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Abstract

Not all semantics become confusing when deploying a seman-
tic segmentation model for real-world scene understanding
under adverse weather. The true semantics of most pixels have
a high likelihood of falling in the few top classes ranked by
the degree of confidence. In this paper, we replace the one-hot
pseudo label with a candidate label set (CLS) that consists of
only a few ambiguous classes and exploit its effects on self-
training-based unsupervised domain adaptation. Specifically,
we cast the problem as a coarse-to-fine process. In the coarse-
level process, adaptive CLS selection is proposed to pick a
minimal set of confusing candidate labels based on the relia-
bility of label predictions. Then, representation learning and
label rectification are iteratively performed to facilitate feature
clustering in an embedding space and to disambiguate the con-
fusing semantics. Experimentally, our method outperforms the
state-of-the-art methods on three realistic foggy benchmarks.

Introduction
Semantic segmentation assigns pixel-wise semantic labels to
a given image, which has found a broad range of applications
such as autonomous driving (Liu et al. 2020; Wu et al. 2019;
Zhou et al. 2020), medical imaging (Meng, Liao, and Satoh
2022; Taghanaki et al. 2021), and image restoration (Wang
et al. 2018; Liao et al. 2020, 2021a,b). Although recent ad-
vances in semantic segmentation driven by convolutional neu-
ral networks (CNNs) have achieved high accuracy under clear
visibility (Cordts et al. 2016; Everingham et al. 2010, 2015;
Lin et al. 2014), these models often encounter challenges for
real-world scenes, especially for outdoor scenes under “ad-
verse” weather conditions (Erkent and Laugier 2020; Wang
et al. 2020; Jiang et al. 2021; Zhong et al. 2022). Even worse,
the low visibility in this case makes it difficult for humans to
collect or accurately annotate the degraded images. In this
paper we focus on unsupervised semantic foggy scene under-
standing (SFSU) (Dai et al. 2020; Liao et al. 2022; Ma et al.
2022; Sakaridis, Dai, and Van Gool 2018), aiming at adapting
models trained on labeled clear images (the source domain)
to real-world foggy images (the target domain), involving
different scenes without annotations.
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Intelligence (www.aaai.org). All rights reserved.

Recently, self-training approaches emerge as powerful so-
lutions for transferring knowledge from the source domain
to the target domain (Kim and Byun 2020; Mei et al. 2020;
Shin et al. 2020; Zhang et al. 2020; Zou et al. 2019b; Xie
et al. 2022; Zhu et al. 2022), typically employing the iterative
approach between pseudo label prediction and model retrain-
ing. Since the discrepancy between the source and target
domains leads to noisy predictions, attention has been paid to
generating high-quality pseudo labels such as adaptive thresh-
olding for filtering out unreliable predictions (Zou et al. 2018,
2019a), entropy minimization for increasing confidence on
unlabeled data (Iqbal, Hafiz, and Ali 2022; Vu et al. 2019;
Zheng and Yang 2021), curriculum model adaptation from
easy to hard samples (Dai et al. 2020; Lian et al. 2019; Ma
et al. 2022; Zhang, David, and Gong 2017), and confident
pseudo label diffusion (Liao et al. 2022; Shin et al. 2020).
However, two issues related to pseudo labels continue to hin-
der the performance of domain adaptation: 1) a substantial
number of pseudo labels are incorrect, even for some with
high confidence; 2) if only pixels with high confidence are
utilized, data lying far from the source distribution will never
be included in the training stage.

By dissecting the segmentation results predicted in the
foggy scenario, we have an interesting observation: although
the pseudo label with the highest prediction confidence is
not always consistent with the ground-truth (GT), the GT
class usually has a high likelihood of falling in the top few
classes ranked by the prediction confidence. Taking the Bus
pixel in Fig. 1 for instance, its predicted probability vector
ranked by confidence score is {Building(0.742), Bus(0.254),
Road(0.002), ...}. Based on this observation, we hypothesize
that the domain discrepancy will only confuse a GT class with
a small set of other classes, but not all of them. Therefore, if
we can disambiguate the GT labels from their corresponding
confusing labels, the learned model will be able to accurately
understand the foggy scene.

To this end, we propose a Candidate labels disambiguation-
based Domain Adaptation (CanDA) framework with the goal
of replacing the existing one-hot hard label with a newly in-
troduced candidate label set (CLS). Besides the set of one-hot
hard, CLS is intended to include more pseudo labels that their
GT labels may not be ranked the first but are within the top
ranks so that those samples which lay far from the source
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Figure 1: Replacement of hard pseudo-labels in self-training-based SFSU with a candidate label set. The foggy image is overlaid
with sparse confident pseudo labels. The middle part shows three samples with their respective sorted confidence scores for all
classes. The hard pseudo labels are highly sparse and noisy, but the candidate label set consisting of three candidates is able to
cover the ground-truth class and boost it to the top by label disambiguation.

distributions could be included in the adaptive training. Fur-
thermore, to incorporate the GT labels while mitigating the
number of confusing labels, we present an adaptive candi-
date label selection technique based on the reliability of label
prediction. Then, we propose a label disambiguation process
aiming at bringing the pixel embeddings closer to the proto-
types of real semantics, to update the CLS and progressively
improve the ranking of the GT label within the set.

We conduct extensive experiments to demonstrate that
the proposed label disambiguation progressively enhances
the ranking of GT labels in the CLS to improve labeling
accuracy, thereby increasing the number of accurate pixels
in training, which ultimately contributes to the performance
improvement in three realistic foggy benchmarks.

Our main contributions are summarized as follows:

• (Problem Definition). Our paper is the first, to the best
of our knowledge, to explore candidate pseudo labels for
domain-adaptive semantic segmentation. In comparison
to the conventional one-hot pseudo-labels, the candidate
label set has the potential to find a compact target feature
space by involving more training samples even if they
are far from the source distribution while simultaneously
reducing error information by taking labeling uncertainty
into account in the CLS.

• (Methodology). To integrate CLS into self-training-based
SFSU, we devise a prototypical contrastive learning frame-
work with newly built label set losses and label disam-
biguation mechanism. By keeping prototypes for all se-
mantics, pixel features are pushed away from the embed-
ding of negative classes excluded from the CLS but are
drawn closer to the GT semantics by gradually elevating
the GT classes to the highest rank in CLS during training.

• (Performance). The proposed CanDA substantially out-
performs the state-of-the-art for the SFSU tasks on
three realistic foggy benchmarks when adapted from
CityScapes (Cordts et al. 2016), which benefits from
the sufficient and categorically balanced training with the
CLS setting.

(a) mIoU-CLS increment with size k of CLS

(b) Class-wise mIoU-CLS on ACDC-fog

Figure 2: mIoU-CLS increases as the number k of candidate
labels in both scales of datasets and semantic class increases.
That is, if we can disambiguate the GT label from the CLS,
the mIoU can be significantly improved. mIoU-CLS deems
the prediction correct if the GT class falls within the CLS.

Motivation
What makes high-quality pseudo labels for self-training-
based domain adaptation? We argue that the labels should not
only be highly accurate but also cover most of the target pix-
els for sufficient and categorically balanced training. To this
end, we analyze the impact of domain disparity on the target
data using a pre-trained source model (Lin et al. 2020) from
a labeled dataset of clear weather, i.e., CityScapes (Cordts
et al. 2016), and the results are depicted in Fig. 2. It can be
observed that using the hard pseudo label (the label with the
highest prediction confidence) (Badrinarayanan, Kendall, and
Cipolla 2017; Chen et al. 2017; Minaee et al. 2021), achieves
an initial mIoU of approximately 0.5. However, after expand-
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Figure 3: Framework of CanDA. The entire learning process is divided into coarse and fine levels. At the coarse level, the CLS of
each pixel is initialized. Then, at the fine level, contrastive representation learning is adopted to better cluster the class embedding,
whereas the prototype-driven candidate label disambiguation module assists in pushing the GT classes to the top rank. “//” means
no back-propagation.

ing the hard pseudo label to a candidate label set (consisting
of the k most confident labels), the performance improves
significantly under the measurement of mIoU-CLS, which
considers the prediction correct if GT class is within the CLS.

This observation motivates us to separate the few most con-
fidently predicted labels from the rest. In particular, the most
confident labels for a CLS are the most confusing ones for
this pixel, whereas the others can be easily distinguished. On
this basis, we propose to decompose the C-class pixel clas-
sification problem into two sub-problems: selecting a CLS
of size k for each pixel and disambiguating the k confusing
labels from the CLS, where k<<C.

Method
Problem Formulation
In self-training-based SFSU setting, we are given two
datasets: a labeled source dataset from clear weather Ds =
{(xis, yis)}

Ns
i=1, and an unlabeled target dataset from foggy

weather Dt = {xit}
Nt
i=1, where xis and xit denote the images

from the source and target domains, Ns and Nt indicate the
total number of images in the source and target domains,
respectively. yis(p) ∈ {0, 1}C is the one-hot encoded label
map corresponding to pixel p in image xis, where C is the
total number of classes shared by Ds and Dt.

Instead of taking a single one-hot pseudo label, we propose
a candidate label set (CLS) in the target dataset to facilitate
domain adaptation. In particular, each pixel-wise CLS, de-
noted as Yit(p), is associated with a vector yit(p) ∈ [0, 1]kp

representing the probability of each label, where kp is the
number of candidate labels for pixel p in a target image and
much less than the total class number C. Yit(p) represents the
excluded labels with class number of C-kp. The entire self-
training problem is then converted into two sub-problems:

candidate label selection and representation learning with the
CLS. The latter sub-problem can be addressed by optimizing
this loss function:

Lseg =
1

Ns

Ns∑
i=1

Lce(Φ(xis), yis)+αt
1

Nt

Nt∑
i=1

Lrl(Φ(xit),yit),

(1)
where Φ denotes the segmentation model initialized by train-
ing on Ds, αt is a weight that balances the contributions of
the two datasets. Lce is the cross-entropy loss and Lrl de-
notes our proposed loss functions of representation learning
based on CLS. In the remainder, we omit the sample index i
when the context is clear.

Framework Overview
The proposed framework is shown in Fig. 3, in which we
formulate the self-training-based SFSU as a pixel-wise can-
didate labels disambiguation problem and solve it with a
two-level process.

Coarse-level process. CLS is initialized for each pixel
by selecting the top k labels from a sorted label vector in
descending order of confidence. With the goal of making CLS
cover the GT label while minimizing the labeling uncertainty
of CLS, we propose an adaptive CLS generation strategy
that adjusts the number of candidate labels according to the
reliability of the label predictions, under the assumption that
the higher the prediction reliability, the higher the ranking of
GT labels in the prediction vector.

Fine-level process. We progressively learn the embedding
of the target domain based on the CLSs of pixels and disam-
biguate GT labels online from CLS. Specifically, we build
our framework on the basis of prototypical contrastive learn-
ing (He et al. 2020; Khosla et al. 2020) and collaboratively
optimize the semantic representation and CLS label ranking.
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Contrastive representation learning. This learning process
is supervised by optimizing a proposed label set loss for seg-
mentation, and a contrastive loss for clustering embeddings.
To accommodate the CLS setting, negative samples for con-
trastive learning are collected using only the excluded labels
in Yt, so that the pixel features are encouraged to stay away
from the classes outside of CLS.

Candidate label disambiguation. We disambiguate the
CLS and promote the GT label to the first rank, thereby
encouraging the clustering of these confusing semantics. In
particular, the rectification process estimates class-wise like-
lihoods according to the relative distance between the pixel
embedding and all semantic prototypes, and the candidate
label disambiguation module increases the confidence of the
label whose prototype is the closest to the pixel. Noting that
the prototypes are computed on-the-fly, making the CLS up-
dated incrementally throughout training.

Adaptive Candidate Label Selection
The adaptive candidate label selection aims to select, when-
ever possible, the minimal labels for the CLS that contains
the GT label. Observing that the class confusion issue varies
in different contexts, particularly in the foggy scene, where
the effect of fog is highly related to the scene depth (Dai
et al. 2020), we propose to adaptively assign the number of
candidate labels in CLS based on the three categorizations of
pixel reliability addressed as follows.

• Category I - Strongly Reliable (C.I). As validated by
thresholding-based self-training methods (Zou et al. 2018,
2019a), the regions with the highest confidence tend to
be reliable and have high recognition accuracy. Thus, we
categorize these confident labels as Category I with a single
label in the CLS.

• Category II - Reliable (C.II). Inspired by (Liao et al. 2022)
that pixels within a local cluster with a confident pixel tend
to have a label co-occurrence, we use the superpixel-based
spatial diffusion process to locate the pixels in Category II
and assign them with soft labels ŷt(p) ∈ [0, 1]k1 from the
top k1 highest confidence scores, where 1<k1<<C.

• Category III - Not Very Reliable (C.III). All pixels not
included in the previous categories are grouped into Cat-
egory III. We define the size of CLS as k0 to balance the
size of their CLSs and the expectation that GT label in the
CLS, where k1 < k0 << C.

Correspondingly, the categorization of pixel reliability can
be formulated by:

m(p) =



1 if c = argmaxc Pp (c | xt,Φ)
and Pp (c | xt,Φ) > λc

2 if argmaxc Pp (c | xt,Φ)
= argmaxc Pq (c | xt,Φ)
s.t. p and q ∈ spi and m(q) = 1

3 otherwise

(2)

where m(p) and m(q) denote the category indicators of pixel
p and q, respectively, 1, 2 and 3 mean that the pixel belongs
to Category I, II and III, respectively. q is the pixel that is

in the same super-pixel with p and has been classified as
Category I. P (c | xt,Φ) is the prediction probability of class
c, λc denotes the confidence threshold for class c, which
is determined by the most confident ρ percentage of the
prediction of class c in the entire target set. ρ is typically set
to a low value, e.g., 20%, for high accuracy. spi denotes the
i-th superpixel in a target image.

Contrastive Representation Learning with CLS

The uncertainty of the CLS labeling space posits a unique
obstacle to effective representation learning. In this paper,
we couple a label set loss for semantic segmentation with a
contrastive term to facilitate feature separation of semanti-
cally ambiguous embeddings. Notably, based on the proposed
candidate labeling setting, some vital prior knowledge is nat-
urally introduced, e.g., GT labels are hidden within positive
labels, and conversely, negative labels are highly unlikely.

Label set loss. In general, semantic segmentation tasks em-
ploy one-hot cross-entropy loss, but under our CLS settings,
it likely penalizes the lower-ranked GT labels excessively.
To weaken this penalty, we replace the hard label with a soft
probability label when calculating this loss. Additionally, we
introduce a ranking loss to balance the significance of all can-
didate labels in the CLS, emphasizing their ranking relative
to other labels while weakening their ranking confusion.

Specifically, the per-sample soft cross-entropy loss for the
target data is given by:

Lscls =
C∑
c=1

−ŷct log(P(c | xt,Φ)))

s.t.
∑

c∈Yt(p)

ŷct (p) = 1 and ŷct (p) = 0, ∀c ̸∈ Yt(p)

(3)
A ranking loss is formulated to encourage the candidate labels
in Yt to rank higher than all the excluded labels in Yt:

Lrank = 1−
∑
p∈xt

∑
c∈Yt(p)

R+(c)

R(c)
, (4)

where R+(c) and R(c) are ranking positions of the c-th class
among candidate labels and all labels, respectively. R(c) is
defined using a unit step function H(·) applied on the differ-
ence between the probability of class c and the probability of
other labels of the same pixel:

R(c) = 1 +
∑

j∈Yt(p),j ̸=c

H(hcj) +
∑

j∈Yt(p)

H(hcj), (5)

where hcj = −(Pc − Pj) is positive if Pc < Pj , and
H(h) = 1 if h ≥ 0 and H(h) = 0 otherwise. Pc and
Pj denote the predicted probabilities for classes c and j of
pixel p, respectively. R+(c) can be defined similarly over
j ∈ Yt(p).

Contrastive loss. We leverage the contrastive loss to opti-
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Method Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Motor Bike mIoU
SFSU (2018) 64.94 51.25 37.95 28.46 20.87 41.69 60.13 55.11 34.20 31.22 27.03 3.55 38.04 77.54 0.00 11.08 13.63 4.75 33.41

CMAda (2020) 84.68 57.65 42.27 27.03 21.28 47.77 61.88 62.95 62.26 35.73 70.93 8.47 35.92 85.03 0.00 45.32 37.65 9.97 44.27
AdSegNet (2018) 21.31 31.53 26.11 14.84 23.45 30.64 48.52 46.75 56.69 22.78 43.52 3.51 20.34 10.86 0.00 4.20 38.49 4.00 24.86

CBST (2018) 91.64 57.09 29.92 55.96 31.54 42.32 54.88 60.07 73.35 53.61 52.62 8.71 43.06 87.52 0.00 16.60 53.90 11.48 45.79
CRST (2019a) 91.16 57.81 36.23 54.53 31.19 41.99 51.43 63.29 75.04 54.40 61.21 7.84 40.92 86.89 0.00 25.36 45.01 12.21 46.47

CuDA-Net (2022) 91.47 51.64 40.07 55.99 28.37 46.38 58.22 63.07 77.38 59.47 67.90 2.87 45.74 86.74 0.00 54.52 50.72 3.98 49.14
FIFO (2022) - - - - - - - - - - - - - - - - - - 48.40

CMDIT (2021) - - - - - - - - - - - - - - - - - - 41.69
TDo-Dif (2022) 89.52 53.29 66.69 56.65 39.97 36.92 53.22 59.20 73.94 58.48 90.26 4.45 33.19 83.79 0.00 42.03 57.86 18.10 50.92
CanDA (Ours) 90.49 56.79 63.43 55.31 44.04 37.95 50.36 59.85 74.91 58.21 88.29 4.30 45.01 87.40 0.00 44.37 57.84 20.75 52.18

Table 1: Quantitative comparison on Foggy Zurich. Notice that we exclude the class Train as it is not included in the test set, and
we calculate class Truck although it cannot be detected by any methods. Numbers in bold and underline represent the best and
second-best scores.

Method Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU
SFSU (2018) 90.26 28.83 72.13 25.23 13.41 42.84 52.03 58.97 64.27 5.78 76.71 57.26 44.02 70.41 13.42 27.73 58.48 19.29 46.48 45.66

CMAda (2020) 91.51 29.24 74.77 28.37 15.10 49.36 51.35 59.26 74.76 7.82 92.29 62.63 47.67 72.90 19.38 32.48 52.05 24.62 52.81 49.39
AdSegNet (2018) 45.82 13.52 43.34 0.63 8.94 25.97 37.57 35.92 54.12 0.53 80.70 30.73 27.08 56.74 0.73 12.58 0.40 11.19 26.47 27.00

CBST (2018) 91.68 31.35 68.63 25.61 15.98 48.14 49.48 60.02 67.85 10.37 82.18 62.22 41.62 73.30 36.96 15.69 31.69 29.90 46.95 46.82
CRST (2019a) 91.82 36.34 70.59 23.93 16.33 46.02 49.66 56.92 70.84 12.68 86.36 64.25 42.17 75.07 30.72 13.24 31.32 35.06 45.70 47.32

CuDA-Net (2022) 90.14 45.52 71.47 43.63 44.23 43.83 46.30 52.24 72.63 36.18 91.19 59.90 47.90 72.04 48.58 40.96 32.81 33.47 44.09 53.50
FIFO (2022) - - - - - - - - - - - - - - - - - - - 50.70

CMDIT (2021) - - - - - - - - - - - - - - - - - - - 45.35
TDo-Dif (2022) 93.03 39.26 76.72 33.35 18.77 48.35 50.17 64.41 79.99 2.32 92.66 61.87 46.64 78.31 44.63 28.22 70.78 41.58 51.58 53.84
CanDA (Ours) 94.05 55.94 72.92 27.84 18.38 52.08 52.33 65.78 78.37 6.29 90.76 68.42 44.94 78.99 47.29 17.63 70.24 33.87 53.60 54.20

Table 2: Quantitative comparison on Foggy Driving. Numbers in bold and underline represent the best and second-best scores.

mize the representation during training:

Lctrs = − 1

C × P

C∑
c=1

P∑
p=1

log
e

〈
zcp,z

c+

p

〉
e⟨zcp,zc

+
p ⟩ +

∑
n∈N e⟨zcp,zc

−
p ⟩

s.t. c, c+ ∈ Yt(p), c− ∈ Yt(p)
(6)

where P is the total number of positive anchor pixels and
zcp denotes the representation of the p-th anchor of class c.
Each anchor pixel is followed by a positive sample from
the pixel with the same predicted label, while the negative
sample set N is chosen from the corresponding excluded set
Yt(p). They are represented by zc

+

p and zc
−

p , respectively.
z denotes the output of the representation head, ⟨., .⟩ is the
cosine similarity between the features of two distinct pixels.

On-the-fly Disambiguation of CLS
The CLS is rectified by progressively updating the relative
ranking of the candidate labels by estimating the class-wise
likelihoods, i.e., the feature distances from all class proto-
types. The prototypes are iteratively updated with a recti-
fied representation so as to optimize the feature embedding
throughout the training process gradually.

Prototype updating. Different from the prototype com-
putation using all predicted labels in (Zhang et al. 2021), we
compute the prototypes, denote as Ψ = {ψ1, ..., ψc, ..., ψC},
only adopting the pixel features from Category I (C.I) of
all target images due to their high accuracy. The prototype
embedding ψc of class c is calculated by:

ψc =

∑Nt

i=1

∑
p∈C.I z

i
p ∗ 1(yct (p)! = 0)∑Nt

i=1

∑
p∈C.I 1(y

c
t (p)! = 0)

(7)

where 1 is the indicator function. During the progressive
updating, we estimate the prototypes as the moving average
of the cluster centroids in mini-batches. In each iteration, the
prototype is updated as:

ψc = βψc + (1− β)ψ′
c (8)

where ψ′
c is the mean feature of class c calculated within the

current training batch from the momentum encoder, and β is
the momentum coefficient, which is set to 0.9999.

CLS rectification. We propose a simple yet effective
method for re-ranking the labels and removing noisy samples
in CLS. For each pixel, we update its pseudo label proba-
bility ŷt(p) by combining the soft pseudo label yt(p) with
the momentum prototypes Ψ of those classes in the CLS.
Concretely, we rectify the soft pseudo labels and weight them
progressively by class-wise probabilities, with the update in
accordance with the freshly learned knowledge, and the mod-
ulation weights ωp are defined as the softmax over feature
distances to the prototypes:

ŷct (p) = ωcpy
c
t (p) s.t. c ∈ Yt(p) (9)

ωcp =
e−||zcp−ψc||∑

i∈Yt(p)
e−||zcp−ψi||

(10)

where yt(p) is initialized by the source model and remains
fixed throughout the learning process, thus serving as a boil-
erplate for the subsequent refinement. ωcp approximates the
trust confidence of the pixel belonging to the class c. Note
that while ŷt(p) is updated, it needs to be normalized.

To further reduce the noise caused by these labels which
are hard to be re-ranked, we adopt a drop-out operation to
discard the labels with low confidence in Category III. The
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drop-out operation can be formulated by:

ŷct (p) =

{
0 if p ∈ C.III and max ŷt(p) < T

ŷct (p) otherwise
(11)

where T is calculated based on an empirically set confidence
threshold for pixels in Category III.

Experiments
Datasets and Baselines
We adopt the clear weather dataset Cityscapes (Cordts et al.
2016) with fine segmentation labels as the source domain, and
validate our method on three real-world foggy datasets, i.e.,
Foggy Zurich (Dai et al. 2020), Foggy Driving (Sakaridis,
Dai, and Van Gool 2018) and ACDC-fog (Sakaridis, Dai, and
Van Gool 2021).

We compare our method with the state-of-the-art meth-
ods dedicated to domain adaptive foggy scene segmentation.
Among them, SFSU (Sakaridis, Dai, and Van Gool 2018) is
a supervised learning-based approach that employs labeled
synthetic data for training. CMAda (Dai et al. 2020) re-
trains the segmentation model with a labeled synthetic source
dataset and a noisy pseudo-labeled real foggy weather dataset.
AdSegNet (Tsai et al. 2018) is a representative adversarial
learning strategy for domain adaptive semantic segmentation.
CBST (Zou et al. 2018) and CRST (Zou et al. 2019a) are
two representative self-training strategies by selecting a por-
tion of confident pseudo labels. CuDA-Net (Ma et al. 2022),
FIFO (Lee, Taeyoung, and Suha 2022) and CMDIT (Vinod
et al. 2021) focus on bridging the domain gap between clear
images and foggy images to improve the performance of
foggy scene segmentation. TDo-Dif (Liao et al. 2022) densi-
fies the confident labels by exploiting target domain similarity
in both spatial and temporal domains. We use the released
models of SFSU and CMAda and re-train the segmentation
models of the three domain adaptive training strategies, i.e.,
AdSegNet, CBST and CRST, on our dataset. The results of
the last four methods are collected from their respective pa-
pers. The detailed implementation of our method is presented
in the supplementary materials.

Implementation Details
Similar with CMAda (Dai et al. 2020) and TDo-Dif (Liao
et al. 2022), we adopt the RefineNet (Lin et al. 2020) with
ResNet-101 as the backbone in all experiments and initial-
ize it with the weights pre-trained by Cityscapes (Cordts
et al. 2016). We implement our method using the Pytorch
toolbox and optimize it using the Adam algorithm with
β1 = 0.5, β2 = 0.999, and a learning rate of 0.0001 fol-
lowing (Sakaridis, Dai, and Van Gool 2018). In all experi-
ments, we use a batch size of 2 and set the self-training round
number to 4 and the training epochs in each round to 10.

Similar to CBST and CRST, we set the hyper-parameter
p of the confident portion to 0.2 so as to pick the top 20%
of high confidence predictions as pseudo labels. We set the
number of superpixels K in each image to 500, the same as
in TDo-Dif. The number of positive samples of each class
used for computing the contrastive loss is set to 20 and the

Components mIoU gain
Initialization 40.02 +0.00

Warm up by CRST (2019a) 46.47 +6.45

Contrastive
Learning CLS CLS

Disamb.
Ranking

loss mIoU gain

✓ ✗ ✗ ✗ 48.27 +1.80
✓ ✓ ✗ ✗ 50.41 +2.14
✓ ✓ ✓ ✗ 51.62 +1.21
✓ ✓ ✓ ✓ 52.18 +0.56

Table 3: Ablation study on Foggy Zurich dataset

number of negative classes, chosen from classes labels out
of the candidate label set, for each positive pixel is set to
two, resulting in the number of negative pixels setting to
2×20 = 40. The number of candidate labels set k1 and k0 for
Category II and Category III are set to 3 and 5, respectively.
Take k1 = 3 for an example, it means that we adopt the top 3
labels ranked by confidence as the candidate labels and most
left labels are excluded. The hyper-parameter T for dropping
out the labels with low confidence in Category III is set to
T = 0.3. β is the momentum coefficient, which is set to
0.9999 as in (Zhang et al. 2021).

Main Empirical Results
Achieves SOTA results. The comparison results with the
baselines on Foggy Zurich and Foggy Driving are shown
in Table 1 and Table 2. For results on ACDC-fog, please
refer to the ACDC-fog benchmark website1 and our supple-
mentary materials. In general, our proposed CanDA with
candidate label setting outperforms all baselines on the three
datasets. On Foggy Zurich, CanDA reaches 52.18% mIoU,
surpassing both SFSU and CMAda, which are specifically
designed for foggy scene understanding, with significant
gains of 18.77% and 7.91%, respectively. This indicates that
employing a large number of noisy pseudo labels for model
retraining would result in a degradation in performance. Al-
though CBST and CRST adopt a small proportion of pseudo
labels and TDo-Dif further diffuses these confident labels
to avoid noisy labels for model re-training, our method ob-
tains gains of 6.39%, 5.71%, and 1.26%, respectively. This
may be contributed to the fact that by introducing the CLS,
more high-quality pixels are involved in model learning. Our
method also achieves the best performance when compared
to methods that attempt to bridge the gap between the source
and target domains, i.e., CuDA-Net, FIFO, and CMDIT. In
addition, it is interesting to note that although our method
does not achieve the best performance in most individual
classes, it does achieve the best average performance, owing
to sufficient and categorically balanced training with CLS.

Learns more distinguishable representations. We use
t-SNE (van der Maaten and Hinton 2008) to visualize the
feature representation of the domain adaptive process of three
strategies, i.e., CMAda with complete but noisy pseudo la-
bels, CRST with confident but sparse pseudo labels and our

1https://acdc.vision.ee.ethz.ch/benchmarks
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(a) CMAda (b) CRST (c) CanDA

Figure 4: Visualization of embedded features via t-SNE from randomly sampling pixels from ACDC-fog validation set. The
features (from left to right) are extracted from the models trained with three types of pseudo labels, i.e., left: entire but noisy
pseudo labels (CMAda); middle: confident but sparse pseudo labels (CRST); right: our CLS setting (CanDA). Features are
colored according to class labels.

CanDA with CLS settings. As can be observed from Fig. 4,
our CanDA model exhibits the clearest clustering compared
to the other two strategies, revealing the label disambigua-
tion capability of our method. Moreover, our model can well
separate the tailed classes, such as Traffic Light v.s. Traffic
Sign and Bicycle v.s. Person, indicating that our method can
provide the correct supervision signal for the target data,
including the under-represented classes, by introducing CLS.

Model Analysis
Ablation studies. In this section, we conduct a series of
ablation studies to validate the contributions of individual
components to the foggy scene understanding. The numerical
comparisons on Foggy Zurich are depicted in Table 3. The
non-adapted model RefineNet (Lin et al. 2020), which is
also the backbone of our CanDA, only gives 40.02% mIoU,
and increases to 46.47% after warming up with CRST. After
introducing the CLS and the contrastive learning framework,
the performance can have further improvement by 3.94%,
showing that involving more pseudo labels with the consid-
eration of label uncertainty can highly boost performance.
Moreover, the performance is further improved by the newly
designed CLS disambiguation and ranking loss.

Assessment on pseudo labels settings. We analyze the
quantity and quality of pseudo labels by testing four distinct
settings: 1) C.I - the highly reliable pseudo labels, 2) C.I+II -
both highly reliable and reliable pseudo labels; 3) C.I+II+III
- all pseudo labels and 4) Ours - eliminating noisy samples
from C.I+II+III. All settings are evaluated using the warm-up
model on CRST and trained under the same process.

We present the distributions of generated CLS with differ-
ent settings in Fig. 5. Settings C.I and C.I+II account for a
relatively small proportion of the image, while C.III itself
accounts for more than half the proportion. It shows that
adding labels with lower reliability can well increase the sam-
ples in adaptive learning. But to further remove the too noisy
samples, our method with CLS rectification can effectively

remove those noisy samples (comparing (d) from (c)).

As plotted in Fig. 6, the most reliable C.I pseudo labels
achieve the highest accuracy with 83.88% mIoU (the same
as mIoU-CLS as the CLS size is 1 for C.I), whereas the
model has the lowest mIoU due to its lowest label cover-
age of only 14%. With spatial diffusion of the pseudo label
(C.I+II), the percentage of pseudo labels increases by 20%,
along with increments in both mIoU and mIoU-CLS, reveal-
ing that the highly improved quality and quantity of pseudo
labels greatly boosted performance. But blindly adding all
unreliable samples (C.I+II+III) with a great deal of noise
degrades the performance even lower than the C.I+II.

Our method is able to select the proper size of CLS and
eliminate the noisy labels. Compared with the C.I+II setting,
the mIoU of the pseudo labels decreases by about 10% but
the value of mIoU-CLS is almost the same, showing that
the adaptively selected CLS contains the GT label in the
majority of the samples and successfully removes the samples
with low-rank GT labels. Consequently, the proposed method
achieves the best performance of 52.18% mIoU.

Analysis on label disambiguation of CLS. The success
of the CLS largely relies on the label disambiguation of con-
fusion classes. We present the statistics of progressively dis-
ambiguated labels, whose GT labels are successfully raised
to the first rank in the CLSs (Fig. 7). First, we can observe
that in training with CLS, the confusing labels are gradually
disambiguated. Pseudo labels belonging to Category III are
disambiguated greatly more than those belonging to Category
II, as the latter is far more reliable than the former. In addition,
the increasing trends differ between the two categories, i.e.,
the corrected number in each epoch reaches saturation and
even decreases when the training epoch reaches 5 for Cate-
gory II, but the number still increases when the epoch arrives
10 for Category III. It motivates us to exploit a mechanism to
control the label disambiguation for different categories.
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(a) Image /GT (b) C.I (c) C.I+II (d) C.I+II+III (e) Ours

Figure 5: Visualization of various settings of pseudo labels on samples from Foggy Zurich (upper) and ACDC-fog (lower). In
each sample, the first row shows the predicted one-hot segmentation labels, while the second row shows the ranking of the GT
label in the prediction (the legend is the same as Figure 2). The black color in the second/fourth row of (b)-(e) indicates that the
GT label is out of the top five ranked pseudo labels.

Figure 6: Statistical comparison of the effects of various
settings of pseudo labels on the test set of Foggy Zurich.

Conclusion
In this paper, we demonstrate the benefits of using candi-
date label sets in a self-training framework to improve the
performance of state-of-the-art domain adaptive semantic
segmentation models in real foggy scenes. The overall perfor-
mance and model analysis shows that the proposed CLS and
the prototypical contrastive learning framework can effec-
tively balance the number and quality of pseudo labels, thus
allowing more samples away from source distribution to par-
ticipate in the training, thereby improving the performance
of domain adaptation. The limitation of this work lies in the

Figure 7: Progressive increment of the disambiguated pixels
labels and performance on the validation set of ACDC-fog.

advanced evaluation of CLS rectification, which will further
improve the quality of confusing label disambiguation.
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