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Abstract

As manual point-wise label is time and labor-intensive for ful-
ly supervised large-scale point cloud semantic segmentation,
weakly supervised method is increasingly active. However,
existing methods fail to generate high-quality pseudo labels
effectively, leading to unsatisfactory results. In this paper, we
propose a weakly supervised point cloud semantic segmenta-
tion framework via receptive-driven pseudo label consisten-
cy and structural consistency to mine potential knowledge.
Specifically, we propose three consistency contrains: pseu-
do label consistency among different scales, semantic struc-
ture consistency between intra-class features and class-level
relation structure consistency between pair-wise categories.
Three consistency constraints are jointly used to effectively
prepares and utilizes pseudo labels simultaneously for sta-
ble training. Finally, extensive experimental results on three
challenging datasets demonstrate that our method significant-
ly outperforms state-of-the-art weakly supervised methods
and even achieves comparable performance to the fully su-
pervised methods.

Introduction
Point cloud semantic segmentation attracts more and more
attention in the field of 3D computer vision due to its wide
applications in many scenarios, including remote sensing,
AR/VR, robotics, and automatic driving. Fully supervised
deep learning methods (Wu, Qi, and Fuxin 2019; Hu et al.
2020; Han et al. 2020; Yan et al. 2020; Ma et al. 2020)
are prevalently studied, which depends on densely anno-
tated datasets. However, the full annotation for large-scale
datasets with amount of millions of points is labor-intensive
and time-consuming. Taking ScanNet-v2 (Dai et al. 2017) as
an example, it takes 22.3 minutes to annotate one scene on
average, and the entire dataset contains 1513 scenes. Due to
the lack of supervision information, the performance will be
severely degraded when directly extending the fully super-
vised method to weakly supervised learning (Hu et al. 2022).
Therefore, recent works (Wei et al. 2020; Xu and Lee 2020;
∗These authors contributed equally.
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Figure 1: Comparison of single-scale inference and multi-
scale inference in training stage and pseudo label selection
stage. 10101 indicates the multiple scale label in Training
stage and prediction in Pseudo label selection stage

Cheng et al. 2021; Zhang et al. 2021a; Hu et al. 2022; Liu,
Qi, and Fu 2021) have been attracting more attention to the
weakly supervised point cloud segmentation task.

In 3D weakly supervised learning, current popular meth-
ods can be roughly divided into two categories: pseudo la-
beling based methods (Zhang et al. 2021a; Cheng et al.
2021; Liu, Qi, and Fu 2021) and consistency based meth-
ods (Xu and Lee 2020; Zhang et al. 2021b). Current pseudo
labeling based methods (Zhang et al. 2021a; Cheng et al.
2021; Liu, Qi, and Fu 2021) generate pseudo labels at a s-
ingle scale and use a pre-defined fixed threshold for pseudo
label selection. Firstly, single-scale inference only supervis-
es the output prediction, in the case of sparse supervision
information, only a few valid labels can be used, which se-
riously affects the performance of the network, resulting in
unsatisfactory results. So, it is not an ideal solution. In con-
trast, as shown in Figure 1, receptive-driven multi-scale in-
ference generates multiple scale labels by enriching the su-
pervision information within the receptive field in the pro-
cess of down-sampling. Then, using multiple scale labels to
supervise the features of multiple scales, which will more
fully mine and exploit extremely limited supervised infor-
mation. Secondly, in the pseudo label selection stage, on-
ly using single-scale inference to select pseudo labels will
generate a large number of false pseudo labels, which will
bring too much noise for training. Additionally, these work-
s (Zhang et al. 2021a; Cheng et al. 2021; Liu, Qi, and Fu
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2021) pay more attention to how to generate pseudo labels,
but ignore how to make full use of the auxiliary supervision
information introduced by pseudo labels.

The consistency based methods (Xu and Lee 2020; Zhang
et al. 2021b) adopt the self-supervision method based on
consistency. These methods focus on meticulously design-
ing data augmentation methods and constraining the consis-
tency between original data predictions and their augmented
data predictions. These methods pay attention on the pertur-
bation invariance, but the connection between labeled and
unlabeled points is still not well established. Moreover, dou-
ble network branches introduce additional computation for
the training networks and limit the practicality of the method
to a certain extent.

To remedy these problems, in this paper, we propose
a weakly supervised point cloud semantic segmentation
framework via Receptive-driven Pseudo label consistency
and Structural Consistency (RPSC), which contains three
consistency: Receptive-driven pseudo label consistency, Se-
mantic structural consistency and Relation structural consis-
tency. Concretely, we generate corresponding multi-hot la-
bels for each scale during down-sampling in training stage.
In this way, as the receptive field expands and the unlabeled
points cooperate with labeled points to share one multi-hot
label, enriching more supervision information and effective-
ly improving the availability of multi-hot labels in the weak-
ly supervised setting. In the decoder, we generate score pre-
dictions for each scale, which are supervised by multi-hot
labels for the corresponding scales. By supervising the fea-
tures of each hidden layer, the supervision information can
be fully excavated, and the discriminability of the final seg-
mentation result can be improved. Furthermore, to alleviate
noisy pseudo labels due to incorrect predictions, we use the
consistency between single-scale pseudo labels and multi-
scale pseudo labels to select reliable pseudo labels.

In semantic structural consistency and relation structural
consistency, which are proposed to constrain the network
training based on a key analysis that in a common space, the
same category between labeled points and unlabeled points
should have consistent feature distribution, and different cat-
egories should also have consistent category-level relation.
Specifically, we first build a prototype memory bank and
update it smoothly with the features of each batch of la-
beled points to obtain a more robust prototype. Then, in
the feature space, keep the unlabeled points and the cor-
responding labeled point prototypes with the same catego-
ry more compact, so the features of the labeled and un-
labeled points have a consistent distribution, which is se-
mantic structure consistency. Finally, we use the prototype-
s to calculate the category-level relation between labeled
and unlabeled points, respectively. We ensure the relation
structure consistency between labeled and unlabeled points,
which provides additional supervision information beyond
the point level, i.e., category-level relation supervision.

Our contributions are summarized as follows:
• We propose a weakly supervised point cloud semantic

segmentation framework via receptive-driven pseudo label
consistency and structural consistency, which proposes three
consistency constraints to effectively prepares and utilizes

pseudo labels simultaneously for stable training.
•We introduce a receptive-driven pseudo label consisten-

cy method, which uses receptive-driven multi-scale scoring
and pseudo label consistency to select high-quality pseudo
labels. And structural consistency is established to constrain
the consistency between labeled and unlabeled points with
semantic features and category-level relations.
• Extensive experimental results demonstrate that RPSC

significantly outperforms state-of-the-art weakly supervised
competitors and even obtains comparable performance to
fully competitors on three challenging datasets.

Related Work
Fully Supervised Point Cloud Semantic Segmentation.
With the large-scale fully-annotated point cloud datasets
(Armeni et al. 2016; Dai et al. 2017; Hackel et al. 2017;
Behley et al. 2019), fully-supervised point cloud semantic
segmentation has made great progress in recent years. 3D
semantic segmentation methods can be roughly divided into
voxel-based methods and point-based methods. Voxel-based
methods (Graham, Engelcke, and Van Der Maaten 2018;
Meng et al. 2019; Yan et al. 2021) voxelize point clouds into
regular 3D grids and process them using dense 3D CNNs or
sparse convolutions. However, information loss is inevitable
during the voxelization process.

To avoid structuring, point-based methods (Qi et al.
2017a,b; Li et al. 2018; Wang et al. 2019; Wu, Qi, and
Fuxin 2019; Lei, Akhtar, and Mian 2020a; Zhang et al.
2020; Yan et al. 2020) are proposed to directly process the
raw unordered point cloud data. PointNet(Qi et al. 2017a)
and PointNet++ (Qi et al. 2017a) are the pioneering ones.
RandLA-Net (Hu et al. 2020) utilizes a random down-
sampling strategy to build an efficient and lightweight neural
architecture, which makes it possible to process large-scale
point cloud datasets efficiently. However, the methods men-
tioned above are fully supervised that require a large number
of abeled samples. Thus, in this paper, we focus on weakly
supervised point cloud semantic segmentation.
Weakly/Semi Supervised Point Cloud Semantic Segmen-
tation. In weakly supervised learning, only a small amoun-
t of data is annotated, which reduces the annotating cost.
Due to the few supervision, it is challenging to enforce the
constraints for point cloud semantic segmentation. There are
three weakly labeling methods: sub-cloud (Wei et al. 2020)
which labels semantic categories in various subsets of each
point cloud, labeling a tiny fraction of points (Xu and Lee
2020; Zhang et al. 2021a; Cheng et al. 2021; Zhang et al.
2021b), and a fraction of the point clouds with full labels
(Jiang et al. 2021). In this paper, we adopt the second weak-
ly labeling method of labeling a tiny fraction of points.

Weakly supervised methods can be roughly divided in-
to two categories: consistency based methods and pseu-
do labeling based methods. The former (Tarvainen and
Valpola 2017; Zhang et al. 2018) originates from the semi-
supervised classification of 2D images. They depend on the
fact that the predictions for the perturbed samples and the
predictions for the original samples should be consistent.
In PSD (Zhang et al. 2021b), a perturbed self-distillation
framework is introduced by constructing perturbed samples
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Figure 2: The framework of RPSC. (A) is used to generate the multi-scale labels for adding auxiliary supervision in training
stage. In pseudo label selection stage, the reliability of pseudo labels are selected rely on the consistency between single-scale
pseudo labels and multi-scale pseudo labels generated from (A). As we get the pseudo labels, we train the network by proposed
structural consistency learning shown in (B), which contains relation structural consistency and semantic structural consistency

to ensure the predictive consistency among perturbed sam-
ples and original samples. However, consistency methods in
both 2D images and 3D point clouds rely on well-designed
and domain-specific data augmentation. Instead of perturb-
ing consistency that requires task-specific redesign (Zhang
et al. 2022), we focus on the pseudo-labels, which is a more
flexible way.

Pseudo labeling based methods (Lee 2013; Rizve et al.
2021; Wang and Wu 2020; Iscen et al. 2019; Yarowsky 1995;
Hu et al. 2021b) assign pseudo labels depending on the pre-
diction confidence for unlabeled data assuming that high
confidence corresponds to good accuracy. For the 3D point
cloud segmentation, Zhang et al. (Zhang et al. 2021a) intro-
duced a sparse label propagation method to generate pseudo
labels to regularize network learning. In SPCC-Net (Cheng
et al. 2021), a dynamic label propagation scheme is proposed
based on the built superpoint graphs, involving label noisy
training inevitably. We design three consistency regulariza-
tion methods, semantic structural consistency and relation
structural consistency, to make full use of pseudo labels.

Method
Problem Definition
Let a point cloud be denoted as P = {P l, Pu}, where
P l = {(xi, yi)}NL

i=1 = {X l, Y l} and Pu = {(xi,∅)}NU
i=1 =

{Xu,∅} are labeled and unlabeled sets with NL labeled
points and NU unlabeled points (NL � NU ), respectively.
yi ∈ {1, 2, · · · , C} is the corresponding label of the labeled
point xi, where C is the number of category.N = NL+NU

denotes the total number of points in one point cloud. We

use clicked annotation setting in our paper, which means
only one point or several points are labeled with the ground-
truth for every category, and the annotated points are chosen
randomly to alleviate the cost of annotation. Weakly super-
vised semantic segmentation involves learning a parameter-
ized model fθ on P to predict the semantic category of each
point in X l ∪Xu.

Overview
The framework of our proposed receptive-driven pseudo la-
bel consistency and structural consistency (RPSC) weak-
ly supervised point cloud semantic segmentation method is
shown in Figure 2. RPSC jointly trains the backbone f(·) in-
cluding the segmentation head, the projection head g(·) and
the multi-scale score head h(i)(·).

Specifically, we first perform a pre-training, i.e., initial-
ize the network parameters (backbone and multi-scale score
head) by the available labeled data to construct cross entropy
as segmentation loss and multi-scale score loss. After that,
the single-scale pseudo labels generated from segmentation
head for each unlabeled point is represented as:

Ŷ = {ŷi}NU
i=1 = {argmaxf(xi)}NU

i=1, (1)

where Ŷ is the set of all single-scale pseudo labels, ŷi ∈
{1, 2, · · · , C} denotes the single-scale pseudo label of the
ith unlabeled point, and f(xi) is ith point prediction dis-
tribution. Then we use the receptive-driven pseudo label
consistency constraint to select high-quality pseudo labels
with the help of the receptive-driven multi-scale scoring and
pseudo label consistency selection. It explores a method for
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pseudo label selection under consistency constraint between
single-scale pseudo labels and multi-scale pseudo labels. Fi-
nally, we project all points to a common feature space and
enforce the constraints of the structural consistency to up-
date network parameters, as well as to improve the quality
of pseudo labels. We alternately perform pseudo label selec-
tion and network parameters updating.

Receptive-Driven Pseudo Label Consistency
Current pseudo labeling methods get poor performance
by using the single-scale inference to select pseudo label-
s. Conversely, we propose a receptive-driven pseudo label
consistency method, which contains two key components:
receptive-driven multi-scale scoring in the training stage to
gain the auxiliary supervision and pseudo label consistency
selection in the pseudo label selection stage to select high-
quality pseudo labels.
Receptive-Driven Multi-Scale Scoring. In order to take
advantage of multi-scale inference, Inspired by RFCC
(Gong et al. 2021; Hu et al. 2021a), we use original label-
s to generate multi-hot labels for each scale during down-
sampling in the encoder, and the process is shown in Figure
3. As the down-sampling proceeds, the multi-hot labels are
generated by performing the logical “OR” operation on the
label vectors contained in the local neighborhood for each
point of the current scale. Then each score head includes a
linear layer and sigmoid activation function is attached for
each decoder layer, generating a C-dimensional score pre-
diction S(i) ∈ RN(i)×C for ith decoder layer, where N (i)

is the number of points in the ith decoder layer. We use the
generated multi-hot labels to supervise the score predictions
by BCE loss at each scale before up-sampling, and accumu-
late the losses at each scale to get the final loss as:

Lscore =
m∑
i=1

L(i)
s =

m∑
i=1

BCE(Ỹ (i),S(i)), (2)

where Ỹ (i) are multi-hot labels of the scale corresponding
to the ith decoder layer, m represents the number of scales,
and BCE(·, ·) denotes the binary cross entropy.
Pseudo Label Consistency Selection. In order to better
fuse multi-scale score prediction, according to the previous
down-sampling process, an inverse up-sampling operation
acts on the score prediction S(i) of each scale. We apply the
nearest neighbor interpolation method to gradually restore
the S(i) to the same size as the original input, obtaining
S̃(i) ∈ RN×C . At last, we fuse the score prediction of multi-
ple scales together through the Exponential Moving Average
(EMA) to obtain the final receptive-driven multi-scale score
prediction S̃ ∈ RN×C :

S̃ , δ · S̃ + (1− δ) · S̃(i), i = {2, . . . ,m}. (3)

When i = 1, S̃ is initialized as S̃(1). And the fused s-
core label ŝi of ith point generated as Ŝ = {ŝi}NU

i=1 =

{argmax S̃i}NU
i=1.

As shown in Figure 3, each label aggregates all the anno-
tation information of a region. It is obvious that the propor-
tion of valid labels increases as down-sampling proceeds.

Figure 3: The generation process of multi-hot labels in en-
coder. 0 or 1 at each position indicates whether the corre-
sponding category exists

To take advantage of the supervision information enriched
by multi-hot labels, we use the generated multi-hot labels to
supervise the score predictions before up-sampling instead
of after up-sampling. Similarly, based on the advantage of
multi-scale inference, we use the loss at each scale to accu-
mulate the final loss, instead of only using the final fused
multi-scale score prediction to calculate the loss. More im-
portantly, using multi-scale inference to mine auxiliary su-
pervision information at multiple scales and supervising the
hidden layer features in the network during the training stage
will help to improve the overall performance of the network.

At last, we use the prediction consistency of single-scale
pseudo labels and multi-scale pseudo labels to select high-
quality pseudo labels. We believe that if the pseudo labels
under the two different scales can be consistent, it has a high
credibility. So, the selected pseudo labels can be identified
by a binary indicator ωi for each unlabeled point xi:

ωi =

{
1, if max(f(xi)) > Tth and ŷi = ŝi
0, otherwise

, (4)

where Tth is the confidence threshold, which is set to 0.7 by
experience. When ωi = 1, it means that the pseudo label is
selected, otherwise it is discarded.

Structural Consistency Learning
In order to make better use of the extremely limited super-
vised information, we further mine the prior knowledge to
enforce the constraints for training network and improving
the quality of pseudo labels. And we make a reasonable
assumption that between the labeled points and unlabeled
points, the distribution in the same class and the relation of
the pair-wise classes are both similar. Thus, we conduct two
consistency constraint named semantic structural consisten-
cy and relation structural consistency.
Semantic Structural Consistency. It serves to constrain un-
labeled points and labeled points to have consistent semantic
representations. We hold that the features learned by labeled
points are more accurate than those learned by unlabeled
points. So, we use the features of labeled points to supervise
unlabeled points. To alleviate the instability of single batch
samples, we introduce a prototype memory bank to obtain
a more robust feature representation. Firstly, for each point
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xi, through projection head with L2 normalization, it can be
projected to a common feature space, getting feature repre-
sentation g(xi). Then a prototype memory bank {tmbi }Ci=1
is built to store prototypes of each category, which updated
by calculating the prototype of labeled points in each batch
during training. Given a batch train samples, i.e., B point
clouds, the category prototype tlc is defined as:

tlc =
1

|Ωc|
∑
xi∈Ωc

g(xi), (5)

where Ωc = {xi|yi = c, i = {1, . . . , BNL}}. In the first
training batch, the prototype memory bank is initialized with
the computed prototype. And then it is updated with the pro-
totypes computed from the current batch by EMA:

tmbc , ε · tmbc + (1− ε) · tlc, c = {1, . . . , C}. (6)

The prototype memory bank and unlabeled points feature
{g(xi)}NU

i=1 are used to construct semantic structural consis-
tency matrix Ms with the size of C ×NU :

Ms
ij =

{
‖tmbi − g(xj)‖2, if ŷj = i
0, otherwise

. (7)

where Ms
ij is the distance between ith prototype and jth

unlabeled point in the feature space. We make the unlabeled
points and their corresponding class prototypes compact and
formulate the semantic structural consistency loss as:

Lssc =
1∑NU

j=1 ωj

C∑
i=1

NU∑
j=1

ωj ·Ms
ij , (8)

where ωj is pseudo label indicator defined in the Eq.(4). In-
troducing the prototype memory bank and updating it with
the EMA can store more supervision information and reduce
the interference of noise on network training.
Relation Structural Consistency. Both ground truth and
pseudo labels only introduce independent point-level super-
vision. We further take the additional category-level rela-
tion supervision into account, and introduce the constraint
of relation structural consistency, i.e., the similarity between
any two categories of labeled and unlabeled points should
be consistent.

Specifically, we design relation structural consistency
based on the category prototypes instead of raw features,
as a way to reduce the adverse effects of noisy pseudo la-
bels. The category prototype of unlabeled points {tuc }Cc=1is
defined as:

tuc =
1

|Ωu
c |
∑
xi∈Ωu

c

g(xi), (9)

where Ωu
c = {xi|ŷi = c, i = {1, . . . , Nu}}. Retrieving the

labeled category prototypes from prototype memory bank,
we quantify category-level relation both in labeled and un-
labeled points by cosine similarity:

elij = tmb
T

i · tmbj , euij = tuT
i · tuj , i, j = {1, 2, · · · , C}

(10)

The relation values is further normalized by:

êlij = elij/
C∑

j=1

elij , ê
u
ij = euij/

C∑
j=1

elij . (11)

We have relation matrix of labeled point and unlabeled point
as El = {êlij} ∈ RC×C and Eu = {êuij} ∈ RC×C . Obvi-
ously, neither relation matrix is symmetric. Because in one
scene with multiple categories, the mutual relation between
two categories is not equal. To maintain the category-level
relation structural consistency between labeled points and
unlabeled points, we adopt the Kullback-Leibler divergence
as the learning objective and formulate relation structural
consistency loss as:

Lrsc =
1

C

C∑
i=1

DKL(El
i·||Eu

i·)

+α ·
NL∑
i=1

NL∑
j=1

‖g(xi)
T · g(xj)− yT

i · yj‖,

(12)

where DKL(El
i·||Eu

i·) =
∑C

j=1 ê
l
ij log

êlij
êuij

in the first term,

El
i· and Eu

i· denote the ith row of the matrix. The second ter-
m is the regularization term, which using the ground truth to
supervise labeled points such that each category has a dis-
tinct boundary in the feature space.

Objective Function
The total loss of RPSC contains four loss terms: (1) a seg-
mentation loss Lseg , (2) a receptive-driven multi-scale score
loss Lscore; (3) a semantic structural consistency loss Lssc

and (4) a relation structural consistency loss Lrsc. Specifi-
cally, Lseg calculates the cross-entropy between the model’s
prediction and the ground truth for labeled points, and that
between the model’s prediction and the pseudo label for un-
labeled point, which is formulated as:

Lseg =
1

NL

NL∑
i=1

CE(one hot(yi), f(xi))

+
1

NU

NU∑
i=1

ωi · CE(one hot(ŷi), f(xi)).

(13)

where CE(y, p) denotes the cross entropy between two dis-
tributions y and p, one hot(·) : R → RC is an function
which converts the label to an one-hot vector. Our overall
training loss is:
Ltotal = Lseg + λscore · Lscore + λssc · Lssc + λrsc · Lrsc,

(14)
where λscore, λssc and λrsc are scalar hyperparameters for
trade-off these losses.

Experiments
Experimental Details
Datasets. To thoroughly evaluate our RPSC, we adopt three
challenging large-scale point cloud benchmarks: S3DIS (Ar-
meni et al. 2016), ScanNet-v2 (Dai et al. 2017) and Se-
manticKITTI (Behley et al. 2019). The first two are indoor
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Methods Setting S3DIS ScanNet SemKITTI

Fu
lly

PointConv (’19) (Wu, Qi, and Fuxin 2019)

100%

50.3 55.6 -
KPConv (’19) (Thomas et al. 2019) 67.1 68.4 -

PointGCR (’20) (Ma et al. 2020) 54.4 60.8 -
RandLA-Net (’20) (Hu et al. 2020) 63.0 64.5 53.9

SPH3D (’20) (Lei, Akhtar, and Mian 2020b) 59.5 61.0 -
PointASNL (’20) (Yan et al. 2020) - 63.0 46.8
Point2Node (’20) (Han et al. 2020) 63.0 - -
JSNet (’20) (Zhao and Tao 2020) 54.5 - -

SegGCN (’20) (Lei, Akhtar, and Mian 2020a) 63.6 58.9 54.3

W
ea

kl
y

MPRM (’20) (Wei et al. 2020) sub-cloud - 41.1 -
Xu and Lee (’20) (Xu and Lee 2020) 1pt-b (∼ 2‰) 44.5 - -
Xu and Lee (’20) (Xu and Lee 2020) 10% 48.0 - -
SSPC-Net (’21) (Cheng et al. 2021) 0.1‰ 51.5 27.1 41.0
SSPC-Net (’21) (Cheng et al. 2021) 1pt-b (∼ 2‰) 53.8 - -

Zhang et al. (’21) (Zhang et al. 2021a) 1pt-c 45.8 - -
Zhang et al. (’21) (Zhang et al. 2021a) 1% 61.8 51.1 -

PSD (’21) (Zhang et al. 2021b) 1% 63.5 54.7 -
SQN (’22) (Hu et al. 2022) 1‰ 61.4 56.9 50.8

Baseline 1‰ 59.9 54.4 48.8
Ours 1‰ 63.1 57.5 50.9

Baseline 1pt-c 41.7 40.5 42.5
Ours 1pt-c 56.3 48.6 44.8

Baseline 50pt-c 58.7 54.6 49.2
Ours 50pt-c 64.0 58.7 51.0

Table 1: Quantitative results (mIoU, %) on Area 5 of S3DIS (Armeni et al. 2016), ScanNet-v2 (Dai et al. 2017) and Se-
manticKITTI (SemKITTI) (Behley et al. 2019). Per class mIoU results are shown in the supplementary materials

scene datasets and the last one is outdoor scene dataset. Each
scene of three datasets contains 106 ∼ 108 points. We use
all points of the original test set for the fair comparison.

Following the weakly supervised setting of previous
works (Zhang et al. 2021a,b), we randomly select x points
annotated with the ground truth of each category in each
point cloud, which denotes as xpt-c, and x = {1, 50}. It
is different from (Xu and Lee 2020; Cheng et al. 2021),
which annotate the points for each category in one block
(1m× 1m). For a clearer representation, we denote their la-
beling method as xpt-b. Usually, a point cloud will be divid-
ed into several blocks. Therefore, xpt-b has more labels than
our xpt-c. The annotated proportions of the three datasets at
the 1pt-c and 50pt-c settings are shown in Table 2. In Se-
manticKITTI, the official dataset divides a street scene into
several small pieces. We use the official division as an input
scene like RandLA-Net (Hu et al. 2020).
Implementation Details. Our framework uses RandLA-Net
(Hu et al. 2020) as backbone and it is trained on a single
NVIDIA Tesla T4 with Tensorflow 1.14. The Adam Opti-
mizer is adopted for training with an initial learning rate of
0.01 and momentum of 0.9. We first pre-train our network
for 100 epoches using labeled points. Then we perform 10
iterations of training. In each training iteration, we train our
network for 30 epoches by Ltotal in Eq. (14) with only load-
ing the parameters of the encoder part of the previous mod-
el. In all experiments, we set the hyperparameters δ = 0.8,
ε = 0.9 and α = 0.1 empirically, the scalar hyperparame-
ters λscore = 1.5, λssc = 0.75 and λrsc = 0.1 are select-
ed through experiments (experiment results and analysis are
shown in supplementary materials), while the batch size is

kept fixed to 8 in all dataset experiments.

Experiment Results
Results on Area-5 of S3DIS. In the Table 1, we give the
quantitative comparison results of state-of-the-art approach-
es including fully supervised and weakly supervised meth-
ods on the Area 5 test set. It shows that compared with
other weakly supervised methods, RPSC achieves the best
performance with the same amount of annotations. At the
1pt-c setting, RPSC gains 10.5% mIoU against Zhang et
al. (Zhang et al. 2021a) with the same number of labeled
points. Interestingly, RPSC only need 50pt-c or 1‰ labeled
points to exceed the performance of the backbone network
(RandLA-Net) with full supervision. Under the same weakly
supervised setting of 1‰, RPSC gains 1.7% in mIoU against
SQN, and even exceeds the setting of other methods by 1%.
Results on ScanNet-v2. The comparison results on Scan-
Net are shown in the fifth column of Table 1. At the 1pt-
c setting, RPSC gains 7.5% mIoU against MPRM (Wei
et al. 2020) with fewer annotated points. At the 1‰ and
50pt-c settings, RPSC can achieve better performance than
most weakly supervised methods without using more anno-
tation information than them. As analyzed by SQN (Hu et al.
2022), 1T1C (Liu, Qi, and Fu 2021) has two serious prob-
lems with ground truth label leakage and misleading (over-
exaggerated) labeling ratios in the experiment, so it can be
regarded as almost full supervision methods on ScanNet. For
fairness, we did not compare with them directly.
Results on SemanticKITTI. The sixth column of Table 1
lists the test results on the online test set of SemanticKITTI
dataset. Our 1pt-c setting has a similar amount of annotation
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Settings S3DIS ScanNet SemKITTI
1pt-s 0.009‰ 0.054‰ 0.090‰
50pt-s 0.44‰ 2.17‰ 4.02‰

Table 2: Annotation proportion of 1pt-c and 50pt-c settings
on all datasets

Base.w.PLF PLC SSC RSC mIoU
#1 X 51.4
#2 X X 54.5
#3 X X 52.7
#4 X X 53.8
#5 X X X 55.1
#6 X X X 55.8
#7 X X X 54.6
#8 X X X X 56.3

Table 3: Results (mIoU, %) of ablation study at the 1pt-c set-
ting on Area 5 of S3DIS. Base.w.PLF means using Baseline
with pseudo labeling framework

as the 0.1‰ setting, but our RPSC can be improved by 3.8%
mIoU over SSPC-Net. Similarly, at the 0.1‰ setting, RPSC
also gains 0.1% compared to SQN.

Ablation Study

To further study the effectiveness of three main compo-
nents: receptive-driven pseudo label consistency, semantic
structural consistency and relation structural consistency, we
show the ablation study results in Table 3.
Effectiveness of Pseudo Label Consistency (PLC). From
#1→ #2, #3→ #5, #4→ #6, #7→ #8 in Table 3, the per-
formance achieves 3.1%, 2.4%, 2% and 1.7% improvement
after using pseudo label consistency under the four contrast-
ing settings. The above results fully demonstrate the effec-
tiveness of our proposed pseudo label consistency.
Effectiveness of Semantic Structural Consistency (SSC).
From #1 → #3, #2 → #5, #4 → #7, #6 → #8 in Table 3,
we can find that when the unlabeled points are supervised
by the prototype of the labeled points, that is, after the con-
straint of semantic structure consistency is established, the
performance of the network can be improved.
Effectiveness of Relation Structural Consistency (RSC).
Comparing #1 → #4, #2 → #6, #3 → #7, #5 → #8, the
performance achieves 2.4%, 1.3%, 1.9% and 1.2% improve-
ment, because of the usage of relation structural consistency.

Method # Para. Ttest mIoU

Baseline 1.02 210 41.7
RPSC 1.23 213 56.3

Table 4: The total test time (in seconds), network parameters
(# Para., in millions) and mIoU (%) on Area 5 of S3DIS

2 4 6 8 10
Number of iterations

50

60

70

80

90

Base. mIoU
Base. Select ratio
Base. Correct rate
RPSC mIoU
RPSC Select ratio
RPSC Correct rate

Figure 4: The analysis of pseudo label on S3DIS. The figure
shows the trend of mIoU, the pseudo labels selection ratio,
and the correct rate of selected pseudo labels with iteration.

Analysis
Generalizability of the Framework. We conduct further
experiments to demonstrate our method is backbone inde-
pendent and generalized. When we choose PointNet++ (Qi
et al. 2017b) as the backbone, RPSC still achieves the 49.9%
mIoU at the 50pt-c setting. which is even higher than the re-
sults of Xu and Lee (48.0%) with 10% labeled points, whose
backbone is also PointNet++. Therefore, RPSC is a general-
ized framework which can be instantiated with other deep
segmentation models for point clouds.
Efficiency Analysis. We conduct the efficiency analysis at
the 1pt-c setting on Area 5 of S3DIS, whose results are
shown in Table 4. In the training stage, we introduce an
additional projection head and multiple score head, which
make the parameter increase by 0.21M compared to Base-
line. In the test stage, without the projection head and the
multi-scale score head, no extra computation is introduced
against Baseline, so RPSC have almost the same test time as
Baseline, yet improve the performance by 14.6% mIoU.
Pseudo Label Consistency Efficiently. As shown in Figure
4, both the number and correct rate of pseudo labels selected
by using our pseudo label consistency selection method are
higher than those selected by single-scale inference, which
in turn leads to better network performance (mIoU).

Conclusions
We propose a weakly supervised point cloud semantic seg-
mentation framework to efficiently prepare and exploit pseu-
do labels for mining auxiliary supervision information from
sparse labels, which has two benefits: obtaining reliable
pseudo labels and training stable. Such advantages are based
on three consistency contrains: the pseudo label consisten-
cy, the semantic structure consistency and relation structure
consistency. The first one uses consistency between single-
scale pseudo labels and multi-scale pseudo labels to select
high-quality pseudo labels. The last two provide addition-
al supervision information besides the direct supervision
of pseudo labels. Extensive experimental results on three
benchmarks demonstrate the effectiveness of RPSC with ex-
tremely sparse labels.

1228



Acknowledgments
This work was supported by the National Key Research and
Development Program of China No. 2020AAA0108301,
the National Natural Science Foundation of China No.
6217224, 61876161, 62222602, 62176092, Shanghai Sci-
ence and Technology Commission No.21511100700, Natu-
ral Science Foundation of Shanghai (20ZR1417700), CAAI-
Huawei MindSpore Open Fund, the Fundamental Research
Funds for the Central Universities.

References
Armeni, I.; Sener, O.; Zamir, A. R.; Jiang, H.; Brilakis, I.;
Fischer, M.; and Savarese, S. 2016. 3d semantic parsing of
large-scale indoor spaces. In CVPR, 1534–1543.
Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke,
S.; Stachniss, C.; and Gall, J. 2019. Semantickitti: A dataset
for semantic scene understanding of lidar sequences. In IC-
CV, 9297–9307.
Bouville, M. 2008. Crime and punishment in scientific re-
search. arXiv:0803.4058.
Cheng, M.; Hui, L.; Xie, J.; and Yang, J. 2021. SSPC-
Net: Semi-supervised Semantic 3D Point Cloud Segmenta-
tion Network. In AAAI, volume 35, 1140–1147.
Clancey, W. J. 1979. Transfer of Rule-Based Expertise
through a Tutorial Dialogue. Ph.D. diss., Dept. of Computer
Science, Stanford Univ., Stanford, Calif.
Clancey, W. J. 1983. Communication, Simulation, and Intel-
ligent Agents: Implications of Personal Intelligent Machines
for Medical Education. In Proceedings of the Eighth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
83), 556–560. Menlo Park, Calif: IJCAI Organization.
Clancey, W. J. 1984. Classification Problem Solving. In
Proceedings of the Fourth National Conference on Artificial
Intelligence, 45–54. Menlo Park, Calif.: AAAI Press.
Clancey, W. J. 2021. The Engineering of Qualitative Models.
Forthcoming.
Dai, A.; Chang, A. X.; Savva, M.; Halber, M.; Funkhouser,
T.; and Nießner, M. 2017. ScanNet: Richly-annotated 3D
Reconstructions of Indoor Scenes. In CVPR, 5828–5839.
Engelmore, R.; and Morgan, A., eds. 1986. Blackboard Sys-
tems. Reading, Mass.: Addison-Wesley.
Gong, J.; Xu, J.; Tan, X.; Song, H.; Qu, Y.; Xie, Y.; and
Ma, L. 2021. Omni-supervised point cloud segmentation vi-
a gradual receptive field component reasoning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 11673–11682.
Graham, B.; Engelcke, M.; and Van Der Maaten, L. 2018.
3d semantic segmentation with submanifold sparse convo-
lutional networks. In CVPR, 9224–9232.
Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J. D.;
Schindler, K.; and Pollefeys, M. 2017. SEMAN-
TIC3D.NET: A new large-scale point cloud classification
benchmark. In ISPRS Annals of the Photogrammetry, Re-
mote Sensing and Spatial Information Sciences, 91–98.

Han, W.; Wen, C.; Wang, C.; Li, X.; and Li, Q. 2020.
Point2Node: Correlation Learning of Dynamic-Node for
Point Cloud Feature Modeling. In CVPR, 10925–10932.
Hasling, D. W.; Clancey, W. J.; and Rennels, G. 1984. S-
trategic explanations for a diagnostic consultation system.
International Journal of Man-Machine Studies, 20(1): 3–19.
Hu, Q.; Yang, B.; Fang, G.; Guo, Y.; Leonardis, A.; Trigo-
ni, N.; and Markham, A. 2022. SQN: Weakly-Supervised
Semantic Segmentation of Large-Scale 3D Point Clouds. In
ECCV.
Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.;
Trigoni, N.; and Markham, A. 2020. RandLA-Net: Efficient
semantic segmentation of large-scale point clouds. In CVPR,
11108–11117.
Hu, R.; Liu, Y.; Gu, K.; Min, X.; and Zhai, G. 2021a. To-
ward a No-Reference Quality Metric for Camera-Captured
Images. IEEE Transactions on Cybernetics.
Hu, R.; Liu, Y.; Wang, Z.; and Li, X. 2021b. Blind quality
assessment of night-time image. Displays, 69: 102045.
Iscen, A.; Tolias, G.; Avrithis, Y.; and Chum, O. 2019. Label
propagation for deep semi-supervised learning. In CVPR,
5070–5079.
Jiang, L.; Shi, S.; Tian, Z.; Lai, X.; Liu, S.; Fu, C.-W.; and
Jia, J. 2021. Guided Point Contrastive Learning for Semi-
supervised Point Cloud Semantic Segmentation. In ICCV,
6423–6432.
Lee, D.-H. 2013. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural network-
s. In ICML,Workshop.
Lei, H.; Akhtar, N.; and Mian, A. 2020a. SegGCN: Efficient
3D Point Cloud Segmentation With Fuzzy Spherical Kernel.
In CVPR, 11611–11620.
Lei, H.; Akhtar, N.; and Mian, A. 2020b. Spherical kernel
for efficient graph convolution on 3d point clouds. IEEE
TPAMI.
Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; and Chen, B. 2018.
Pointcnn: Convolution on x-transformed points. In NeurIPS,
820–830.
Liu, Z.; Qi, X.; and Fu, C.-W. 2021. One Thing One Click: A
Self-Training Approach for Weakly Supervised 3D Seman-
tic Segmentation. In CVPR, 1726–1736.
Ma, Y.; Guo, Y.; Liu, H.; Lei, Y.; and Wen, G. 2020. Global
Context Reasoning for Semantic Segmentation of 3D Point
Clouds. In CVPR, 2931–2940.
Meng, H.-Y.; Gao, L.; Lai, Y.-K.; and Manocha, D. 2019.
Vv-net: Voxel vae net with group convolutions for point
cloud segmentation. In ICCV, 8500–8508.
NASA. 2015. Pluto: The ’Other’ Red Planet. https://www.
nasa.gov/nh/pluto-the-other-red-planet. Accessed: 2018-
12-06.
Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J. 2017a. Pointnet:
Deep learning on point sets for 3d classification and segmen-
tation. In CVPR, 652–660.
Qi, C. R.; Yi, L.; Su, H.; and Guibas, L. J. 2017b. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. In NeurIPS, 5099–5108.

1229



Rice, J. 1986. Poligon: A System for Parallel Problem Solv-
ing. Technical Report KSL-86-19, Dept. of Computer Sci-
ence, Stanford Univ.
Rizve, M. N.; Duarte, K.; Rawat, Y. S.; and Shah, M.
2021. In defense of pseudo-labeling: An uncertainty-aware
pseudo-label selection framework for semi-supervised
learning. In ICLR.
Robinson, A. L. 1980. New Ways to Make Microcircuits
Smaller. Science, 208(4447): 1019–1022.
Tarvainen, A.; and Valpola, H. 2017. Mean teachers are
better role models: Weight-averaged consistency targets im-
prove semi-supervised deep learning results. In NeurIPS,
1195–1204.
Thomas, H.; Qi, C. R.; Deschaud, J.-E.; Marcotegui, B.;
Goulette, F.; and Guibas, L. J. 2019. Kpconv: Flexible and
deformable convolution for point clouds. In ICCV, 6411–
6420.
Wang, G.-H.; and Wu, J. 2020. Repetitive reprediction deep
decipher for semi-supervised learning. In AAAI, 6170–6177.
Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S. E.; Bronstein, M. M.;
and Solomon, J. M. 2019. Dynamic graph cnn for learning
on point clouds. Acm Transactions On Graphics, 38(5): 1–
12.
Wei, J.; Lin, G.; Yap, K.-H.; Hung, T.-Y.; and Xie, L. 2020.
Multi-Path Region Mining For Weakly Supervised 3D Se-
mantic Segmentation on Point Clouds. In CVPR, 4384–
4393.
Wu, W.; Qi, Z.; and Fuxin, L. 2019. Pointconv: Deep convo-
lutional networks on 3d point clouds. In CVPR, 9621–9630.
Xu, X.; and Lee, G. H. 2020. Weakly Supervised Semantic
Point Cloud Segmentation: Towards 10x Fewer Labels. In
CVPR, 13706–13715.
Yan, X.; Gao, J.; Li, J.; Zhang, R.; Li, Z.; Huang, R.; and
Cui, S. 2021. Sparse Single Sweep LiDAR Point Cloud Seg-
mentation via Learning Contextual Shape Priors from Scene
Completion. In AAAI, volume 35, 3101–3109.
Yan, X.; Zheng, C.; Li, Z.; Wang, S.; and Cui, S. 2020.
PointASNL: Robust Point Clouds Processing using Nonlo-
cal Neural Networks with Adaptive Sampling. In CVPR,
5589–5598.
Yarowsky, D. 1995. Unsupervised word sense disambigua-
tion rivaling supervised methods. In 33rd Annual Meeting
of The Association for Computational Linguistics, 189–196.
Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2018. mixup: Beyond empirical risk minimization. In ICLR.
Zhang, Y.; Li, M.; Xie, Y.; Li, C.; Wang, C.; Zhang, Z.;
and Qu, Y. 2022. Self-supervised Exclusive Learning for
3D Segmentation with Cross-Modal Unsupervised Domain
Adaptation. In Proceedings of the 30th ACM International
Conference on Multimedia, 3338–3346.
Zhang, Y.; Li, Z.; Xie, Y.; Qu, Y.; Li, C.; and Mei, T. 2021a.
Weakly Supervised Semantic Segmentation for Large-Scale
Point Cloud. In AAAI, volume 35, 3421–3429.
Zhang, Y.; Qu, Y.; Xie, Y.; Li, Z.; Zheng, S.; and Li,
C. 2021b. Perturbed Self-Distillation: Weakly Supervised

Large-Scale Point Cloud Semantic Segmentation. In ICCV,
15520–15528.
Zhang, Y.; Zhou, Z.; David, P.; Yue, X.; Xi, Z.; Gong, B.; and
Foroosh, H. 2020. Polarnet: An improved grid representa-
tion for online lidar point clouds semantic segmentation. In
CVPR, 9601–9610.
Zhao, L.; and Tao, W. 2020. Jsnet: Joint instance and seman-
tic segmentation of 3d point clouds. In AAAI, volume 34,
12951–12958.

1230


