probability p+ and mean negative probability p− in
each iteration. They are given by: p+ = 1∑m

j=1
yj

∑m
j=1 p

+
j yj ;

p− = 1∑m

j=1
(1−yj)

∑m
j=1 p

−
j (1− yj),

(6)

where y is the ground-truth, p is the predicted probabil-
ity, the subscript j denotes the jth sample in a batch, the
superscript + denotes the positive labels and − the nega-
tive labels, m is the number of samples in a batch. Note
that the sum of the occurrences of some categories may
be 0 in a batch, especially for the tail classes. We cannot
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(a) λ+
1 on positive labels (b) λ+

1 on negative labels (c) λ−
1 on positive labels (d) λ−

1 on negative labels

(e) λ+
2 on positive labels (f) λ+

2 on negative labels (g) λ−
2 on positive labels (h) λ−

2 on negative labels

Figure 3: Predicted mean probability curves on VOC-LT by different gradient scaling factors during training. Red color indicates
the head classes, green and blue colors denote the medium and tail classes, respectively. In all subfigures, the solid line denotes
that both λ1 and λ2 equal to 1. For different subfigures with different scaling factors, (a)-(b) dashed line means λ+1 = 2, λ+2 = 1,
dotted line denotes λ+1 = 5, λ+2 = 1; (c)-(d) dashed line means λ−1 = 2, λ−2 = 1, dotted line denotes λ−1 = 5, λ−2 = 1; (e)-(f)
dashed line means λ+1 = 5, λ+2 = 1, dotted line denotes λ+1 = 5, λ+2 = 5; (g)-(h) dashed line means λ−1 = 5, λ−2 = 1, dotted
line denotes λ−1 = 5, λ−2 = 5.

calculate the mean probability of ith class p+i at this mo-
ment. To tackle it, we split all classes {C1, C2, · · · , CK}
into {Chead, Cmedium, Ctail} according to the number
of samples in each category, i.e. {C1, C2, · · · , CK} =
{Chead, Cmedium, Ctail}. We then replace this mean proba-
bility value by the mean of other classes. These classes rep-
resent classes which this class belongs to. For instance, if
this class belongs to tail classes {Ctail}, then it is given by:

p+i =
1

|{Ctail}|
∑
j

p+j , i, j ∈ {Ctail}, (7)

where the subscript i denotes the ith class, both ith and jth
class belong to tail classes. |{Ctail}| denotes the number of
tail classes. If p+i still cannot be calculated after such an op-
eration, that means all the tail classes in this iteration occur
0 times, we then set p+i = p−i at this situation. The scaling
factors for focal loss are then given by: λ+ = λ0

p+

p−
;

λ− = λ0
p−

p+
,

(8)

where λ0 denotes the initial scaling factor. In general, this
factor equals to 2. If the mean positive probability p+ is big-
ger than the negative probability p−, then we are to sup-
press the positive probability with increasing the positive
gradient factor λ+ and vice versa. Finally, we have adaptive
probability-aware focal loss:

LAPAF =

{
pλ

−
log(1− p), y = 0;

(1− p)λ+

log(p), y = 1,
(9)

In reality, PR can get scaling factors in an adaptive class-
wise probability-aware way as well just as APAF. We term

it as adaptive probability re-balancing (APR), which will be
further discussed later on experiments part.

Probability Guided Loss
Thus far, we have PR-BCE to adjust the changing rate of
probability freely. And the APAF can effectively reduce the
positive-negative probability gap as well as reducing the
growth rate of probability to some extent. These two strate-
gies can be integrated as a unified probability guided loss for
end-to-end training, which is finally given by:

LPG =


1
λ−
2

pλ
−
log(1 + e−λ

−
1 (z−v)), y = 0;

1
λ+
2

(1− p)λ+

log(1 + eλ
+
1 (z−v)), y = 1.

(10)

Experiments
Datasets
Just as Wu et al. (Wu et al. 2020), we conduct experiments
on two long-tailed multi-label classification datasets: VOC-
LT and COCO-LT. They are artificially constructed from
Pascal Visual Object Classes Challenge (VOC) (Everingham
et al. 2015) and MS-COCO (Lin et al. 2014), respectively.
VOC-LT: The VOC-LT is sampled from the 2012 train-val
set of VOC (Everingham et al. 2015) based on the Pareto
distribution which is the same as Liu et al. (Liu et al. 2019).
There are 1142 images and 20 class in training set. The num-
ber of each class ranges from 4 to 775. These 20 classes are
split into three groups according to the number of samples
per class: a head class contains more than 100 samples, a
medium class has 20 to 100 samples, and a tail class has less
than 20 samples. The ratio of head, medium and tail classes
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Datasets VOC-LT COCO-LT
Methods total head medium tail total head medium tail

ERM 70.86 68.91 80.20 65.31 41.27 48.48 49.06 24.25
RM 74.70 67.58 82.81 73.96 42.27 48.62 45.80 32.02

Focal Loss (Lin et al. 2017) 73.88 69.41 81.43 71.56 49.46 49.80 54.77 42.14
RS (Shen, Lin, and Huang 2016) 75.38 70.95 82.94 73.05 46.97 47.58 50.55 41.70

ML-GCN (Chen et al. 2019) 68.92 70.14 76.41 62.39 44.24 44.04 48.36 38.96
LDAM (Cao et al. 2019) 70.73 68.73 80.38 69.09 40.53 48.77 48.38 22.92

CB Focal (Cui et al. 2019) 75.24 70.30 83.53 72.74 49.06 47.91 53.01 44.85
ASL Loss (Ridnik et al. 2021) 76.40 70.70 82.26 76.29 50.21 49.05 53.65 46.68

DB Focal (Wu et al. 2020) 78.29 72.67 83.17 78.75 53.45 50.91 56.58 51.52
Ours 80.37 73.67 83.83 82.88 54.43 51.23 57.42 53.40

Table 2: mAP performance of our proposed method and other comparison methods on LTMLC. The result of DB loss is
re-trained by us, the other results are taken from Wu et al. (Wu et al. 2020).

is 6:6:8 after such splitting. The testing set contains 4952
images which is identical to the 2007 test set of VOC.
COCO-LT: The COCO-LT is sampled from the 2017 ver-
sion of MS-COCO (Lin et al. 2014) in a similar way. There
are 1909 images and 80 classes in the training set. The num-
ber of each class ranges from 6 to 1128. The splitting of
classes is similar to VOC-LT. The ratio of head, medium and
tail classes is 22:33:25. The testing set contains 5000 images
which is identical to the 2017 testing set of MS-COCO.

Implementation Details
We use the mean average precision (mAP) metrics to eval-
uate the performance of methods for LTMLC just as DB
loss (Wu et al. 2020). For fair comparison, we use con-
figurations similar to DB loss. More specifically, We use
the ResNet50 (He et al. 2016) which is pre-trained on Im-
ageNet (Deng et al. 2009) as the backbone of model. The
input images are all resized to a dimension of 224×224 and
the batch size is 32. We adopt standard data augmentations
the same as DB loss. The class-aware re-sampling (Shen,
Lin, and Huang 2016) is applied the same as previous
works (Shen, Lin, and Huang 2016; Cui et al. 2019). The op-
timizer we take is SGD whose momentum is 0.9 and weight-
decay is 1e-4. The initial lr is 8e-3 for VOC-LT and 1e-2
for COCO-LT. We also use warm-up learning rate sched-
ule (Goyal et al. 2017) for the first 500 iterations with a ratio
of 1

3 . All the codes of DB loss are took out and retrained by
us. We conduct all experiments on PyTorch1.8.0.

Comparisons
First of all, we compare the mAP performance between our
method and previous methods on long-tailed datasets to ver-
ify the effectiveness of our proposed method. These compar-
ison methods contain Empirical Risk Minimization (ERM),
Re-Weighting (RW) which re-weights by the inverse pro-
portion of the square root of class frequency, Re-Sampling
(RS) (Shen, Lin, and Huang 2016), Focal Loss (Lin et al.
2017), ML-GCN (Chen et al. 2019), LDAM (Cao et al.
2019), CB Focal (Cui et al. 2019), DB Loss (Wu et al. 2020)
and ASL Loss (Ridnik et al. 2021). The mAP performance
of different methods are shown in Tab. 2. The experiment

results show that our proposed method outperforms previ-
ous methods and has a significant advance. Specifically, our
proposed PG loss achieves the best results of 80.37% and
54.43% total mAP scores on VOC-LT and COCO-LT, re-
spectively. It can have about 2.1% and 1% total mAP perfor-
mance gain on VOC-LT and COCO-LT compared with pre-
vious SOTA method DB Focal loss. Meanwhile, our results
on three subset classes, i.e. head, medium and tail classes,
are the best, too. The main performance gain arises in tail
classes at an astonishing 4% mAP on VOC-LT. With regard
to COCO-LT, performance advance mainly occurs in both
medium and tail classes.

Ablation Study
To better observe how our proposed PR and APAF affect the
probability and performance, we conduct ablation analyses
on them, respectively.

Ablation Analysis on PR In this section, we elaborate on
how we conduct our PR strategy according to the probabil-
ity map. Our experimental results demonstrate our proposed
PR can significantly have a positive effect on the predicted
probability and therefore achieve great advance.

Fig. 4a shows the mean predicted probability of different
splitting classes on VOC-LT by DB loss during training. The
positive probability of tail classes grows rapidly compared
with other classes, despite probability of other classes has
been suppressed well. Hence, our goal is to re-balance the
positive probability of tail classes, namely to suppress it. Un-
der the pattern shown in Tab. 1, we here choose to increase
λ−1 and λ+2 for tail classes alone. When only increasing λ−1 ,
the positive probability of tail classes gets a certain suppres-
sion as illustrated in Fig. 4b. Likewise, the positive probabil-
ity of tail classes gets squeezed to some extent when merely
increasing λ+2 as is shown in Fig. 4c. With increasing λ−1 and
λ+2 concurrently, this probability is hence greatly suppressed
as is depicted in Fig. 4d. We can see from Fig.4e that com-
pletely different from results on VOC-LT, the negative prob-
ability of all three splitting classes remains grow fast and
have a big gap with positive probability when adopting DB
loss on COCO-LT. We thus aim at suppressing the negative
probability while enhancing the positive probability. Refer-
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(a) DB on VOC-LT (b) PR (λ−
1 +) on VOC-LT (c) PR (λ+

2 +) on VOC-LT (d) PR (λ−
1 +, λ

+
2 +) on VOC-LT

(e) DB on COCO-LT (f) PR (λ−
1 +) on COCO-LT (g) PR (λ+

1 +) on COCO-LT (h) PR (λ−
1 +, λ

+
1 +) on COCO-LT

Figure 4: Predicted mean probability curves by different scaling factors on both VOC-LT and COCO-LT during training. H
indicates the head classes, M and T denote the medium and tail classes, respectively. Both the superscript + and the solid
line denote the probability of positive labels, while subscript − and the dotted line represent the probability of negative labels.
Subfigures (b) and (f) are results of only increasing λ−1 , (c) means increasing λ+2 on VOC-LT and (g) shows raising λ+1 on
COCO-LT. Probability maps of increasing two needful scaling factors are shown in (d) and (h).

VOC-LT total head medium tail
DB 77.29 72.17 83.83 76.37

PR (λ−1 +) 77.85 72.17 83.50 78.00
PR (λ+2 +) 77.56 72.83 83.83 76.50

PR (λ−1 +, λ
+
2 +) 78.44 73.00 82.50 79.75

COCO-LT total head medium tail
DB 51.91 49.50 54.88 50.12

PR (λ−1 +) 52.24 50.00 55.70 49.64
PR (λ+1 +) 52.82 49.95 56.21 50.88

PR (λ−1 +, λ
+
1 +) 53.66 50.91 56.88 52.00

Table 3: The mAP performance of DB loss and our proposed
PR on long-tailed datasets.

ring to Tab. 1 similarly, we increase the scaling factors λ−1
and λ+1 for all classes simultaneously. When only increas-
ing λ−1 , the negative probability of all classes is suppressed
as is shown in Fig. 4f. Conversely, the positive probability
is upgraded when merely increasing λ+1 as is illustrated in
Fig. 4g. The probability map on COCO-LT after increasing
both two scaling factors is depicted in Fig. 4h. Apparently,
the growth rate of negative probability is declined. Mean-
while, the positive-negative probability gap is significantly
narrowed by our PR.

Tab. 4 shows the mAP performance comparison between
DB loss and our proposed PR. It can be clearly seen that our
PR with multiple different gradient scaling factors guided by
probability has a leap in performance compared to DB loss.
Specifically, when only increasing λ−1 for VOC-LT, we can
have about 0.6% mAP gain which happens primarily in tail
classes. And when merely increasing λ+2 , the mAP gain is
about 0.3%. The final performance gain is about 1.2% mAP

VOC-LT total head medium tail
PR (λ−1F , λ

+
2F ) 79.46 73.67 84.00 80.50

PR (λ−1A, λ
+
2F ) 80.37 73.67 83.83 82.88

PR (λ−1F , λ
+
2A) 79.70 73.83 83.33 81.38

PR (λ−1A, λ
+
2A) 79.95 73.33 83.67 82.00

COCO-LT total head medium tail
PR (λ−1F , λ

+
1F ) 54.08 51.14 57.09 52.72

PR (λ−1A, λ
+
1F ) 54.43 51.22 57.42 53.40

PR (λ−1F , λ
+
1A) 54.18 51.05 57.24 52.80

PR (λ−1A, λ
+
1A) 54.22 51.18 57.27 52.80

Table 4: The mAP performance of PR and APR on long-
tailed datasets. The subscript A denotes the scaling factor is
adaptive and F means the scaling factor is fixed.

on VOC-LT when concurrently increasing λ−1 and λ+2 . We
mainly conduct PR on tail classes, thus the performance on
tail class has a significant improvement up to about 3.4%.
While there is a little performance loss on medium classes.
On account for COCO-LT, the overall mAP gain is about
1.8%. When only increasing λ−1 , we can have a mAP gain
about 0.3%. While when increasing λ+1 merely, the mAP
gain is about 0.9%. Since the PR is performed on all classes,
the final performance gain is considerable on all three split-
ting classes consequently, that is about 1.5% on head classes,
2% on medium classes and 1.9% on tail classes.

Ablation Analysis on APR As discussed before, we in-
crease the value of λ−1 and λ+2 concurrently on VOC-LT,
λ−1 and λ+1 on COCO-LT. We here test whether the adaptive
scaling factors for PR have influence on performance. As
can be seen from Tab. 4, the best results are achieved when
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(a) Focal on VOC-LT (b) APAF on VOC-LT (c) APR and Focal on VOC-LT (d) APR and APAF on VOC-LT

(e) Focal on COCO-LT (f) APAF on COCO-LT (g) APR and Focal on COCO-LT (h) APR and APAF on COCO-LT

Figure 5: Predicted mean probability curves by different components on both VOC-LT and COCO-LT during training. H
indicates the head classes, M and T denote the medium and tail classes, respectively. Both the superscript + and the solid line
denote the probability of positive labels, while subscript − and the dotted line represent the probability of negative labels.

fixing positive gradient factors while keeping negative scal-
ing factors dynamic. We speculate that this may owing to the
maximum importance of λ−1 compared to other scaling fac-
tors. For the negative scaling factor λ−1 contributes most to
the suppression of negative probability. In addition, setting
only one factor dynamic is sufficient. For if multiple factors
are set dynamic, they may affect each other mutually.

Ablation Analysis on APAF Similar to analysis on PR,
we observe how APAF affect the training by probability
map. Fig. 5a shows the training probability map by focal loss
on VOC-LT, we can see that the positive-negative probabil-
ity gap of all classes has already been small. Thus, our APAF
has little effect on the probability map compared to focal loss
as shown in Fig. 5b. Yet for COCO-LT, the positive-negative
probability gap remains large by focal loss as shown in
Fig. 5e. Our APAF can effectively reduce such a gap as is
shown in Fig. 5f. While Fig. 5c and Fig. 5g draw the proba-
bility maps on VOC-LT and COCO-LT by APR plus focal,
respectively. And Fig. 5d and Fig. 5h show the probability
maps by APR plus APAF on the two long-tailed datasets.
We can see that the probability is more compact between
positive and negative labels by replacing focal with APAF.

Tab. 5 presents the impact of our APAF on performance.
Consistent with the above analysis on probability map, the
mAP scores of APAF and focal are basically the same on
VOC-LT which are both around 76.8%. For they have sim-
ilar impact on the probability. Unlike on VOC-LT, APAF
can achieve a certain performance gain for about 0.6% mAP
on COCO-LT since it can effectively narrow the positive-
negative probability gap compared to focal. This advance
happens mainly on tail and head classes. After applying our
APR, the APAF can eliminate the positive-negative proba-
bility gap more efficiently than focal. Accordingly, APAF
can have about 1.2% performance advance on VOC-LT,
which take place mainly on medium and tail classes. While
for COCO-LT, the gain is about 0.2% which happens mainly

VOC-LT total head medium tail
Focal 76.86 72.17 83.50 75.50
APAF 76.77 72.17 83.33 75.13

APR + Focal 79.14 73.5 83.00 80.25
APR + APAF 80.36 73.67 83.83 82.62

COCO-LT total head medium tail
Focal 50.20 48.09 53.88 47.00
APAF 50.79 49.14 53.88 49.96

APR + Focal 54.24 51.00 57.39 53.12
APR + APAF 54.43 51.23 57.42 53.40

Table 5: The mAP performance of Focal Loss and our pro-
posed APAF on long-tailed datasets.

in tail and head classes.

Conclusion
In this paper, we propose to look upon long-tailed multi-
label classification from the viewpoint of training probabil-
ity. And further a simple yet powerful loss function is pre-
sented by us to tackle LTMLC. We find that existing cost-
sensitive methods affect the training probability differently
and thus affect final performance. We introduce a probabil-
ity re-balancing scheme to reasonably adjust the probabil-
ity. Besides, the adaptive probability re-balancing can fur-
ther improve performance. Moreover, we propose the adap-
tive probability-aware focal to narrow the probability gap
between positive and negative labels more effectively. Ex-
tensive experiments on two long-tailed datasets demonstrate
the significance of proposed method.
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