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Abstract

Restricted by the ability of depth perception, all Multi-view
3D object detection methods fall into the bottleneck of depth
accuracy. By constructing temporal stereo, depth estimation
is quite reliable in indoor scenarios. However, there are two
difficulties in directly integrating temporal stereo into outdoor
multi-view 3D object detectors: 1) The construction of tem-
poral stereos for all views results in high computing costs.
2) Unable to adapt to challenging outdoor scenarios. In this
study, we propose an effective method for creating temporal
stereo by dynamically determining the center and range of
the temporal stereo. The most confident center is found using
the EM algorithm. Numerous experiments on nuScenes have
shown the BEVStereo’s ability to deal with complex outdoor
scenarios that other stereo-based methods are unable to han-
dle. For the first time, a stereo-based approach shows superi-
ority in scenarios like a static ego vehicle and moving objects.
BEVStereo achieves the new state-of-the-art in the camera-
only track of nuScenes dataset while maintaining memory ef-
ficiency. Codes have been released1.

Introduction
Due to its stability and inexpensive cost, multi-view 3D
object detection has received a lot of interest lately. The
field of 3D object detection has seen significant progress
with numerous camera-based techniques (Wang et al. 2022b;
Huang et al. 2021; Liu et al. 2022a; Li et al. 2022b; Huang
and Huang 2022; Liu et al. 2022b; Li et al. 2022a). How-
ever, there is still a substantial gap between them and
LiDAR-based approaches. When examining camera-based
approaches, it is obvious to see that depth accuracy is still
the main limitation of these methods.

Delving into depth-based multi-view object detection ap-
proaches, their depth module is a mono-depth estimation
module due to the rarity of multi-view camera overlap. Dijk
et.al (Dijk and Croon 2019) shows that monocular depth es-
timation is based on the object’s connection with the ground
and contextual information. These two cues let neural net-
works understand depth to some extent, but this degree of
precision is hardly adequate for 3D object detection.
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1https://github.com/Megvii-BaseDetection/BEVStereo

Given that monocular depth estimation has reached its
limit and that time series input images are available in au-
tonomous driving scenarios, it makes sense to use temporal
stereo approaches to multi-view 3D object detection. How-
ever, if we incorporate the temporal stereo method into the
multi-view 3D detector, there are two limitations:

1. Large memory cost. When we replace the depth module
in BEVDepth with a basic temporal stereo method (Yao
et al. 2018), the memory cost grows to 3.5 times that of
BEVDepth despite bringing a 1.6 percent promotion on
NDS, making it tremendous burden to apply it to a detec-
tion task;

2. Unable to tackle complex outdoor scenarios. As dis-
cussed in DFM (Wang, Pang, and Lin 2022), temporal
stereo approaches are unable to handle situations like
a static ego vehicle and moving objects. However, over
10% of the frames’ego vehicles are static in nuScenes,
while approximately 25% of the objects are moving.
These two circumstances are also crucial to the security
of an autonomous system in real-world autonomous sce-
narios.

In this study, we present BEVStereo, a stereo-based multi-
view 3D object detector that uses our dynamic temporal
stereo method to improve memory efficiency while being
able to adapt to challenging outdoor conditions. Reviewing
stereo-based approaches (Wang, Pang, and Lin 2022; Wang
et al. 2022a), it is clear that the majority of the computational
memory cost is associated with constructing stereo. How to
reduce the cost of building stereo is the key to saving mem-
ory. To achieve this, we apply a dynamic way to build tempo-
ral stereo. As opposed to employing all candidates along the
depth axis, we construct it using the projected depth center
(µ) and depth range (σ). This drastically reduces the number
of candidates while eliminating the need for us to manually
select sample density. Sharing the similar thoughts, MaG-
Net (Bae, Budvytis, and Cipolla 2022) achieves great suc-
cess in indoor scenarios. However, its iteration mechanism
is unable to deal with complex outdoor situations and intro-
ducing learnable parameters to update µ and σ also brings
addition computational cost. Therefore, we apply the EM
approach to update µ and σ rather than using addition net-
work. Meanwhile, to avoid unnecessary situations brought
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by circle NMS, we design a new NMS method that takes
objects’ size into account.

In conclusion, the following are our main contributions.

• We propose BEVStereo, a multi-view 3D object detector
using temporal stereo to acquire a more reliable depth es-
timation. By applying the dynamic temporal stereo tech-
nique, BEVStereo saves a lot of memory compared to
other stereo-based methods while adapting to complex
outdoor scenarios that these methods can not handle.

• We design a new NMS method (namely size-aware cir-
cle NMS) which takes object’s size into account when
applying circle NMS.

• Under the same settings, BEVStereo improves mAP and
NDS by 1.7% and 1.7%.

Related Work
Single-view 3D Object Detection
Many approaches have made their effort on predicting ob-
jects directly from single images. For the purpose of 3D ob-
ject detection, Cai et al. (Cai et al. 2020) calculates the depth
of the objects by integrating the height of the objects in the
image with the height of the objects in the real world. Based
on FCOS (Tian et al. 2019), FCOS3D (Wang et al. 2021b)
extends it to 3D object detection by changing the classifi-
cation branch and regression branch which predicts 2D and
3D attributes at the same time. M3D-RPN (Brazil and Liu
2019) treats mono-view 3D object detection task as a stand-
alone 3D region proposal network, narrowing the gap be-
tween LiDAR-based approaches and camera-based meth-
ods. D4LCN (Ding et al. 2020) replaces 2D depth map with
pseudo LiDAR representation to better present 3D structure.
DFM (Wang, Pang, and Lin 2022) integrates temporal stereo
to mono-view 3D object recognition, improving the quality
of depth estimation while minimizing the negative effects of
difficult situations that temporal stereo is unable to handle.

Multi-view 3D Object Detection
Current multi-view 3D object detectors can be divided into
two schemas: LSS-based (Philion and Fidler 2020) schema
and transformer-based schema.

BEVDet (Huang et al. 2021) is the first study that com-
bines LSS and LiDAR detection head which uses LSS to
extract BEV feature and uses LiDAR detection head to pro-
pose 3D bounding boxes. By introducing previous frames,
BEVDet4D (Huang and Huang 2022) acquires the ability of
velocity prediction. To reduce memory usage, M2BEV (Xie
et al. 2022) decreases the learnable parameters and achieves
high efficiency on both inference speed and memory usage.
BEVDepth (Li et al. 2022a) uses LiDAR to generate depth
GT for supervision and encodes camera intrinsic and extrin-
sic parameters to enhance the model’s ability of depth per-
ception.

DETR3D (Wang et al. 2022b) extends DETR (Carion
et al. 2020) into 3D space, using transformer to generate 3D
bounding boxes. Based on DETR, PETR (Liu et al. 2022a)
and PETRV2 (Liu et al. 2022b) adds position embedding

onto it. BEVFormer (Li et al. 2022b) uses deformable trans-
former to extract features from images and uses cross atten-
tion to link the feature between frames for velocity predic-
tion.

Depth Estimation
Based on the number of images used for depth estimation,
depth estimation methods can be divided into single-view
depth estimation and multi-view depth estimation.

Although predicting depth from a single image is obvi-
ously ill-posed, it is still possible to estimate some of the
depth of the objects by using the context as a signal. There-
fore, many approaches (Bhat, Alhashim, and Wonka 2021;
Eigen and Fergus 2015; Eigen, Puhrsch, and Fergus 2014a;
Fu et al. 2018) use CNN method to predict depth.

For the task of multi-view depth estimation, Construct-
ing cost volume is an effective way to predict depth.
MVSNet (Yao et al. 2018) is the first research that uses
cost volume for depth estimation. RMVSNet (Yao et al.
2019) reduces memory cost by introducing GRU module.
MVSCRF (Xue et al. 2019) adds CRF module onto MVS-
Net. PointMVSNet (Chen et al. 2019) uses point algorithm
to optimize the regression of depth estimation. Cascade
MVSNet (Gu et al. 2020) uses cascade structure, making it
able to use large depth range and a small amount of depth
intervals. Fast-MVSNet (Yu and Gao 2020) uses sparse
cost volume and Gauss-Newton layer to speed up MVSNet.
Wang et al. (Wang et al. 2021a) use adaptive patchmatch
and multi-scale fusion to achieve good performance while
mataining high efficiency. Bae et al. (Bae, Budvytis, and
Cipolla 2022) introduce MaGNet to better fuse single-view
depth estimation and multi-view depth estimation.

Method
BEVStereo is a stereo-based multi-view 3D object detector.
By applying our temporal stereo technique, it is able to han-
dle complex outdoor scenarios while maintaining memory
efficiency. We also propose a size-aware circle NMS ap-
proach to improve the proposal suppression process.

Preliminary Knowledge
Multi-view 3D object detection LSS-based (Philion and
Fidler 2020) multi-view 3D object detectors currently in-
clude four components: an image encoder to extract the im-
age features, a depth module to generate depth and context,
then outer product them to get point features, a view trans-
former to convert the feature from camera view to the BEV
view, and a 3D detection head to propose the final 3D bound-
ing boxes.

Temporal stereo methods to predict depth MVS-
based (Yao et al. 2018) methods predict depth by construct-
ing cost volume. For every pixel on the reference feature,
they initially put forth a number of candidates along the
depth axis. They next convert these candidates from refer-
ence to source using a homography warping operation in
order to retrieve the relevant source feature and create the
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cost volume. After cost volume is constructed. For the pur-
pose of predicting the confidence of each depth candidate,
3D convolution is performed to regularize the cost volume.

Dynamic Temporal Stereo
Based on BEVDepth (Li et al. 2022a), BEVStereo changes
the way of generating depth prediction. Instead of predicting
depth from a single image, BEVStereo predicts both depth
from single feature (mono depth) and depth from temporal
stereo (stereo depth). Additionally, Weight Net is used to
create a weight map that will be applied on stereo depth.
Mono depth and weighted stereo depth are combined to get
the final depth. Our framework overview is illustrated in
Fig. 1.

Depth Module Our Depth Module simultaneously pre-
dicts mono depth, µ, σ and context. After iterating µ and
σ by our EM method, they are used to generate the stereo
depth. The process of iterating µ and σ is illustrated in Fig. 2.

We choose to estimate µ and σ, which stand for the cen-
ter and range of the sampling range to construct cost vol-
ume. When compared to the conventional method of split-
ting bins along the depth dimension, our method can dynam-
ically change the search area while also lowering the number
of candidates. After estimating µ and σ, we may obtain the
depth of every candidate for each pixel. These candidates
are used for homography warping operation to fetch the fea-
ture from source frame, as illustrated in Equ. 1, where P de-
notes the coordinate of the point, D denotes the depth of the
candidate, src denotes source frame, ref denotes reference
frame, Mref2src denotes the transformation matrix from the
reference frame to source frame and K denotes the intrinsic
matrix. The reference feature and the warpped source feature
are used to construct cost volume. Similarity Net is followed
to predict the confidence score of all candidates.

Psrc[u·z, v·z, z] = K×Mref2src×K−1×(D·Pref [u, v, 1])
(1)

Inspired by the EM algorithm, We attempt to make the ex-
pectation of µ closer to the depth gt during the iteration pro-
cess. Since we compute each point’s confidence after sam-
pling a number of points close to µ, it is only natural that we
use this knowledge to further our objectives. As a result, we
update µ using the weight sum method, which causes µ to
become the expectation of the sample points for each itera-
tion. The update rule is illustrated in Eq. 2, where Di denotes
the depth of the ith candidate and Pi denotes the probabil-
ity of the ith candidate. When facing cases like static ego
vehicle and moving objects, all candidates share the same
low probability since it is hard to find the best match point
on the source feature, µ is able to maintain its value by us-
ing the weight sum technique. For other scenarios, the value
of µ will approach the true depth value in the process of
iteration. Surprisingly, we discover that when µ and mono
depth are trained together, the quality of initial µ is also en-
hanced under the direction of mono depth. Therefore, in all
kinds of scenarios, our dynamic temporal stereo approach
can improve depth prediction. As µ is being updated in the
process of iteration, it is also critical to find the suitable σ

to set the searching range. In accordance with existing in-
formation, the searching range should be reduced when the
confidence of µ is high and expanded when it is low, we up-
date σ following Equ. 3 where Pµ denotes the confidence of
µ. Without introducing any learnable parameters both µ and
σ will be adapted to the change of camera positions and the
search range is optimized during iteration.

To prevent the scenario where the projected µ is far from
the depth gt, making it difficult to optimize µ during itera-
tion. we divide the depth into different ranges and use our it-
eration technique in each split range. After the iteration pro-
cess is finished, the depth map is generated following Equ. 4
where P denotes the computed depth confidence and D de-
notes the depth of the split bins along the depth axis for each
pixel.

µ =
n∑

i=1

Di · Pi, (2)

σnew =
σold

2 · Pµ
, (3)

P = exp(−1

2
· (D − µ√

σ
)2). (4)

Weight Net Even while the temporal stereo is capable of
accurately predicting depth, there are still some areas where
it is unreliable because some reference feature points do not
correlate to positions on source feature. Therefore, we intro-
duce Weight Net to better combine mono depth and stereo
depth. To do this, we apply the same homography warping
operation to fetch the mono depth of the source frame, using
µ as the depth. A similarity net is then applied to the warped
mono depth from the source frame and the mono depth from
the reference frame to construct the weight map.

Size-aware Circle NMS
The distance between the centers of two bounding boxes
is used by circle NMS (Yin, Zhou, and Krahenbuhl 2021)
function as a criterion for suppression. Circle NMS achieves
excellent efficiency and good performance by bypassing the
difficult process of computing rotated IoU of bouding boxes.
However, ignoring the size of boxes will result in two draw-
backs as illustrated in Fig. 3: 1) No matter how closely the
boxes overlap, the NMS algorithm yields the same output as
long as the box centers are fixed. 2) When boxes are placed
differently, boxes with 0 IoU may be removed while boxes
with high IoU are kept.

We propose size-aware circle NMS, which avoids com-
puting rotated IoU while taking into consideration the size of
the boxes. We separate the distance of two bounding boxes’
centers into x axis and y axis. We use xthre and ythre as
threholds of x axis and y axis, which are computed follow-
ing Equ. 5 and Equ. 6, where θ denotes the orientation, w
denotes the hyper parameter of scale factor, dx denotes the
length of the box and dy denotes the width of the box. The
box will be suppressed when the distance in x axis is smaller
than xthre and distance in y axis is smaller than ythre. By
applying size-aware circle NMS, the blue box with a lower
score will be suppressed in scenarios like the left portion of
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Figure 1: Framework of BEVStereo. The Depth Module uses the image feature of the reference frame and source frame as input
to generate µ, σ, context, and mono depth. Stereo depth is produced using µ and σ. Weight Net uses µ and the mono depth of
two frames to create a weight map that is applied to the stereo depth. Mono depth and weighted stereo depth are accumulated
together to create the final depth. BEV Feature is produced when context is combined with it and is used by the detecting head.
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Product
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Figure 2: Iterative process of µ and σ. The initial µ and σ
are generated using feature of the reference frame as input.
For each round of iteration, µ and σ are used for homogra-
phy warping to fetch the source feature. Similarity Net takes
the inner product results of warpped source feature and ref-
erence feature as input to generate depth confidence which
is used to update µ and σ.

Fig 3 because it has a greater xthre and ythre. The blue box
will be suppressed in scenarios like the right portion of Fig. 3
because the distances in the x and y axes are more likely to
be smaller than xthre and ythre in the mean time.

xthre = w·(sinθ1·dx1+cosθ1·dy1+sinθ2·dx2+cosθ2·dy2).
(5)

ythre = w·(sinθ1×dy1+cosθ1·dx1+sinθ2·dy2+cosθ2·dx2).
(6)

IoU:0.8

IoU:0 

IoU:0.2 
IoU:0.6 

Figure 3: Drawbacks of circle NMS. In the left part of the
figure, despite having distinct IoUs, the blue boxes and red
boxes share the same center distance as long as their cen-
ters coincide. In the right part of the figure, when the green
box has the highest score, the red box is more likely to be
suppressed since its center is closer to the green box’s center
which goes against our common sense.

Experiment
In this section, we first describe the experimental settings
that we employ before going into the specifics of our im-
plementation strategy. Experiments involving heavy abla-
tion are carried out to confirm the efficacy and validity of
BEVStereo.

Experimental Settings
Dataset and evaluation metrics We decide to run our ex-
periments on the nuScenes (Caesar et al. 2020) dataset. In
the case of image data, the key frame image and the fur-
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Method WN mAP↑ mATE↓ mASE↓ mAVE↓ NDS↑
BEVDepth 32.7 70.1 27.7 55.8 43.3

BEVStereo 34.5 66.5 27.9 55.0 44.7
BEVStereo ✓ 34.6 65.3 27.4 51.6 45.3

Table 1: Detection results on the nuScenes val set. WN de-
notes Weight Net.

Method SILog↓ Abs Rel↓ Sq Rel↓ log10↓ RMSE↓
BEVDepth 21.74 0.155 1.223 0.060 5.269

BEVStereo 21.74 0.152 1.206 0.059 5.246

Table 2: Evaluation of depth prediction on the nuScenes val
set.

thest sweep connected to it are used, whereas in the case
of LiDAR data, only the key frame data is used. We assess
the results of our method using detection and depth metrics.
Memory usage is also used to assess the effectiveness of our
method. We follow the established evaluation procedures
for the depth estimation task (Eigen, Puhrsch, and Fergus
2014b), reporting scale invariant logarithmic error (SILog),
mean absolute relative error (Abs Rel), mean squared rela-
tive error (Sq Rel), mean log10 error (log10), and root mean
squared error (RMSE) to assess our approach.

Implementation details We implement BEVStereo based
on BEVDepth (Li et al. 2022a). The feature map we employ
for building the cost volume has a downsampling rate of 4
while the depth feature’s final form remains unchanged. The
MVS (Yao et al. 2018) approach is applied to replace the
depth module in BEVDepth with the same input resolution
and output resolution in order to fairly demonstrate the ef-
fectiveness of our method. The learning rate is set to 2e-4,
the EMA technique is also used, and AdamW (Loshchilov
and Hutter 2017) is used as the optimizer. During training,
we use both image and BEV data augmentation.

…
…
…
…

…
…
…
…

…                                   …

…                                  …

…
…
…
…

…                                    …

…
…
…
…

…
…
…
…

gemo_xyz
(stored in shared memory)

point features BEV features

0    1    2          …         29 30 31
32 33 34         …          61 62 63
64 65 66         …          93 94 95
96 97 98         …          125 126 127

thread block

warp 1
warp 2
warp 3

warp 0

Figure 4: Thread mapping of point features to BEV features.
Based on the point coordinates, the point features are atom-
ically accumulated into the corresponding BEV features.
Each thread block loads the point coordinates it is respon-
sible for into the shared memory.

Method Iter TH=0.5 TH=1 TH=2 TH=4
BEVDepth 28.32 46.10 60.37 71.18

BEVDepth + MVS 27.67 46.40 59.99 71.26

BEVStereo 29.79 49.26 61.53 72.10
BEVStereo ✓ 29.40 48.97 61.53 72.27

Table 3: Recall results on the nuScenes val set. Only boxes
with velocity higher than 1m/s are maintained for analy-
sis. BEVDepth + MVS denotes replacing depth module in
BEVDepth with MVS approach. Different thresholds are
utilized depending on the distance between boxes’ center.
Iter denotes whether to iterate µ during the inference stage.

Method TH=0.5 TH=1 TH=2 TH=4
BEVDepth 32.80 53.58 70.00 80.89

BEVDepth + MVS 33.61 54.23 69.89 80.57

BEVStereo 33.90 54.79 70.51 81.01

Table 4: Recall results on the nuScenes val set. Only boxes
with velocity lower than 1m/s are maintained for analysis.

Analysis
We perform numerous experiments to examine the mech-
anism of BEVStereo in order to better understand how it
works. We choose BEVDepth as baseline, we also imple-
ment MVSNet on BEVDepth as a comparison to show the
distinct benefit that BEVStereo provides, detection results
and recall results are used for comparison.

Memory analysis We keep track of memory usage and
detection results to demonstrate how effectively we use our
memory. We also monitor the same metrics for the MVS-
based approach for fair comparison.

As illustrated in Tab. 6, BEVStereo increases the metrics
on mAP, mATE, and NDS considerably at the expense of
adding little memory consumption. When compared to us-
ing MVS on BEVDepth, BEVStereo considerably reduces
memory usage while boosting performance.

Performance analysis To begin with, we demonstrate
the performance comparison under the nuScenes evaluation
metrics. As shown in Tab. 1, Our BEVStereo outperforms
BEVDepth on mAP, mATE and NDS. Tab. 2 shows that the
accuracy of depth estimation is improved by introducing our
design.

We assess the performance of BEVStereo under challeng-
ing conditions such as moving objects, and static ego vehi-

Method Iter mAP↑ mATE↓ NDS↑
BEVDepth 32.73 73.47 44.14

BEVDepth + MVS 31.55 78.06 43.21

BEVStereo 33.12 63.01 46.68
BEVStereo ✓ 33.76 63.49 46.76

Table 5: Detection results on the nuScenes val set. Only
frames with ego vehicles moving at speeds less than 1 m/s
are employed for evaluation.
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Method Memory mAP↑ mATE↓ NDS↑
BEVDepth 6.49GB 32.7 70.1 43.3

BEVDepth + MVS 24.04GB 34.7 67.1 44.9

BEVStereo 8.01GB 34.6 65.3 45.3

Table 6: Memory usage and detection results of BEVDepth,
BEVDepth with MVS and BEVStereo.

num iter mAP↑ mATE↓ NDS↑
0 32.7 67.4 43.9
1 33.1 67.0 44.2
2 34.1 65.9 45.0
3 34.6 65.3 45.3

Table 7: Detection results on the nuScenes val set. num iter
denotes the number of iterations for µ.

Method CA mAP↑ mATE↓ NDS↑
circlenms 34.6 65.3 45.3
circle-nms ✓ 24.9 80.6 38.0

size-aware-circlenms 35.1 64.7 45.6
size-aware-circlenms ✓ 33.3 64.1 45.0

Table 8: Detection results on the nuScenes val set. CA de-
notes class-agnostic. All results are conducted under the best
hyper parameters.

cles in order to show how well it adapts to complicated out-
door environments. Tab. 3 demonstrates that BEVStereo still
has the ability to improve performance even while MVS ap-
proach fails when dealing with moving objects. The static
objects, which make up the majority of MVS schema’s con-
tribution, are also used to evaluate our method. As shown
in Tab. 4, BEVStereo’s ability of perceiving static objects is
even higher than BEVDepth with MVS. We choose frames
whose ego vehicle has a low velocity for evaluation since
MVS cannot handle situations when this occurs. As can be
seen in Tab. 5, BEVStereo still improves performance even
when MVS fails in these conditions. It is important to note
that BEVStereo still produces the similar results when faced
with circumstances like moving objects and static ego ve-
hicles if µ is not updated during the inference step. This
demonstrates that our schema is capable of guiding the
Depth Module to produce better µ and maintaining the ini-
tial prediction of µ in the face of these eventualities. It is
worth noting that we also conduct experiments in Tab. 3 and
Tab. 4 without the Weight Net, and the results are compa-
rable to those with the Weight Net, demonstrating that the
Weight Net is not the primary reason that BEVStereo can
handle moving objects and static ego vehicle scenarios.

Ablation Study
Iteration of µ and σ We conduct various experiments dur-
ing the inference stage by modifying the number of itera-
tions just to verify the function of iterating µ and σ. As illus-
trated in Tab. 7, the detection results improve as the number
of iterations grows.

Method Resolution Modality mAP↑ NDS↑
CenterPoint-Voxel - L 56.4 64.8
CenterPoint-Pillar - L 50.3 60.2

FCOS3D 900×1600 C 29.5 37.2
DETR3D 900×1600 C 30.3 37.4
BEVDet-R50 256×704 C 28.6 37.2
BEVDet-Base 512×1408 C 34.9 41.7
PETR-R50 384×1056 C 31.3 38.1
PETR-R101 512×1408 C 35.7 42.1
PETR-Tiny 512×1408 C 36.1 43.1
BEVDet4D-Tiny 256×704 C 32.3 45.3
BEVDet4D-Base 640×1600 C 39.6 51.5
BEVFormer-S - C 37.5 44.8
BEVFormer-R101-DCN 900×1600 C 41.6 51.7
BEVDepth-R50 256×704 C 35.9 48.0
BEVDepth-ConvNext 512×1408 C 46.2 55.8

BEVStereo-R50 256×704 C 37.6 49.7
BEVStereo-ConvNext 512×1408 C 47.8 57.5

Table 9: Comparison on the nuScenes val set. L denotes Li-
DAR and C denotes camera.

Weight Net We run the experiment under identical condi-
tions without Weight Net to assess its validity. Weight Net
promotes the detection results, as shown in Tab. 1.

Size-aware Circle NMS We compare BEVStereo with the
size-aware circle NMS to BEVStereo with the conventional
circle NMS as our baseline. They are subjected to class-
aware and class-agnostic procedures in order to test the va-
lidity of size-aware circle NMS.

As shown in Tab. 8, our size-aware circle NMS improves
on the matrices of mAP, mATE, and NDS when using class-
aware NMS. The traditional distance-based circle NMS has
completely lost its capacity to suppress under class-agnostic
circumstance, while our size-aware circle NMS continues to
function well.

Efficient Voxel Pooling v2 In the previous version of Effi-
cient Voxel Pooling (Li et al. 2022a), threads within the same
warp access memory discontinuously, leading to more mem-
ory transactions, which results in poor performance. We en-
hance Efficient Voxel Pooling by improving the way threads
are mapped, as illustrated in Fig. 4. For each block, we em-
ploy 32 and 4 threads on the x and y axes. First, 128 point
coordinates are loaded into shared memory by all the threads
in one block. Then, one point feature at a time is processed
by each warp. According to the point coordinates, the point
feature is atomically accumulated to the matching BEV fea-
ture. The 128 point features are processed round robin by
four warps in a block till they are finished. In this man-
ner, performance-limiting memory transactions from the L2
cache and global memory are diminished.

We compare the latency of Efficient Voxel Pooling v1 and
Efficient Voxel Pooling v2 using various resolutions. Effi-
cient Voxel Pooling v2 is able to reduce the latency up to
40%.
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(a) Baseline (b) Baseline + MVS (c) BEVStereo
Figure 5: Visualization of depth prediction. The blue area is the distribution of depth prediction, while the green line represents
the depth GT produced by the point cloud. The red dotted boxes denotes the promotion of depth prediction on moving objects
and the yellow dotted boxes denotes the the promotion of depth prediction on static objects.

Figure 6: Visualization of detection results. The blue dotted rectangle designates the object recognized by our approach is more
accurate on localization, while the red dotted circle designates the object detected by BEVStereo but missed by the baseline.

Visualization
As illustrated in Fig. 5, we can find that BEVStereo has the
ability to promote the accuracy of depth estimation on both
moving and static objects. We also visualize the detection
results, as shown in Fig. 6 which also demonstrates the per-
formance promotion brought by BEVStereo.

Benchmark Result
We compare BEVStereo with other state-of-the-art meth-
ods (Yin, Zhou, and Krahenbuhl 2021; Wang et al. 2021b,
2022b; Huang et al. 2021; Liu et al. 2022a; Huang and
Huang 2022; Li et al. 2022b,a). As shown in Tab. 9,
BEVStereo achieves the highest score of camera-based
methods on both mAP and NDS.

Conclusion
In this paper, a novel multi-view object detector is pro-
posed, namely BEVStereo. BEVStereo improves perfor-
mance without significantly increasing memory usage by ap-
plying dynamic temporal stereo technique to create temporal
stereo. Some complex scenarios that other stereo-based ap-
proaches cannot handle can be resolved by our method. In
addition, we propose size-aware circle NMS, which takes
the size of boxes into account while avoiding the labori-
ous computation of rotated IoU. Under both class-aware and
class-agnostic circumstances, our size-aware circle NMS
performs satisfactorily. Last but not least, we present Effi-
cient Voxel Pooling v2, which speeds up voxel pooling by
improving the efficiency of memory accesses.
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