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Abstract

In this research, we propose a new 3D object detector
with a trustworthy depth estimation, dubbed BEVDepth, for
camera-based Bird’s-Eye-View (BEV) 3D object detection.
Our work is based on a key observation – depth estima-
tion in recent approaches is surprisingly inadequate given
the fact that depth is essential to camera 3D detection. Our
BEVDepth resolves this by leveraging explicit depth su-
pervision. A camera-awareness depth estimation module is
also introduced to facilitate the depth predicting capability.
Besides, we design a novel Depth Refinement Module to
counter the side effects carried by imprecise feature unprojec-
tion. Aided by customized Efficient Voxel Pooling and multi-
frame mechanism, BEVDepth achieves the new state-of-the-
art 60.9% NDS on the challenging nuScenes test set while
maintaining high efficiency. For the first time, the NDS score
of a camera model reaches 60%. Codes have been released1.

Introduction
LiDAR and camera are the two main sensors used by the
current autonomous systems to detect 3D objects and per-
ceive the environment. While LiDAR-based methods have
demonstrated their ability to deliver trustworthy 3D detec-
tion results, multi-view camera-based methods have recently
attracted increasing attention because of their lower cost.

The feasibility of using multi-view cameras for 3D per-
ception has been well addressed in LSS (Philion and Fidler
2020). They first “lift” multi-view features to 3D frustums
using estimated depth, then “splat” frustums onto a reference
plane, usually being a plane in Bird’s-Eye-View (BEV). The
BEV representation is non-trivial since it not only enables an
end-to-end training scheme of a multiple input cameras sys-
tem but also provides a unified space for various downstream
tasks such as BEV segmentation, object detection (Huang
et al. 2021; Li et al. 2022b) and motion planning. However,
despite the success of LSS-based perception algorithms, the
learned depth within this pipeline is barely studied. We ask
– does the quality of learned depth within these detectors
really meet the requirement for precise 3D object detection?

We attempt to answer this question qualitatively first by
visualizing the estimated depth (Fig. 1) in a Lift-splat based

1https://github.com/Megvii-BaseDetection/BEVDepth

detector. Even though the detector achieves 30 mAP on
nuScenes (Caesar et al. 2020) benchmark, its depth are sur-
prisingly poor. Only a few region of features predict reason-
able depth and contribute to subsequent tasks (see dashed
boxes in Fig. 1), while most other regions do not. Based on
this observation, we point out that the depth learning mech-
anism in existing Lift-splat brings three deficiencies:

• Inaccurate Depth Since the depth prediction module is
indirectly supervised by the final detection loss, the ab-
solute depth quality is far from satisfying;

• Depth Module Over-fitting Most pixels can not pre-
dict reasonable depth, meaning that they are not properly
trained during the learning stage. It makes us doubt about
depth module’s generalizing ability.

• Imprecise BEV Semantics The learned depth in Lift-
splat unprojects image features into 3D frustum features,
which will be further pooled into BEV features. With a
poor depth like in Lift-splat, only part of features are un-
projected to correct BEV positions, resulting in imprecise
BEV semantics.

We will dive deep into these three deficiencies in Section
Three.

Moreover, we reveal the great potential of improving
depth by replacing the learned depth in Lift-splat with its
ground-truth generated from point cloud data. As a result,
mAP and NDS are both boosted by nearly 20%. The trans-
lation error (mATE) decreases as well, from 0.768 to 0.393.
Such a phenomenon clearly reveals that enhancing depth is
the key to high-performance camera 3D detection.

Therefore, in this work, we introduce BEVDepth, a new
multi-view 3D detector that leverages depth supervision de-
rives from point clouds to guide depth learning. We are the
first team that presents a thorough analysis of how the depth
quality affects the overall system. Meanwhile, we innova-
tively propose to encode camera intrinsics and extrinsics into
a depth learning module so that the detector is robust to vari-
ous camera settings. In the end, a Depth Refinement Module
is further introduced to refine the learned depth.

To validate the power of BEVDepth, we test it on
nuScenes (Caesar et al. 2020) dataset – a well-known bench-
mark in the field of 3D detection. Aided by our customized
Efficient Voxel Pooling and Multi-frame Fusion technique,
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Input Image Lift-splat BEVDepth

Figure 1: Depth estimation results in Lift-splat detector and BEVDepth. Dashed boxes highlight the regions that Lift-splat
detector makes “relatively” accurate depth predictions in, usually being the attaching regions between objects and the ground.

BEVDepth achieves 60.9% NDS on the nuScenes test set,
being the new state-of-the-art on this challenging benchmark
while still maintaining high efficiency.

Related Work
Vision-Based 3D Object Detection
The goal of vision-based 3D detection is to predict the 3D
bounding boxes of objects. It is an ill-posed problem be-
cause estimating the depth of objects from monocular im-
ages is inherently ambiguous. Even when multi-view cam-
eras are available, estimating depth in areas without overlap-
ping views remains challenging. Therefore, depth modeling
is a critical component of vision-based 3D detection. One
branch of research predicts 3D bounding boxes directly from
2D image features. 2D detectors, such as CenterNet (Zhou,
Wang, and Krähenbühl 2019), can be used for 3D detection
with minor changes to detection heads. M3D-RPN (Brazil
and Liu 2019) proposes depth-aware convolutional layers to
enhance spatial awareness. D4LCN (Huo et al. 2020) em-
ploys depth maps to guide dynamic kernel learning. By con-
verting 3D targets into the image domain, FCOS3D (Wang
et al. 2021b) predicts 2D and 3D attributes of objects. Fur-
ther, PGD (Wang et al. 2022a) presents geometric relation
graphs to facilitate depth estimation for 3D object detec-
tion. DD3D (Park et al. 2021a) demonstrates that depth pre-
training can significantly improve end-to-end 3D detection.

Another line of work predicts objects in 3D space. There
are many ways to convert 2D image features into 3D space.
One typical approach is transforming image-based depth
maps to pseudo-LiDAR to mimic the LiDAR signal (Wang
et al. 2019; You et al. 2019; Qian et al. 2020). Image fea-
tures can also be used to generate 3D voxels (Rukhovich,
Vorontsova, and Konushin 2022) or orthographic feature
maps (Roddick, Kendall, and Cipolla 2018). LSS (Phil-
ion and Fidler 2020) proposes a view transform method
that explicitly predicts depth distribution and projects im-
age features onto a bird’s-eye view (BEV), which has been
proved practical for 3D object detection (Reading et al.
2021; Huang et al. 2021; Huang and Huang 2022). BEV-
Former (Li et al. 2022b) performs 2D-to-3D transformation
with local attention and grid-shaped BEV queries. Following

DETR (Carion et al. 2020), DETR3D (Wang et al. 2022b)
detects 3D objects with transformers and object queries, and
PETR (Liu et al. 2022a) improves performance further by
introducing 3D position-aware representations.

LiDAR-Based 3D Object Detection

Due to the accuracy of depth estimation, LiDAR-based 3D
detection methods are frequently employed in autonomous
driving perception tasks. VoxelNet (Zhou and Tuzel 2018)
voxelizes the point cloud, converting it from sparse to
dense voxels, and then proposes bounding boxes in dense
space to aid the index during convolution. SECOND (Yan,
Mao, and Li 2018) increases performance on the KITTI
dataset (Geiger, Lenz, and Urtasun 2012) by introducing a
more effective structure and gt-sampling technique based on
VoxelNet (Zhou and Tuzel 2018). Sparse convolution is also
used in SECOND (Yan, Mao, and Li 2018) to boost speed.
PointPillars (Lang et al. 2019) encodes point clouds using
pillars rather than 3D convolution processes, making it fast
but maintaining good performance. CenterPoint (Yin, Zhou,
and Krahenbuhl 2021) proposes an anchor-free detector that
extends CenterNet (Zhou, Wang, and Krähenbühl 2019)
to 3D space and achieves high performance on nuScenes
dataset (Caesar et al. 2020) and Waymo open dataset (Sun
et al. 2020). PointRCNN (Shi, Wang, and Li 2019), unlike
the grid-based approaches discussed above, creates propos-
als directly from point clouds. It then employs LiDAR seg-
mentation to identify foreground points for proposals and
produce bounding boxes in the second stage. (Qi et al. 2019;
Yang et al. 2022) use Hough voting to collect point features
and then propose bounding boxes from clusters. Because
of its dense feature representation, grid-based approaches
are faster, but they lose information from raw point clouds,
whereas point-based methods can connect raw point clouds
but are inefficient when locating neighbors for each point.
PV-RCNN (Shi et al. 2020) is proposed to preserve effi-
ciency while allowing adjustable receptive fields for point
features.

1478



Dpred mAP↑ mATE↓ NDS↑
learned 0.282 0.768 0.327

random soft 0.245 0.838 0.290
random hard 0.176 0.922 0.224

ground truth 0.470 0.393 0.515

Table 1: Evaluation of depth prediction on the nuScenes val
set. “soft” and “hard” denote gaussian and one-hot random-
ization along depth dimension, respectively.

Depth Estimation
Depth prediction is critical for monocular image interpreta-
tion. Fu et al. (Fu et al. 2018) employ a regression method
to predict the depth of an image using dilated convolu-
tion and a scene understanding module. Monodepth (Go-
dard, Mac Aodha, and Brostow 2017) predicts depth with-
out supervision using disparity and reconstruction. Mon-
odepth2 (Godard et al. 2019) uses a combination of depth
estimation and pose estimation networks to forecast depth
in a single frame.

Some approaches predict depth by constructing cost-
volume. MVSNet (Yao et al. 2018) first introduces cost-
volume to the field of depth estimation. Based on MVSNet,
RMVSNet (Yao et al. 2019) uses GRU to reduce memory
cost, MVSCRF (Xue et al. 2019) adds CRF module, Cas-
cade MVSNet (Gu et al. 2020) changes MVSNet to cascade
structure. Wang et al. (Wang et al. 2021a) generate depth
prediction using multi-scale fusion and introduce adaptive
modules which improve performance and reduce memory
consumption at the same time. Bae et al. (Bae, Budvytis,
and Cipolla 2022) fuse single-view images with multi-view
images and introduce depth-sampling to reduce the cost of
computation.

Delving into Depth Prediction in Lift-Splat
In the Introduction Section, we show that a LSS-based de-
tector with surprisingly poor depth can still obtain reason-
able 3D detection results. In this section, we first review the
overall structure of our baseline 3D detector built on Lift-
splat. Then we conduct a simple experiment on our base de-
tector to reveal why we observe the previous phenomenon.
Finally, we discuss three deficiencies carried by this detector
and point out a potential solution to it.

Model Architecture for Base Detector
Our vanilla Lift-splat based detector simply replaces the seg-
mentation head in LSS (Philion and Fidler 2020) with Cen-
terPoint (Yin, Zhou, and Krahenbuhl 2021) head for 3D de-
tection. Specifically, it consists of four main components
shown in Fig. 4. 1) An Image Encoder (e.g., ResNet (He
et al. 2016)) that extracts 2D features F 2d = {F 2d

i ∈
RCF×H×W , i = 1, 2, ..., N} from N view input images
I = {Ii, i = 1, 2, ..., N}, where H , W and CF stand for
feature’s height, width and channel number; 2) A Depth-
Net that estimates images depth Dpred = {Dpred

i ∈
RCD×H×W , i = 1, 2, ..., N} from image features F 2d,

Region DL SILog↓ AbsRel↓ SqRel RMSE↓

All 54.58 3.03 85.11 19.45
✓ 27.62 0.23 2.09 5.78

Best 27.87 0.38 6.96 8.29
✓ 14.12 0.10 1.04 4.55

Table 2: Evaluation of depth prediction on the nuScenes val
set. DL denotes Depth Loss. All foreground points are taken
for evaluation.

where CD stands for the number of depth bins; 3) A View
Transformer that projects F 2d in 3D representations F 3d us-
ing Eq. 1 then pools them into an integrated BEV represen-
tation F bev; 4) A 3D Detection Head predicting the class,
3D box offset and other attributes.

F 3d
i = F 2d

i ⊗Dpred
i , F 3d

i ∈ RCF×CD×H×W . (1)

Making Lift-Splat Work Is Easy
The learned depthDpred is believed essential since it is used
to build the BEV representation for subsequent tasks. How-
ever, the poor visualization results in Fig. 1 contradict this
consensus. In the Introduction Section, we attribute the suc-
cess of Lift-splat to partially reasonable learned depth. Now,
we take a step further to study the essence of this pipeline by
replacing Dpred with a random initialized tensor and freez-
ing it during both the training and testing phases. Results are
shown in Table 1. We are surprised to find that mAP only
drops 3.7% (from 28.2% to 24.5%) after replacing Dpred

with randomized soft values. We hypothesize that even if the
depth used for unprojecting features is catastrophically bro-
ken, the soft nature of depth distribution still helps unproject
to the right depth position to some extent, and thus obtains
a reasonable mAP, nevertheless it simultaneously unprojects
much non-negligible noise. We further replace the soft ran-
domized depth with a hard randomized depth (one-hot acti-
vation at each position) and observe a greater drop by 6.9%,
verifying our assumption. This demonstrates that as long as
the depth at the correct position has activation, the detec-
tion head can work. It also explains why the learned depth
is poor in most areas in Fig. 1, but the detection mAP is still
reasonable.

Making Lift-Splat Work Well Is Hard
Although obtaining reasonable results, the existing perfor-
mance is far from satisfying. In this part, we reveal three de-
ficiencies in the existing working mechanism of Lift-splat,
including inaccurate depth, depth module over-fitting and
imprecise BEV semantics. To demonstrate our idea more
clearly, we compare two baselines – one is the naive LSS-
based detector, named Base Detector, and another one uti-
lizes extra depth supervision derives from the point clouds
data on Dpred, which will be described in detail in Section
Four. We name it Enhanced Detector.

Inaccurate Depth In Base Detector, the gradients on the
depth module derives from the detection loss, which is indi-
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rect. It is natural to study the quality of learned depth. There-
fore, We evaluate the learned depth Dpred on nuScenes val
using the commonly used depth estimation metric (Eigen,
Puhrsch, and Fergus 2014) including scale invariant log-
arithmic error (SILog), mean absolute relative error (Abs
Rel), mean squared relative error (Sq Rel) and root mean
squared error (RMSE). We evaluate two detectors under two
different protocols: 1) all pixels for each object and 2) the
best-predicted pixel for each object. Results are shown in
Table 2. When evaluating all foreground regions, the Base
Detector only achieves 3.03 AbsRel, which is greatly poor
than existing depth estimation algorithms (Li et al. 2022a;
Bhat, Alhashim, and Wonka 2021). However, as for En-
hanced Detector, the AbsRel is largely reduced from 3.03 to
0.23, which becomes a more reasonable value. It is worth
mentioning that performance of Base Detector under the
best matching protocol is almost comparable to the En-
hanced Detector under all-region protocol. This verifies our
assumption in the Introduction Section that when a detector
is trained without depth loss (just like Lift-splat), it detects
objects by only learning partial depth. After applying depth
loss on the best matching protocol, the learned depth is fur-
ther improved. All of these results demonstrate that the im-
plicitly learned depth is inaccurate and is far from satisfying.

Depth Module Over-Fitting As we stated in the previous
content, the Base Detector only learns to predict depth in
partial regions. Most pixels are not trained to predict rea-
sonable depth, which raises our concern about the depth
module’s generalizing ability. Concretely, the detector learn-
ing depth in that way could be very sensitive to hyper-
parameters such as image sizes, camera parameters, etc. To
verify this, we choose “image size” as the variable, and con-
duct the following experiment to study the model’s general-
izing ability: we first train the Base Detector and the En-
hanced Detector using input size 256×704. Then we test
them using 192×640, 256×704 and 320×864 sizes, respec-
tively. As we can see in Fig. 2, the Base Detector loses more
accuracy when testing image size is inconsistent with the
training image size. The performance loss for Enhance De-
tector is much less. Such a phenomenon implies that the
model without depth loss has a higher risk of over-fitting,
and thus it may also be sensitive to the noise in camera in-
trinsics, extrinsics, or other hyper-parameters.

Imprecise BEV Semantics Once image features are un-
projected to frustum features using learned depth, a Vox-
el/Pillar Pooling operation is adopted to aggregate them to
BEV. Fig. 3 shows that image features are not properly un-
projected without depth supervision. Therefore, the pooling
operation only aggregates part of semantic information. The
Enhanced Detector performs better in this scenario. We hy-
pothesize that the poor depth is harmful to the classifica-
tion task. Then we use the classification heatmaps from both
models and evaluate their TP / (TP + FN) as an indicator
for comparison, where a TP represents an anchor point/fea-
ture which is assigned as the positive sample and is correctly
classified by the CenterPoint head while FN represents the
opposite meaning. See Table 3, the Enhanced Detector con-
sistently outperforms the other one under different positive

0.189

0.228

0.282

0.256 

0.290 

0.304 

0.15 0.17 0.19 0.21 0.23 0.25 0.27 0.29 0.31 0.33

192×640

320×864

256×704

mAP

Enhanced
Base

Figure 2: Testing detectors’ robustness to image sizes. We
use 256× 704 for training. mAP on nuScenes are reported.

w
h dVoxel Pooling GridVoxel Pooling Grid

Figure 3: Compared to the Base Detector (left), the En-
hanced Detector (right) retains more structure information
during feature unprojection and thus can provide precise se-
mantics. Each dot denotes an image feature.

thresholds, which verifies our assumption.
Driven by the above analysis, we realize the necessity of

endowing a better depth in multi-view 3D detectors, and pro-
pose our solution to it – BEVDepth.

BEVDepth
BEVDepth is a new multi-view 3D detector with reliable
depth. It leverages Explicit Depth Supervision on a Camera-
aware Depth Prediction Module (DepthNet) with a novel
Depth Refinement Module on unprojected frustum features
to achieve this.

Explicit Depth Supervision In Base Detector, the only
supervision of the depth module comes from the detection
loss. However, due to the difficulty of monocular depth es-
timation, a sole detection loss is far from enough to super-

Method th=0.3 th=0.5 th=0.7
Base Detector 42.28% 18.36% 5.12%

Enhanced Detector 45.23% 22.47% 8.20%

Table 3: Classification on the nuScenes val set. We use the
classification heatmap for evaluation, th denotes the thresh-
old of heatmap.
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Camera 
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Depth Distribution
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Efficient 
Voxel Pooling

Image Feature

Multi-view Images

Detection Head

Depth Supervision (Visualization Only) Prediction Results

Context FeatureBackbone

BEV Feature

Depth 
Refinement

Figure 4: Framework of BEVDepth. Image backbone extracts image feature from multi-view images. Depth net takes Image
feature as input, generates context and depth, and gets the final point feature. Voxel Pooling unifies all point features into one
coordinate system and pools them onto the BEV feature map.

vise the depth module. Therefore, we propose to supervise
the intermediate depth prediction Dpred using ground-truth
Dgt derived from point clouds data P . Denote Ri ∈ R3×3

and ti ∈ R3 as the rotation and translation matrix from the
LiDAR coordinate to the camera coordinate of the ith view,
and denote Ki ∈ R3×3 as the ith camera’s intrinsic parame-
ter. To obtain Dgt, we first calculate:

ˆ
P img
i (ud, vd, d) = Ki(RiP + ti), (2)

which can be further converted to 2.5D image coordinates
P img
i (u, v, d), where u and v denote coordinates in pixel co-

ordinate. If the 2.5D projection of a certain point cloud does
not fall into the ith view, we simply discard it. See Fig. 4 for
an example of the projection result. Then, to align the shape
between the projected point clouds and the predicted depth,
a min pooling and a one hot are adopted on P img

i . We jointly
define these two operations as ϕ, the resulting Dgt can thus
be written in Eq. 3. As for the depth loss Ldepth, we simply
adopt Binary Cross Entropy.

Dgt
i = ϕ(P img

i ). (3)

Camera-Aware Depth Prediction According to the clas-
sic Camera Model, estimating depth is associated with the
camera intrinsics, implying that it is non-trivial to model the
camera intrinsics into DepthNet. This is especially important
in multi-view 3D datasets when cameras may have differ-
ent FOVs (e.g., nuScenes Dataset). Therefore, we propose to
utilize the camera intrinsics as one of the inputs for Depth-
Net. Concretly, the dimension for camera intrinsics is first

scaled up to the features using an MLP layer. Then, they are
used to re-weight the image feature F 2d

i with an Squeeze-
and-Excitation (Hu, Shen, and Sun 2018) module. Finally,
we concatenate the camera extrinsics to its intrinsics to help
DepthNet aware of F 2d’s spatial location in the ego coordi-
nate system. Denote ψ as the original DepthNet, the overall
Camera-awareness depth prediction can be written in:

Dpred
i = ψ(SE(F 2d

i |MLP (ξ(Ri)⊕ξ(ti)⊕ξ(Ki)))), (4)

where ξ denotes the Flatten operation. An existing work
(Park et al. 2021b) also leverages camera-awareness. They
scale the regression targets according to cameras’ intrin-
sics, making their method hard to adapt to automated sys-
tems with complex camera setups. Our method, on the other
hand, models the cameras’ parameters inside of the Depth-
Net, aiming at improving the intermediate depths’ quality.
Benefiting from the decoupled nature of LSS (Philion and
Fidler 2020), the camera-aware depth prediction module is
isolated from the detection head and thus the regression tar-
get, in this case, does not need to be changed, resulting in
greater extensibility.

Depth Refinement Module To further enhance the depth
quality, we design a novel Depth Refinement Module.
Specifically, we first reshape F 3d from [CF , CD, H,W ] to
[CF ×H,CD,W ], and stack several 3×3 convolution layer
on the CD × W plane. Its output is finally reshaped back
and fed into the subsequent Voxel/Pillar Pooling operation.
On one hand, the Depth Refinement Module can aggregate
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features along the depth axis while the depth prediction con-
fidence is low. One the other hand, when the depth predic-
tion is inaccurate, the Depth Refinement Module is able to
refine it to the correct position theoretically, as long as the
receptive field is large enough. In a word, the Depth Refine-
ment Module endows a rectification mechanism to the View
Transformer stage, making it able to refine those improperly
placed features.

Experiment
In this section, we first introduce our experimental se-
tups. Then, comprehensive experiments are conducted on
BEVDepth to validate the effects of our proposed compo-
nents. Comparisons with other leading camera 3D detection
models are presented in the end.

Experimental Setup
Dataset and Metrics nuScenes (Caesar et al. 2020)
dataset is a large-scale autonomous driving benchmark con-
taining data from six cameras, one LiDAR, and five radars.
There are 1000 scenarios in the dataset, which are di-
vided into 700, 150, and 150 scenes for training, validation,
and testing, respectively. For 3D detection task, we report
nuScenes Detection Score (NDS), mean Average Precision
(mAP), as well as five True Positive (TP) metrics includ-
ing mean Average Translation Error (mATE), mean Aver-
age Scale Error (mASE), mean Average Orientation Error
(mAOE), mean Average Velocity Error (mAVE), mean Av-
erage Attribute Error (mAAE).

Implementation Details Unless otherwise specified, we
use ResNet-50 (He et al. 2016) as the image backbone and
the image size is processed to 256×704. Following (Huang
et al. 2021), we adopt image data augmentations including
random cropping, random scaling, random flipping, and ran-
dom rotation, and also adopt BEV data augmentations in-
cluding random scaling, random flipping, and random rota-

DL CA DR MF mAP↑ mATE↓ mAOE↓ NDS↑
0.282 0.768 0.698 0.327

✓ 0.304 0.747 0.671 0.344
✓ ✓ 0.314 0.706 0.647 0.357
✓ ✓ ✓ 0.322 0.707 0.636 0.367
✓ ✓ ✓ ✓ 0.330 0.699 0.545 0.442

Table 4: Ablation study of Depth Loss, Camera-awareness
and Depth Refinement Module on the nuScenes val set. DL,
CA, DR and MF denotes Depth Loss, Camera-awareness,
Depth Refinement Module and multi-frame, respectively.

BCE L1 mAP↑ mATE↓ mAOE↓ NDS↑
✓ 0.322 0.707 0.636 0.367

✓ 0.321 0.703 0.629 0.371
✓ ✓ 0.323 0.706 0.608 0.372

Table 5: Ablation study of different Depth Loss, including
BCELoss and L1Loss. Results are reported on nuScenes val.

CD ×W mAP↑ mATE↓ mAOE↓ NDS↑
- 0.314 0.706 0.647 0.357

1×3 0.315 0.703 0.650 0.357
3×1 0.320 0.695 0.624 0.369
3×3 0.322 0.707 0.636 0.367

Table 6: Ablation study on the convolution kernel in Depth
Refinement Module. Results are reported on nuScenes val.

tion. We use AdamW (Loshchilov and Hutter 2017) as an
optimizer with a learning rate set to 2e-4 and batch size set
to 64. For the ablation study, all experiments are trained for
24 epochs without using CBGS strategy (Zhu et al. 2019).
When compared to other methods, BEVDepth is trained for
20 epochs with CBGS. Camera-aware DepthNet is placed at
the feature level with stride 16.

Ablation Study
Component Analysis As shown in Table 4, our vanilla
BEVDepth achieves 28.2% mAP and 32.7% NDS. Adding
Depth Loss improves mAP by 2.2% which is consistent
with our analysis – Depth Loss is beneficial to classification.
mATE marginally reduces 0.21, since the naive BEVDepth
already learns to predict depth partially with the help of
detection loss. Modeling camera parameters into DepthNet
further reduces mATE by 0.41, revealing the importance of
camera awareness. In the end, Depth Refinement Module
improves 0.8% mAP. We hypothesize that Depth Refinement
Module makes features along the depth axis more compact,
and thus is beneficial to reducing false response. Overall, our
BEVDepth improves 4.0% mAP and 4.0% NDS compared
to its baseline, showing the effectiveness of our innovations.

Depth Loss In the field of depth estimation, BCE and
L1Loss are two common losses. In this part, we ablate the
effect of using these two different losses in DepthNet (see
Table 5), and find that different depth losses barely affect
the final detection performance.

Depth Refinement Module In Section Three, we mention
that Depth Refinement Module is designed to refine unsat-

Method Resolution mAP↑ NDS↑
FCOS3D 900×1600 0.295 0.372
DETR3D 900×1600 0.303 0.374
BEVDet-R50 256×704 0.286 0.372
BEVDet-Tiny 512×1408 0.349 0.417
PETR-R50-DCN 384×1056 0.313 0.381
PETR-R101-DCN 512×1408 0.357 0.421
PETR-Tiny 512×1408 0.361 0.431
BEVDet4D-Tiny 256×704 0.323 0.453
BEVDet4D-Base 640×1600 0.390 0.515
BEVFormer-S - 0.375 0.448
BEVFormer-R101-DCN 900×1600 0.416 0.517

BEVDepth-R50 256×704 0.351 0.475
BEVDepth-R101 512×1408 0.412 0.535
BEVDepth-R101-DCN 512×1408 0.418 0.538

Table 7: Comparison on the nuScenes val set.
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Method Modality mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑
CenterPoint L 0.564 - - - - - 0.648

FCOS3D (Wang et al. 2021b) C 0.358 0.690 0.249 0.452 1.434 0.124 0.428
DETR3D (Wang et al. 2022b) C 0.412 0.641 0.255 0.394 0.845 0.133 0.479
BEVDet-Pure (Huang et al. 2021) C 0.398 0.556 0.239 0.414 1.010 0.153 0.463
BEVDet-Beta C 0.422 0.529 0.236 0.396 0.979 0.152 0.482
PETR (Liu et al. 2022a) C 0.434 0.641 0.248 0.437 0.894 0.143 0.481
PETR-e C 0.441 0.593 0.249 0.384 0.808 0.132 0.504
BEVDet4D (Huang and Huang 2022) C 0.451 0.511 0.241 0.386 0.301 0.121 0.569
BEVFormer (Li et al. 2022b) C 0.481 0.582 0.256 0.375 0.378 0.126 0.569
PETRv2 (Liu et al. 2022b) C 0.490 0.561 0.243 0.361 0.343 0.120 0.582

BEVDepth C 0.503 0.445 0.245 0.378 0.320 0.126 0.600
BEVDepth† C 0.520 0.445 0.243 0.352 0.347 0.127 0.609

Table 8: Comparison on the nuScenes test set. L denotes LiDAR and C denotes camera. BEVDepth uses pretrained VovNet as
backbone. the resolution of the input image is set to 640 ×1600. BEVDepth† uses ConvNeXT (Liu et al. 2022c) as backbone.

isfactory depth by aggregating/refining the unprojected fea-
tures along the depth axis. In terms of efficiency, we origi-
nally adopt 3×3 convolution in it. Here we ablate different
kernels including 1×3, 3×1 and 3×3 to study its mecha-
nism. See Table 6, when we use 1×3 conv on CD ×W di-
mension, the information does not exchange along the depth
axis, and the detection performance is barely affected. When
we use 3×1 conv, features are allowed to interact along the
depth axis, mAP and NDS are correspondingly improved.
This is similar to using naive 3 × 3 conv, which reveals the
nature of this module.

Benchmark Results
Here we briefly introduce two extra implementations that
are crucial to obtain our performance on the nuScenes leard-
board, i.e., Efficient Voxel Pooling and Multi-frame Fusion.

Efficient Voxel Pooling Existing Voxel Pooling in Lift-
splat leverages a “cumsum trick” that involves a “sorting”
and a “cumulative sum” operations. Both operations are
computationally inefficient. We propose to utilize great par-
allelism of GPU by assigning each frustum feature a CUDA
thread that is used to add the feature to its corresponding
BEV grid. As a result, the training time of our state-of-the-
art model is reduced from 5 days to 1.5 days. The sole pool-
ing operation is 80× faster than its baseline in Lift-splat.

Multi-frame Fusion Multi-frame Fusion helps better de-
tect objects and endows model ability to estimate velocity.
We align the coordinates of frustum features from different
frames into the current ego coordinate system to eliminate
the effect of ego-motion and then perform Voxel Pooling.
The pooled BEV features from different frames are directly
concatenated and fed to following tasks.

nuScenes val set We compare the proposed BEVDepth
with other state-of-the-art methods like FCOS3D, DETR3D,
BEVDet, PETR, BEVDet4D and BEVFormer on nuScenes
val set. We don’t adopt test time augmentation. As can be
seen from Table 7, BEVDepth shows superior performance
in NDS (a key metric of nuScenes dataset), which improves
2% over 2nd place, respectively. BEVDepth is also compa-

rable with BEVFormer in mAP given the fact that they use
stronger backbone and larger resolution input images. Us-
ing 256×704 resolution input images, BEVDepth exceeds
BEVDet on ResNet-50 by 10% in NDS. BEVDepth also ex-
ceeds BEVDet4D-Tiny and BEVFormer-S by 2% in NDS.
When using 512×1408 resolution input images, BEVDepth
exceeds PETR on ResNet-101 6% in mAP and 11% in NDS.
BEVDepth also exceeds BEVDET4D-Base 2% in mAP and
2% in NDS although their backbones are usually better than
us.

nuScenes test set For the submitted results on the test set,
we use the train set and val set for training. The result we
submitted is a single model with test time augmentation.
As listed in Table 8, BEVDepth ranks first on the nuScenes
camera 3D objection leaderboard with a score of 50.3%
mAP and 60.0% NDS. On mAP, we outperform the 2nd
method PETRv2 by 1.3%. On mATE, a key metric reflect-
ing depth localization accuracy which is closely correlated
to depth, we outperform PETRv2 by 11.6%. On NDS, we
surpass the second place by 1.8%, and on other metrics, we
remain at or on par with the best methods of the past. When
switching the backbone to ConvNeXT, BEVDepth reaches
60.9% NDS without extra data.

Conclusion
In this paper, a novel network architecture, namely
BEVDepth, is proposed for accurate depth prediction for
3D object detection. We first study the working mecha-
nism in existing 3D object detectors and reveal the unreli-
able depth in them. To address this, we introduce Camera-
awareness Depth Prediction and Depth Refinement module
with Explicit Depth Supervision in BEVDepth, making it
able to generate robust depth prediction. BEVDepth obtains
the capability to predict the trustworthy depth and obtains
remarkable improvement compared to existing multi-view
3D detectors. Moreover, BEVDepth achieves the new state-
of-the-art on nuScenes leaderboard with the help of Multi-
frame Fusion schema and Efficient Voxel Pooling. We hope
BEVDepth can serve as a strong baseline for future research
in multi-view 3D object detection.
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