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Abstract

We tackle the problem of generating long-term 3D hu-
man motion from multiple action labels. Two main pre-
vious approaches, such as action- and motion-conditioned
methods, have limitations to solve this problem. The action-
conditioned methods generate a sequence of motion from a
single action. Hence, it cannot generate long-term motions
composed of multiple actions and transitions between ac-
tions. Meanwhile, the motion-conditioned methods gener-
ate future motions from initial motion. The generated future
motions only depend on the past, so they are not control-
lable by the user’s desired actions. We present MultiAct,
the first framework to generate long-term 3D human mo-
tion from multiple action labels. MultiAct takes account of
both action and motion conditions with a unified recurrent
generation system. It repetitively takes the previous motion
and action label; then, it generates a smooth transition and
the motion of the given action. As a result, MultiAct pro-
duces realistic long-term motion controlled by the given se-
quence of multiple action labels. Code is publicly available in
https://github.com/TaeryungLee/MultiAct RELEASE.

Introduction
Modeling and generation of realistic human motion play an
essential role in computer vision and robotics, including au-
tomated avatars for AI assistant (Neuhaus et al. 2019), vir-
tual reality (Ahuja et al. 2021) and human-robot interac-
tion (Chan et al. 2021). However, despite decades of efforts
to model human motions, generating controllable long-term
3D human motions remains a challenging problem.

Fig. 1 categorizes 3D human motion generation methods
by conditions used in generation. The action-conditioned
methods (Cai et al. 2018; Petrovich, Black, and Varol 2021;
Guo et al. 2020) generate a short-term motion from an ac-
tion label, and the motion-conditioned methods (Barsoum,
Kender, and Liu 2018; Habibie et al. 2017; Yuan and Kitani
2020) generate future motion based on the previous motion.

However, both methods have limitations in solving our
challenging target problem: “How to generate realistic long-
term motion controlled by multiple actions labels?”. Action-
conditioned methods can only produce the individual action
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Figure 1: Categorization. We show long-term motions generated
by our MultiAct (mid). Compared to ours, action-conditioned AC-
TOR (Petrovich, Black, and Varol 2021) (top) can only gener-
ate short-term single actions. Motion-conditioned MOJO (Zhang,
Black, and Tang 2021) (bottom) cannot control the generated mo-
tion with desired actions. MultiAct handles both conditions in a
single model to generate long-term motions of multiple actions.

motions, but not the realistic long-term motions composed
of multiple actions and transitions between them. Simple lin-
ear interpolation between individually generated action mo-
tions can produce multiple-action motions. However, those
interpolated transitions are unrealistic since they do not con-
sider the adjoining motion context. On the other hand, most
motion-conditioned methods cannot control the generated
motions. Some works (Wang et al. 2021b,a; Cao et al. 2020)
have tried to control the generated motion indirectly, but
still, controlling the motion with a series of actions remains
challenging. Simply combining above two methods together
still does not handle the target problem: Producing an action
motion with the action-conditioned method, and then gen-
erating the transition motion with the motion-conditioned
method fails to generate realistic multiple-action motion
since the generated transition motion is not guaranteed to be
consistent with the following action motion. This limitation
motivates us to handle both conditions in a unified model.

We propose a novel recurrent framework, MultiAct, to
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Figure 2: The overview. We introduce four main steps of MultiAct to generate long-term human motion from multiple action
labels. MultiAct takes a series of action labels (a1, a2, ...). We use action-conditioned model to generate the initial S1 from a1.
We canonicalize the previous motion. Then, given the canonicalized previous motion Si−1 and next action label ai of time step
i, MACVAE generates the next motions (Ti, Si). We bring each local motion pair to the global coordinate (i.e., uncanonicalize)
and connect it to the previous motion.

overcome the limitations of previous approaches by han-
dling both conditions at once. Fig. 2 illustrates the overview
of our framework. MultiAct recurrently passes the previous
motion and a current action label to generate the transition
and the current action motion. Fig. 1 shows an example of
long-term motion from our model using the action label se-
quence (bend down, grab and lift, put down, turn around).

Two critical challenges exist in recurrently generating
long-term motions from a sequence of action labels. The first
is, in each recurrent step, to generate motion that smoothly
continues from the given previous motion while follow-
ing the desired action. We resolve the first challenge with
a novel recurrent module MACVAE (Motion- and Action-
Conditioned VAE). The core idea of MACVAE is to con-
currently generate action motions and transitions from the
joint condition of the action label and previous motion. As
a result, the generated transition is aware of the context in
both adjoining motions, which is not considered in simple
interpolation techniques.

The second challenge is the ground geometry losing prob-
lem during the canonicalization (i.e., normalization, Abbr.
canon.). The canon. brings the previous motion into nor-
malized form during training and testing, potentially end-
ing in any location and facing any direction. Such a process
relieves the burden of motion-conditioned models to learn
highly varying input motion space.

However, previous zero-canon. (Zhang, Black, and Tang
2021) wipes out the global rotation that holds the geometry
between the body and the ground. Losing the information
about the ground geometry leads to physical implausibility
during the recurrent generation. We adjust this problem with
the face-front canon. to disentangle and retain only the rel-
evant information from the input motion. The experiment
supports that our face-front canon. is not an ad-hoc visual-
ization technique but an irreplaceable input normalization
method used in training, single-step, and long-term testing.

To the best of our knowledge, our work is the first ap-
proach to synthesizing unseen long-term 3D human motion

from multiple action labels. We show that our MultiAct out-
performs the best combination of previous SOTA methods to
generate long-term motion from multiple action labels, be-
sides handling such problem within a single model. The ex-
perimental comparison is conducted on the quality of action
motion and transition in single-step and long-term genera-
tions. Our contributions can be summarized as follows.

• We propose MultiAct, a novel recurrent framework to
generate long-term 3D human motion controlled by a se-
quence of action labels.

• Our MACVAE concurrently generates action motions
and realistic transitions aware of adjoining motion con-
text. Generated action motions and transitions are more
realistic than previous SOTA methods.

• Our face-front canon. assures the local coordinate system
of each recurrent step shares the ground geometry. We
empirically validate the irreplaceability of the face-front
canon. by qualitative and quantitative results.

Related Works
Motion-conditioned human motion generation. Early
works regressed deterministic future motions (Aksan, Kauf-
mann, and Hilliges 2019; Fragkiadaki et al. 2015). Re-
cently, stochastic approaches (Zhang, Black, and Tang 2020;
Chen et al. 2020) show promising results with progress in
conditional generative models (Sohn, Lee, and Yan 2015).
HP-GAN (Barsoum, Kender, and Liu 2018), DLow (Yuan
and Kitani 2020) and recurrent VAE (Habibie et al. 2017)
predicted future motions by employing stochastic genera-
tive model. HuMoR (Rempe et al. 2021) and HM-VAE (Li
et al. 2021) trained VAE to optimize the mesh estimation on
sparse observations. (Mao, Liu, and Salzmann 2021) pro-
posed a model fixing the motion of the partial body and gen-
erating the motion for the remaining part. In contrast to the
previous methods that cannot control the motion (Yuan and
Kitani 2020; Li et al. 2021) or indirectly controls (Mao, Liu,
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Figure 3: Model. Our model MACVAE aims to generate continuous transition and action motion [T̂, Ŝc] from previous action
motion Sp and action label ac at inference time. For training, MACVAE encodes the training input [Sp, T, Sc], ap and ac into
posterior distribution of latent vectors zp and zc (blue). Through common forward of decoder and postprocessor, we reconstruct
desired output [T̂, Ŝc] (pink). Since we do not have input motion [Sp, T, Sc] at the inference time, we sample zp and zc using
prior networks of PrevNet and CurrNet, respectively (green). We minimize divergence and reconstruction errors in training.

and Salzmann 2021), our method directly controls the gen-
erated motions by action labels while inheriting the spirit to
generate the future from the past.
Action-conditioned human motion generation.
(Cai et al. 2018) have presented GAN-based action-
conditioned 2D human motion generation. More recently,
MUGL (Maheshwari, Gupta, and Sarvadevabhatla 2021),
Action2Motion (Guo et al. 2020) and ACTOR (Petrovich,
Black, and Varol 2021) proposed VAE-based action-
conditioned 3D human motion generation models. While
such methods are limited to generating individual short-
term motion of single action, our MultiAct can generate the
long-term motion of multiple actions from joint conditions
of motion and action. PSGAN (Yang et al. 2018) is the
2D skeleton motion generating model conditioned on both
the initial pose and an action label. In contrast to PSGAN,
which generates single-action 2D motion in pixel space,
MultiAct generates motion of multiple actions in 3D space.
Motion in-betweening. In-betweening (Harvey et al. 2020;
Zhou et al. 2020; Duan et al. 2021) models generate the
transition connecting two given motions. Especially, the
SSMCT (Duan et al. 2021) is known to be the SOTA model
for in-betweening. Since our work is the first proposed
method to generate long-term motion from multiple actions,
we combine previous SOTA methods ACTOR (Petrovich,
Black, and Varol 2021) and SSMCT (Duan et al. 2021) into
a unified framework as a baseline to compare the quality of
generated long-term multiple action motion.
Text-conditioned human motion generation. A series of
methods (Ahn et al. 2018; Stoll et al. 2020; Lin et al. 2018),
including two concurrent works (Guo et al. 2022; Petrovich,
Black, and Varol 2022) generate the human motion from
given text. Text-conditioned methods map the text-described
continuous semantic space into the motion space using the

language models. On the other hand, the motivation of our
model is to produce the smoothly connected long-term mo-
tion precisely from the sequence of discrete action labels.

MACVAE
Fig. 3 shows the overview of MACVAE. MACVAE is the
recurrent unit of the overall framework MultiAct, used for
generating the motion pair of (transition, action motion).
For the training, MACVAE takes the continuous motion
[Sp, T, Sc] in length of L frames, and action labels ap and
ac. We note the previous and current action motions to Sp
and Sc, respectively, with a transition T between them. The
action labels of Sp and Sc are denoted to ap, ac ∈ A ⊂ Z+,
respectively. From inputs, MACVAE is trained to recon-
struct continuous transition and action motion [T̂, Ŝc], where
the hat notation denotes generated output, targeting to be
close to GT [T, Sc]. The inference stage of MACVAE takes
previous action motion Sp, an action label ac, desired mo-
tion lengths lt and lc to generate future motion [T̂, Ŝc]. The
generated Ŝc is a motion that belongs to the given action la-
bel ac, and generated T̂ smoothly connects in between Sp

and Ŝc.

Inputs and Outputs
3D human motion representation. We represent 3D human
motion of length l as a sequence of 3D human pose repre-
sentations (p1,p2, ...,pl) ∈ R315×l. We note the pose rep-
resentation of ith frame to pi = (ri, vec(θi),xi) ∈ R315, a
concatenation of global rotation ri ∈ R6, 3D joint rotations
θi ∈ R51×6 and 3D translation xi ∈ R3. Rotations ri and θi
respectively represent one global rotation of the human body
and the other 51 rotations of human joints, defined in the
SMPL-H body model (Romero, Tzionas, and Black 2017),
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Figure 4: Canonicalization. Fig. 4a illustrates the face-front
canon. of the previous motion. The last frame (red) is facing
front after canon. Fig. 4b visually compares the face-front
and zero-canon.

in 6D rotation (Zhou et al. 2019). The 3D translation x pro-
vides the displacement of the root joint. Furthermore, 3D
mesh vertices Vi and joint coordinates Ji can be obtained by
forwarding the pose pi to the differentiable SMPL-H layer.
Face-front canonicalization of motions. Applying the
face-front canon. to pre-canonicalized motion sequence
{p′i = (r′i, vec(θ′i),x

′
i)}li=1 with respect to anchor frame in-

dex i∗ formulates the canonicalized motion {pi}li=1 in local
coordinate system as following, where the local coordinate
system is defined as 3D space of each recurrent step:
1. Apply rotation function f(r′i; r

′
i∗

) = ri on global rota-
tion r′i of each frame i in p′i. The function f(∗; r′i∗) :

R3 → R3 is a fixed rotation function uniquely deter-
mined by the global rotation r′i∗ = E(α, β, γ) of anchor
frame i∗, where E(∗, ∗, ∗) means the ZYX-Euler angle
representation of rotation. The formulation of the func-
tion is f(ri∗ ; ri∗) = E(α, β, 0).

2. Convert the global translation into relative translation:
x′rel,i = x′i−x′i∗ . Then, we transform the relative transla-
tion x′rel,i into translation as the local coordinate xi apply-
ing the rotation f(0; r′i∗). (i.e., align the trajectory with
the viewing direction).

3. Formulate the canonicalized motion {pi}li=1 with
{ri}li=1 and {xi}li=1, while keeping the other 51 local
joint rotations {θi}li=1 the same with {θ′i}li=1.

During the training phase, we canonicalize [Sp, T, Sc],
so we put l = lp + lt + lc and anchor frame i∗ = lp, where
lp, lt, lc is the respective length of Sp, T and Sc. For the gen-
eration phase, we only canonicalize the previous motion Sp,
thus we use l = lp and anchor frame i∗ = lp. In summary,
face-front canonicalized motion faces front at frame lp by
making the yaw rotation in ZYX-Euler angle to zero. Fig. 4a
shows the visible result of canon. on previous motion.

For comparison, we use the zero-canon. (Zhang, Black,
and Tang 2021) that shares all but rotation function
fzero(r′i∗ ; r′i∗) = E(0, 0, 0) instead of f(r′i∗ ; r′i∗) =

E(α, β, 0). Fig. 4b shows the visual comparison of face-
front and zero-canon. Our method normalizes the input
motion, preserving the information about how the human
body is bent toward the floor. To that end, our face-front
canon. guides MACVAE to generate motions with consistent
ground geometry. Effects of the canon. methods are tested
and visualized in the Ablation section.

Architecture
The key idea of MACVAE is to explicitly model the previ-
ous motion Sp and current motion Sc by embedding them
into separate latent vectors zp and zc, respectively. To this
end, we employ a CVAE architecture (Sohn, Lee, and Yan
2015), which consists of an encoder, decoder, and addition-
ally with two simple prior networks (Wang and Wan 2019):
CurrNet and PrevNet. Encoder encodes [Sp, T, Sc], ap and
ac into the posterior distribution parameters of latent vec-
tors zp, zc ∈ Rd, where d = 512 is an inner dimension of
Transformer. PrevNet and CurrNet estimate the prior distri-
bution of latent vectors from only the test time inputs. De-
coder and postprocessor reconstructs the generation target T̂
and Ŝc from the latent vectors zp and zc.
Encoder. Encoder encodes all the training input [Sp, T, Sc],
ap and ac into parameters of Gaussian posterior distribu-
tions: µpost

p , µpost
c , Σpost

p and Σpost
c . Estimated parameters are

used to sample latent vectors zp ∼ N (µpost
p , Σpost

p
2
) and

zc ∼ N (µpost
c , Σpost

c
2
) by reparameterization trick (Kingma

and Welling 2014). Transformer encoder primarily embeds
the training inputs [Sp, T, Sc] ∈ RL×315, ap, and ac into 2D
tensor of shape RL×d. For each frame i ∈ {1, ..., L}, we lin-
early embed the pose pi into vectors of dimension Rd/2. At
the same time, we learn the embedding of dimension Rd/2

for each action a ∈ A and assign the action embedding to
each frame i, using the corresponding action label as an in-
dex. Those vectors are concatenated into a d-dimensional
vector and stacked into a 2D tensor of shape RL×d. Trans-
former layers encode the embedded inputs into a 2D tensor
of shape RL×d. We pass the encoded tensor through a tem-
poral convolution layer, take a mean along time dimension
into the vector of shape Rd and pass it into four separate
output FC layers. Each output layers linearly estimate the
parameters of Gaussian posterior µpost

p , Σpost
p , µpost

c and Σpost
c ,

respectively. We sample latent vectors zp and zc from esti-
mated parameters, then pass them into the decoder.
Decoder. The decoder takes two latent vectors zp, zc, that
hold the context of previous and following motions, respec-
tively. It also takes desired length of reconstructed motion lt,
lc. Then reconstructs [T̃, S̃c] using the transformer decoder,
where T̃ and S̃c denotes reconstructed transition and current
motion, respectively. While training, we use the length of
GT motions T, Sc for lt, lc, respectively. We provide lt and
lc as input for test time generation. The Transformer decoder
takes three inputs: key, value, and query. We build both key
and value by “expanding” the given latent vectors zp and zc
into 2D tensor of shape R(lt+lc)×d. To this end, we repeti-
tively stack zp for lt times, then zc for lc times into 2D tensor
for key and value. The sinusoidal positional encoding is used
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as a query. From inputs above, Transformer decoder outputs
a sequence of (lt + lc) vectors of dimension Rd. We pass
the decoded vectors through a temporal convolution layer,
then linearly project each Rd dimension vector into poses
of dimension R315. We group the first lt 3D human poses
into T̃ ∈ Rlt×315, and following lc poses into S̃c ∈ Rlc×315.
Putting T̃ and S̃c together, decoder outputs the reconstructed
motion [T̃, S̃c].
Postprocessor. Postprocessor is a single 2D convolution
layer of kernel size (315 × 5) to smooth the gap between
previous and generated motion. Postprocessor takes previ-
ous motion Sp and generated motion [T̃, S̃c]. We first con-
catenate them into 2D tensor [Sp, T̃, S̃c] ∈ RL×315, and
pass through temporal convolution layer. We discard the pre-
vious motion Sp part, and output the remaining [T̂, Ŝc] as a
final generation.
Prior networks: CurrNet and PrevNet. For inference,
prior networks are used instead of an encoder: to generate
the Gaussian distribution of latent vectors zp and zc from
the test time inputs, Sp and ac, respectively. CurrNet assigns
the learnable tokens µprior

c (a),Σprior
c (a) ∈ Rd for each ac-

tion a ∈ A, then outputs the embedded tokens µprior
c (ac) and

Σprior
c (ac) for given action label ac. PrevNet takes the previ-

ous action motion Sp as input and estimates the parameters
µprior
p and Σprior

p . Instead of using the entire Sp, we only em-
bed the last few frames of Sp into µprior

p and Σprior
p using a

single linear layer, and add the learnable token of dimen-
sion Rd corresponding to transition. This is to prevent our
model from being overfitted to seen previous motions Sp,
which could result in poor generalization to unseen previous
motions.

CurrNet and PrevNet are designed to estimate the latent
distribution from the test time input. However, they are di-
vided into separate modules to impose the different roles to
zp and zc: zp to deliver accurate embedding of previous mo-
tions to the decoder, and zc to provide a detailed description
of the action label ac. As we do not have [Sp, T, Sc] at test
phase, we need to sample zp and zc with only test time input
Sp and ac. Thus, we rely on prior networks to sample zp and
zc at the testing phase, while the divergence between prior
and posterior distributions is minimized in training.

Training Objectives
Reconstruction. Our first objective is to minimize L1 re-
construction losses LV =

∑lt+lc
i=1 ||Vi − V̂i||1 and LP =∑lt+lc

i=1 ||pi − p̂i||1. We denote the GT 3D mesh vertices
and pose representation of i’th frame to Vi and pi, respec-
tively. Similarly, the predicted mesh vertices and pose of i’th
frame are denoted to V̂i and p̂i, respectively. In addition, we
use mesh vertex acceleration loss Lacc to enhance the qual-
ity of the generated motion. Each terms are combined into
unified reconstruction loss Lrecon = LV + LP + λaccLacc.
Minimizing divergence of distributions. The second ob-
jective is to match the prior and posterior distribution, mea-
sured by Kullback-Leibler divergence LKL. Minimizing LKL

leads our model to reconstruct [T̂, Ŝc] with mostly from the

information in Sp and ac. The total loss is the sum of recon-
struction and divergence losses: L = Lrecon + λKLLKL.

MultiAct
Fig. 2 shows overview of MultiAct. MultiAct recurrently
generates a long-term human motion [S1, T2, S2, ...., SN ]
from series of action labels (a1, ..., aN ) ∈ An, for the vari-
able sequence length N . We use the recurrent cell MAC-
VAE, which takes previous motion St−1 and action at to
generate [Tt; St]. Note that we denote motions in global
coordinate system (i.e., 3D space of long-term motion) of
MultiAct to St, Tt for each timestep t. The motions canon-
icalized into the local coordinate system that is provided
into MACVAE for each step are denoted to Sp,T and Sc.
In each recurrent step, we give St−1 and at of MultiAct into
Sp and ac of MACVAE. In return, generated motion [T̂, Ŝc]
of MACVAE is saved as [Tt; St] in MultiAct. We show the
3-step pipeline of MultiAct below.

1. Initialize. We first generate the initial action motion S1

with separately trained ACTOR (Petrovich, Black, and
Varol 2021) model using the first action label a1.

2. Recurrent generation. We have St−1 from initialization
or the previous recurrent step. First, we canon. St−1 onto
the local coordinate system and denote to S′t−1 as de-
scribed in the MACVAE section. Second, canonicalized
S′t−1 and at are passed into MACVAE, and generates
[T ′t ; S

′
t]. Generated S′t follows the action at, and T ′t con-

nects between S′t−1 and S′t. Finally, S′t is passed to the
next step as the previous uncanonicalized motion St. We
repeat this recurrence for the given sequence of actions.

3. Connect into long-term motion. From the recur-
rent generation, we have a sequence of local motions
S1, [T

′
2; S′2], ..., [T ′N ; S′N ]. We connect them inductively

into a global coordinate, assuming that we have con-
nected motions [S1; T2; ...; St] up to time step t. We un-
canon. [T ′t+1; S′t+1] onto global coordinate (i.e., connect
to the last frame of St) then concatenate them. At last,
we have connected long-term motion [S1; ...; TN ; SN ],
which is controlled by action labels a1, ..., aN .

Experiments
Datasets
BABEL (Punnakkal et al. 2021) is the only dataset that con-
sists of a long-term human motion with sequential action
labels. The set of action labels in the BABEL contains tran-
sition as a sole action label, like other labels, such as walk
and sit. Furthermore, the action label transition comes in be-
tween other action labels, forming an alternating sequence of
action labels. This precisely fits our goal of modeling long-
term motion with alternating action motions and transitions.
We use training and validation split for training and testing
of our model, respectively. Especially for the testing, we use
the unseen previous motion inputs from the test set, which al-
lows our experiment to demonstrate that MultiAct success-
fully generalizes to unseen motions. The detail of data sam-
pling is illustrated in supplementary materials.
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Method FIDtrain ↓ FIDtest ↓ Acc. top1 ↑ Acc. top5 ↑ Div.→ Multimod.→
Real-train 0.019±0.004 0.90±0.014 0.94±0.0014 1.00±0.001 6.87±0.124 3.29±0.058

Real-test 0.90±0.018 0.095±0.0034 0.68±0.0039 0.89±0.0035 6.75±0.045 3.73±0.031

MACVAE (Ours) 0.74±0.019 0.97±0.015 0.64±0.009 0.86±0.003 6.74±0.020 3.72±0.019

w/o separate latent 1.33±0.087 1.43±0.073 0.51±0.096 0.72±0.012 6.55±0.12 4.45±0.036

ac to PrevNet 1.28±0.035 1.45±0.092 0.49±0.018 0.72±0.011 6.55±0.061 4.69±0.056

whole Sp to PrevNet 0.91±0.022 1.10±0.092 0.56±0.004 0.78±0.003 6.61±0.043 4.29±0.038

w/o canon. 1.21±0.036 1.12±0.026 0.52±0.0035 0.77±0.002 6.60±0.046 4.25±0.037

with zero-canon. 0.72±0.025 0.89±0.017 0.64±0.018 0.85±0.0064 6.71±0.076 4.35±0.13

Table 1: Ablation. We ablate the performance of single-step MACVAE to generate action motions against alternative designs.
The second block ablates the high-level design idea. Effects of canon. methods are presented in the third block. Symbol →
means closer to the real (underlined) is better.

Evaluation Metrics
We use frechet inception distance (FID), action recognition
accuracy (Acc.), diversity (Div.), and multimodality (Mul-
timod.) as the measurement of the quality of the generated
motions, following previous works (Petrovich, Black, and
Varol 2021; Guo et al. 2020). FIDtrain and FIDtest represents
distribution divergence from generated samples to training
and test set, respectively. Acc. measures how likely gener-
ated motions are classified to their action label by the pre-
trained action recognition model. Lower FID and higher
Acc. implies the better quality. Meanwhile, Div. and Mul-
timod. show the variance of the generated motion across
all actions and within each action, respectively. The value
closer to the real data (underlined in Tab. 1) is better.

Ablation Study
For all ablation studies, we report the performance when the
previous motions are from unseen test sets.
Separate latent embedding. ‘w/o separate latent’ in Tab. 1
shows that our separate latent embedding of zc and zp is
highly beneficial in every evaluation metric. Removal of sep-
arate latent embedding changes our model to unify the prior
networks (i.e., generate z from Sp and ac), and decoder to
use only z to reconstruct the output motion [T̂, Ŝc].
Inputs of PrevNet. ‘ac to PrevNet’ in Tab. 1 shows that the
score drops when action label ac is additionally provided to
PrevNet, while our original input is only the previous mo-
tion Sp. The PrevNet is expected to deliver the context of
the previous motion to the decoder so that the decoder can
smoothly connect previous and generated motions. In this
regard, the context delivered by the PrevNet should contain
information about how the previous motion ends, not an ac-
tion label of the previous motion, as multiple motions can
correspond to the action label. As a result, providing action
label ac to PrevNet leads to inferior results.

‘whole Sp to PrevNet’ in Tab. 1 shows that using whole
previous motion Sp degrades the performance compared to
ours (using last 4 frames). Passing too many frames to Pre-
vNet can memorize unnecessary frames during the train-
ing stage. Memorization of such unnecessary frames of the
training set results in overfitting to the training set. Our deci-
sion to use only the last four frames of the previous motion

Face-front canon. 
(Ours)

Zero-canon.

Figure 5: Qualitative comparison of the canonicalization.
We show the long-term motion generated from (“stand”,
“bend”, “stand”, “bend”, “stand”) with face-front (red)
and zero-canonicalization (blue).

is to deliver minimal and only necessary information and to
prevent the system from simply memorizing the training set.
Canonicalization. The two settings in the last block of
Tab. 1 and Fig. 5 demonstrate necessity of our face-front
canon. We show that our face-front canon. plays an irre-
placeable role in generating a long-term motion of mul-
tiple actions, which is more than an ad-hoc visualization
method but a normalization process that has a decisive ef-
fect on both quantitative and qualitative results. The de-
tails of canon. methods are introduced in MACVAE section
and Fig. 4a. Both zero- (Zhang, Black, and Tang 2021) and
face-front canon. simplify the highly varying motion space,
which leads to the performance gain.

We observed that zero-canon. (Zhang, Black, and Tang
2021) suffers from loss of the floor geometry during recur-
rent generation (Fig. 5) since it wipes out the global roll and
pitch rotation which determines the ground. One example is
the motion that ends in a bent-down position, as in Fig. 4b.
The zero-canon. maps the motion “feet in the air” in the lo-
cal coordinate, as illustrated in Fig. 4b. As a result, generated
future motion places feet back on the ground in the local co-
ordinate. However, in a global coordinate (i.e., real-world),
such motion is equivalent to leaning towards the ground.
(Fig. 5)

As illustrated in the lower part of Fig. 5 and the previ-
ous paragraph, such a problem can not be handled by post-
generation alignment during the visualization as the gener-
ated output is physically implausible. Our face-front canon.
is the proper normalization method that leads to the physi-
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Method FIDtrain ↓ FIDtest ↓ Acc. top1 ↑ Acc. top5 ↑ Div.→ Multimod.→
Real-train 0.019±0.004 0.90±0.014 0.94±0.0014 1.00±0.001 6.87±0.124 3.29±0.058

Real-test 0.90±0.018 0.095±0.0034 0.68±0.0039 0.89±0.0035 6.75±0.045 3.73±0.031

MACVAE (Ours) 0.74±0.019 0.97±0.015 0.64±0.009 0.86±0.003 6.74±0.020 3.72±0.019

ACTOR 1.48±0.043 1.53±0.032 0.50±0.0078 0.75±0.0041 6.52±0.64 4.42±0.043

Table 2: Comparison with SOTA: ACTOR. We present the performance of single-step MACVAE to generate action motions
from unseen previous motion and an action label. Previous action-conditioned SOTA ACTOR (Petrovich, Black, and Varol
2021) is given as a baseline for comparison. Symbol→ means closer to the real (underlined) is better.

Method FIDtrain ↓ FIDtest ↓
Ours (prev. motion from testset) 0.87±0.052 0.67±0.027
Ours (prev. motion from ACTOR) 2.20±0.67 2.03±0.73

ACTOR + SSMCT (w. align) 6.34±0.10 5.85±0.059

ACTOR + SSMCT (w. o. align) 7.26±0.046 7.20±0.068

ACTOR + Interpolation 13.25±0.35 13.36±0.29

Table 3: Comparison with SOTA: ACTOR+SSMCT. We report
FID score of generated transition from Ours, compared to combi-
nation of SOTA methods (ACTOR + SSMCT).
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Figure 6: Long-term generation. We report the action recog-
nition accuracy of generated long-term motion by MultiAct
(left). FIDtest of transition (right) is also reported.

cally plausible generation result in each step (that shares the
global ground geometry). The qualitative (Fig. 5) and quan-
titative result (last block of Tab. 1) shows that our face-front
canon successfully overcomes such a problem.

Comparison with State-Of-The-Art Methods
Since our MultiAct is the earliest attempt to generate long-
term motion from multiple actions, we do not have directly
comparable prior works. As an alternative, we combine
two SOTA models, action-conditioned ACTOR (Petrovich,
Black, and Varol 2021) and in-betweening SSMCT (Duan
et al. 2021) trained on BABEL into a unified pipeline:
SSMCT connects the individually generated action motion
from ACTOR. Such SOTA-combined method is the best-
known method before our work to generate multiple-action
motions. We evaluate the quality of transition and action mo-
tion in both single-step and long-term generation.
Action motion. In the SOTA-combined pipeline, the gener-
ation of action motion is solely dependent on the ACTOR;
thus, we compare ours to ACTOR. In Tab. 2, we have ob-
served that single-action motions from MACVAE using the

test set, which consists of unseen previous motions, outper-
form the SOTA method ACTOR in all evaluation metrics.

The left plot in Fig. 6 shows that our generated long-term
motion shows much higher recognition accuracy than AC-
TOR and maintains the quality after twenty steps of repeti-
tive recurrence. Note that we have sampled the input action
sequence from the test set so that such a result shows that
MultiAct generalizes well to the unseen permutation of ac-
tion labels that are not provided during the training. Note
that MultiAct uses ACTOR to initialize S1; thus, the metric
score of the first step is identical to ACTOR.
Transition. Tab. 3 compares the quality of our single-
step transition against SOTA-combined pipeline: SSMCT-
generated transition in between two ACTOR-generated ac-
tion motions. The quality of our transition in both previ-
ous motion conditions largely outperforms both the SOTA-
combined method and linear interpolation baseline. As AC-
TOR generates motions independent of previous motions,
the initial status of generated motions can be very different
from the last one of previous motions (e.g., seeing the oppo-
site direction), which can result in unnatural in-betweening
of SSMCT. The table shows that although we fix this issue
by manually aligning ACTOR’s action motions before per-
forming in-betweening with SSMCT, ours still largely out-
performs it. We also report the long-term transition quality
of MultiAct on the right of Fig. 6. Our method outperforms
the other baselines throughout twenty steps of recurrence.

The performance of the SOTA-combined pipeline heav-
ily depends on the first step, ACTOR, since the second step,
SSMCT, takes the ACTOR-generated motions as an input.
The lower quality of ACTOR-generated motions (as shown
in Tab. 2) leads to the inferior transition quality in the second
step. The result supports our idea of simultaneously gener-
ating transition and action motion from the joint condition
of motion and action. To summarize, our MultiAct outper-
forms the previous SOTA on the proposed task: to generate
long-term motion from multiple actions.

Conclusion
We present MultiAct, the first framework to generate long-
term 3D human motion of multiple actions recurrently. For
the recurrent generation of long-term motion composed of
transitions and actions, our model concurrently generates
transition and action motion from the joint condition of ac-
tion and motion. As a result, our MultiAct has outperformed
the previous SOTA-combined method in generating long-
term motion of multiple actions.
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