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Abstract
We study the problem of synthesizing immersive 3D indoor
scenes from one or a few images. Our aim is to generate
high-resolution images and videos from novel viewpoints, in-
cluding viewpoints that extrapolate far beyond the input im-
ages while maintaining 3D consistency. Existing approaches
are highly complex, with many separately trained stages and
components. We propose a simple alternative: an image-to-
image GAN that maps directly from reprojections of incom-
plete point clouds to full high-resolution RGB-D images. On
the Matterport3D and RealEstate10K datasets, our approach
significantly outperforms prior work when evaluated by hu-
mans, as well as on FID scores. Further, we show that our
model is useful for generative data augmentation. A vision-
and-language navigation (VLN) agent trained with trajecto-
ries spatially-perturbed by our model improves success rate
by up to 1.5% over a state of the art baseline on the mature
R2R benchmark. Our code is publicly released to facilitate
generative data augmentation and applications to downstream
robotics and embodied AI tasks.

Introduction
We synthesize immersive 3D indoor scenes from one or
more context images captured along a trajectory. Our aim
is to generate high-resolution images and videos from novel
viewpoints, including viewpoints that extrapolate far beyond
the context image(s).

Solving this problem would make photos and videos inter-
active and immersive, with applications not only to content
creation but also robotics and embodied AI. For example,
models that can predict around corners could be used by nav-
igation agents as world models (Ha and Schmidhuber 2018)
for model-based planning in novel environments (Koh et al.
2021b; Finn and Levine 2017). Such models could also be
used to train agents in interactive environments synthesized
from static images or video.

Previous approaches attempting this under large view-
point changes (Wiles et al. 2020; Koh et al. 2021b; Rock-
well, Fouhey, and Johnson 2021) typically operate on point
∗These authors contributed equally.
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clouds, which are accumulated from the available context
images. The use of point clouds naturally incorporates cam-
era projective geometry into the model and helps maintain
the 3D consistency of the scene (Mallya et al. 2020). To
generate novel views, these approaches reproject the point-
cloud relative to the target camera pose into an RGB-D
guidance image (see Fig. 1). These guidance images are
sparse because of missing context and completing them re-
quires extensive inpainting and outpainting. In prior work,
Pathdreamer (Koh et al. 2021b) achieves this by assuming
the availability of semantic segmentations, and combining a
stochastic depth and semantic segmentation (structure) gen-
erator with an RGB image generator infused with semantic,
depth and guidance information via Multi-SPADE spatially
adaptive normalization layers (Park et al. 2019; Mallya et al.
2020). On the other hand, PixelSynth (Rockwell, Fouhey,
and Johnson 2021) creates guidance images using a differ-
entiable point cloud renderer, generates a support set of ad-
ditional views using PixelCNN++ (Salimans et al. 2017) op-
erating on the latent space of a VQ-VAE (Razavi, van den
Oord, and Vinyals 2019), combines and refines these im-
ages using a GAN (Goodfellow et al. 2014) similar to
SynSin (Wiles et al. 2020), and then repeats this process over
many samples using a combination of discriminator loss and
the entropy of a scene classifier to select the best output.

We propose a simple alternative: an image-to-image GAN
that maps directly from guidance images to high-resolution
photorealistic RGB-D (see Fig. 1). Compared to Path-
dreamer, our simple model forgoes the stochastic structure
generator, spatially adaptive normalization layers, depen-
dence on semantic segmentations, and multi-step training.
By dropping the dependence of semantic segmentation in-
puts, we unlock training on a much broader range of data,
such as more commonly available RGB-D datasets (Xia
et al. 2018; Li and Snavely 2018; Nathan Silberman and
Fergus 2012), and video data such as the RealEstate10K
dataset (Zhou et al. 2018b) from YouTube. We eschew many
components of PixelSynth: differentiable rendering, support
set generation using PixelCNN++and a VQ-VAE, and the
multiple sampling and re-ranking procedure.

Perhaps surprisingly, with random masking of the guid-
ance images during training, plus other architectural changes
supported by thorough ablation studies, our lightweight ap-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

1169



Pt

Figure 1: Our lightweight approach to 3D scene synthesis accumulates context images in an RGB point cloud. To generate a
new viewpoint, we simply apply an image-to-image GAN to the guidance image of the reprojected point cloud. We achieve
surprisingly strong results with this approach, significantly outperforming more complicated models.

proach outperforms prior work. In human evaluations of
image quality, our model is preferred to Pathdreamer in
60% of comparisons and preferred to PixelSynth in 77%.
Our FID scores on 360◦ panoramic images from Matter-
port3D (Chang et al. 2017) improve over Pathdreamer’s by
27.9% relatively (from 27.2 to 19.6) when predicting single
step viewpoint changes (an average of 2.2m), and from 65.8
to 58.0 when predicting over longer trajectories containing
a sequence of 6 novel viewpoints. On RealEstate10K (Zhou
et al. 2018b) – a collection of real estate video walkthroughs
from YouTube – our FID scores outperform PixelSynth, im-
proving from 25.5 to 23.5 (and from 23.6 to 21.5 for indoor
images). Our model is capable of composing compelling 3D
synthetic environments from a single image, which can be
used to produce realistic video renderings.∗

Motivated by the strong results on image generation, we
also show the usefulness of our model for data augmentation
in embodied AI. We focus on the vision-and-language nav-
igation (VLN) task, which requires an agent to follow nat-
ural language navigation instructions in previously unseen
photorealistic environments. Training data for the task con-
sists of instruction-trajectory demonstrations, where each
trajectory is defined by a sequence of high-resolution 360◦
panoramas. Using our model, we spatially perturb the loca-
tion of the training panoramas by synthesizing views up to
1.5m away and augment the training dataset. This reduces
overfitting to the incidental details of these trajectories, and
improves the success in unseen environments by an addi-
tional 1% on its own, or 1.5% when combined with renders
of spatially-perturbed images from the Habitat (Savva et al.
2019) simulator – achieving state-of-the-art performance on
the R2R test set (Tab. 4). Our code is publicly released† to fa-
cilitate generative trajectory augmentation and applications
to downstream tasks.

∗Video results: https://youtu.be/4fVG0vg7yXI.
†https://github.com/google-research/se3ds

Related Work

Novel View Synthesis. Synthesizing novel views from
sets of 2D images has been studied extensively from the
lens of multi-view geometry (Debevec, Taylor, and Malik
1996; Avidan and Shashua 1997; Zitnick et al. 2004), and
more recently with deep learning based approaches (Flynn
et al. 2016; Kar, Häne, and Malik 2017; Henzler et al.
2018; Flynn et al. 2019; Srinivasan et al. 2019; Zhou et al.
2018b; Mildenhall et al. 2019). Various methods using ex-
plicit 3D scene representations have been proposed, includ-
ing point cloud representations (Wiles et al. 2020), lay-
ered depth images (Dhamo et al. 2019), and mesh repre-
sentations (Shih et al. 2020). More recently, Neural Ra-
diance Fields (NeRF) (Mildenhall et al. 2020) models
have achieved impressive results on novel view synthe-
sis. NeRFs optimize an underlying continuous volumetric
scene function, learning an implicit 3D scene representa-
tion from multiple images. Follow up papers have extended
the NeRF formulation to large-scale environments (Tan-
cik et al. 2022), unconstrained photo collections (Martin-
Brualla et al. 2021), learning scene priors (Yu et al. 2021),
using multi-scale representations (Barron et al. 2021), and
reducing the amount of input images required (Jain, Tan-
cik, and Abbeel 2021). However, at present NeRF models
primarily focus on scene representation rather than general-
ization to unseen environments, and are unable to perform
realistic synthesis of previously unseen 3D scenes at high
resolution (which is our focus).

While early work in novel view synthesis focused on
smaller view changes and settings with multiple input im-
ages, recent methods tackle single-image novel view syn-
thesis (Tucker and Snavely 2020; Hu et al. 2021; Shih et al.
2020) and large viewpoint changes (Wiles et al. 2020; Koh
et al. 2021b; Rockwell, Fouhey, and Johnson 2021; Rom-
bach, Esser, and Ommer 2021) and long-term future predic-
tion for indoor scenes (Ren and Wang 2022). The primary
challenge of this task is being able to handle both inpaint-
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ing of missing pixels, as well as outpainting of large regions
of the image from limited context, while maintaining con-
sistency with the existing scene. The closest works to ours
are PixelSynth (Rockwell, Fouhey, and Johnson 2021) and
Pathdreamer (Koh et al. 2021b) (see introduction).

Point Cloud Rendering. A number of previous works ex-
plore rendering novel views from point clouds. The Gibson
simulator (Xia et al. 2018) combined point cloud rendering
with a neural net ‘filler’ to fix artifacts and produce more
realistic images, although the neural net was trained with
perceptual loss (Johnson, Alahi, and Fei-Fei 2016) rather
than GAN based losses. Several papers (Yu et al. 2020; Fu,
Hu, and Guo 2020) propose methods to inpaint object point
clouds with new points in order to fill holes, which would
allow more realistic images can be synthesized. Song et al.
(2020) proposes a model which takes a colored 3D point
cloud of a scene as input, and synthesizes a photo-realistic
image from a novel viewpoint. Whereas, Cortinhal, Kurnaz,
and Aksoy (2021) relies only on the semantics of a scene
to synthesize a panoramic color image from a given full 3D
LiDAR point cloud. These methods often consider smaller
point clouds, which limits their efficiency and viability for
high resolution imagery. For example, (Song et al. 2020)
trains on point clouds of size 4096 × 6, while the accumu-
lated point cloud for our method uses RGB-D images of size
1024× 512 (at least 64× larger).

Generative Data Augmentation. Generative models are
good alternatives to standard data augmentation approaches.
They can synthesize artificial samples that match the dis-
tribution and characteristics of an underlying dataset, aug-
menting the training set with additional novel examples (An-
toniou, Storkey, and Edwards 2018; Sandfort et al. 2019).
We examine whether novel view synthesis can be used to
create new training trajectories for a navigation agent, by
spatially-perturbing camera viewpoints post hoc.

In imitation learning, expert demonstrations must be aug-
mented to minimize the differences between the state dis-
tribution seen in training, and those induced by the agent
during inference, which otherwise causes compounding er-
rors (Ross and Bagnell 2010). In practice this usually means
augmenting the dataset with examples of recoveries from er-
ror, which may be rare in expert demonstrations. For exam-
ple, robots and self-driving vehicles (Codevilla et al. 2018;
Bojarski et al. 2016) can be instrumented to record from
three cameras simultaneously (one facing forward and two
shifted to the left and right). This allows recordings from the
shifted cameras, as well as intermediate synthetically repro-
jected views, to be added to the training set with adjusted
control signals to simulate recovery from drift (Codevilla
et al. 2018; Bojarski et al. 2016). In effect, we propose a
flexible, hardware-free alternative to the multi-camera setup.
We investigate this in the context of indoor vision-and-
language navigation (VLN) on the R2R dataset (Anderson
et al. 2018b). To the best of our knowledge, we are the first
to show benefits from data augmentation using novel view
synthesis models in a photorealistic setting.

Approach
We aim to synthesize high-resolution images and videos
from novel viewpoints in buildings, conditioning on one
or more RGB and depth (RGB-D) observations as con-
text. Specifically, given context consisting of a sequence
of RGB-D image observations and their associated cam-
era poses (I1:t−1, P1:t−1), our goal is to generate realis-
tic RGB-D images for one or more target camera poses
[Pt, Pt+1, · · · , PT ]. Target poses may require extrapolating
far beyond the context images (e.g., predicting around cor-
ners), requiring the model to generate and in-fill potentially
large regions of missing information – even entire rooms.

Depth Estimation and Guidance Images. Our model re-
quires depth values and camera poses for the context im-
ages (I1:t−1, P1:t−1) to create an accumulated point-cloud.
Given a new pose Pt, we reproject our accumulated point
cloud, similar to (Mallya et al. 2020; Liu et al. 2021;
Koh et al. 2021b) into an image from that viewpoint. We
call that image a guidance image because it will be used
to guide the inpainting and outpainting process later. In
our experiments, we report results using both ground-truth
and estimated depth values and camera poses, depend-
ing on the dataset. When predicting over multiple steps
[Pt, Pt+1, · · · , PT ], predictions are accumulated in the point
cloud to maintain 3D consistency. We do not make as-
sumptions about the input image format, which enables our
model to run on equirectangular panoramas from Matter-
port3D (Chang et al. 2017) as well as perspective images
from RealEstate10K (Zhou et al. 2018b). To accommodate
both formats, we simply use the appropriate camera models
(while keeping model architecture the same).

Model Architecture. We propose a simple, single-stage,
end-to-end trainable model to convert a guidance image di-
rectly into a high-resolution photorealistic RGB-D output.
Fig. 1 provides an overview of this process. Our model
uses an encoder-decoder CNN architecture inspired by Red-
Net (Jiang et al. 2018). We use ResNet-101 (He et al. 2016)
as the encoder, and a ‘mirror image’ of the ResNet-101 as
the decoder, replacing convolutions with transposed convo-
lutions for upsampling. A single encoder is used for both
the RGB and depth inputs in the guidance, but separate de-
coders are used for predicting RGB and depth outputs. Fol-
lowing RedNet, skip connections are introduced between the
encoder and decoders to preserve spatial information.

Inpainting or outpainting large image regions that lack in-
put guidance is a major challenge, e.g. predicting around
corners or under large viewpoint changes. To overcome this,
we replace all convolutions in the encoder with partial con-
volutions (Liu et al. 2018). Partial convolutions only con-
volve valid regions in the input with the convolution kernels,
so the output features are minimally affected by missing pix-
els in the guidance images. Further, we increase the effec-
tive receptive field size by adding four additional convolu-
tional layers to the output of the encoder helping propagate
non-local information. We found this to be essential, without
which the model does not learn anything meaningful.

We also experimented with the SVG (Denton and Fer-
gus 2018) structure generator proposed in Pathdreamer (Koh
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et al. 2021b). This module learns a prior distribution to
model stochasticity in the predictions. During training, the
prior distribution is learnt by minimizing KL-divergence
from the posterior distribution derived from ground truth
data. At inference time, different outputs are generated by
sampling from the prior distribution. We found that genera-
tion quality was worse when this module was included (as
measured by FID and visual inspection), despite improve-
ment in image diversity (more details in the Ablation Stud-
ies section). Hence, we omit the SVG module in our final
model for the sake of simplicity and performance. However,
we stress that this module can be easily incorporated to en-
able a trade-off between generation quality and diversity.

Loss Functions. The encoder-decoder model G is opti-
mized to minimize a joint loss consisting of an L1 loss be-
tween the predicted depth d̂t and the ground-truth depth dt,
and an adversarial loss on depth and RGB images. The dis-
criminatorD used for adversarial training is based on Patch-
GAN (Isola et al. 2017), and applied to the 4-channel RGB-
D image (either generated [Ît, d̂t] or ground-truth [It, dt]).
Note that while the use of separate decoders could allow for
greater divergence between the RGB and depth predictions,
this is mitigated by the discriminator which helps to enforce
consistency between RGB and depth, which is essential for
multi-step predictions. The training losses for the generator
and discriminator are:

LG =− λGAN Ext

[
D
(
G(I1:t−1, T1:t)

)]
+ λD

∥∥∥d̂t − dt∥∥∥
1

LD =− Ext

[
min

(
0,−1 +D(It)

)]
− Ext

[
min

(
0,−1−D(G(I1:t−1, T1:t))

)]
(1)

Notably, we avoid the VGG perceptual loss commonly
used in prior work on conditional image synthesis (Park
et al. 2019; Koh et al. 2021b; Mallya et al. 2020) as we find
that it is unnecessary for strong performance. We justify this
through careful ablation experiments.

In all experiments we train the model end-to-end from
scratch, and we randomly mask up to 75% of the input guid-
ance image for data augmentation. Masking has been shown
to be an effective method of pre-training visual represen-
tations (He et al. 2022; Dosovitskiy et al. 2020). We simi-
larly find that this masking strategy significantly improves
the generation quality of our model in unseen environments.

View Synthesis Experiments
We conduct experiments on two datasets of diverse in-
door environments: Matterport3D (Chang et al. 2017),
which contains 3D meshes of 90 buildings reconstructed
from 11K high-resolution RGB-D panoramas (panos), and
RealEstate10K (Zhou et al. 2018b), a collection of up to
10,000 YouTube video walkthroughs of real estate proper-
ties. Few prior works attempt view synthesis from a single
image under large viewpoint changes. We compare to Pixel-
Synth (Rockwell, Fouhey, and Johnson 2021), which builds
on and outperforms SynSin (Wiles et al. 2020), and Path-
dreamer (Koh et al. 2021b). We report automated Fréchet

Val-Seen Val-Unseen

Model C Seg 1 Step 6 Steps 1 Step 6 Steps

Pathdreamer 1 X 26.2 41.7 34.8 70.4
Pathdreamer† 1 X 20.4 36.0 27.2 65.8
Ours 1 - 19.4 55.4 19.6 58.0

Pathdreamer 2 X 25.8 38.4 38.2 61.0
Pathdreamer† 2 X 19.8 32.6 31.4 55.8
Ours 2 - 19.3 45.3 22.4 49.5

Pathdreamer 3 X 25.6 36.7 38.5 52.9
Pathdreamer† 3 X 19.6 30.2 32.0 47.1
Ours 3 - 19.0 39.0 22.3 39.9

Table 1: FID scores (↓) for generated RGB sequences on
R2R paths, using 1–3 context images (C). On Val-Unseen,
our model outperforms Pathdreamer in all settings. † in-
dicates restated results excluding blurred regions (directly
comparable to ours). All models use RGB and depth.

Inception Distance (FID) (Heusel et al. 2017) scores (lower
is better) and pairwise human evaluations of image quality.

Matterport3D Experiments
Both PixelSynth and Pathdreamer report results on Matter-
port3D. However, as the two papers are concurrent work,
the evaluation procedures are not comparable. PixelSynth is
trained and evaluated on 256×256 perspective renders from
the reconstructed 3D meshes. These renders are not photore-
alistic and often contain large regions of missing/black pix-
els due to poor reconstruction. Pathdreamer is trained and
evaluated on the high-res 1024 × 512 360◦ panoramic im-
ages, and evaluated over multiple steps of prediction. There-
fore, on the Matterport3D dataset we follow the more chal-
lenging Pathdreamer evaluation procedure.

Training and Evaluation. Following Pathdreamer, we
train our model using 1024 × 512 equirectangular RGB-
D images and ground-truth pose information. Unlike Path-
dreamer, our model does not require ground-truth seman-
tic segmentations as input, and we train for only single-step
prediction, i.e., predicting the pano at an adjacent viewpoint
using one context pano as input. Evaluations are based on

Val-Seen and Val-Unseen splits of the Room-to-Room
(R2R) dataset (Anderson et al. 2018b), which are comprised
of sequences of adjacent panoramas (∼2.2m apart). Given
the first RGB-D pano in the path and its (x, y, z) pose as
context, the model must generate panos for the remainder of
the path given only their poses (up to a maximum of 6 steps).

FID Scores. In Tab. 1 we report FID scores for the gen-
erated RGB images over 1–6 prediction steps (represent-
ing trajectory rollouts of 2–13m), using 1–3 panos as con-
text. We evaluate in two settings – novel viewpoints in en-
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Figure 2: Qualitative example of a prediction sequence in an unseen Matterport3D building. One RGB-D pano is provided
as context, and a sequence of panos at novel viewpoints (up to 7.5m away) are generated. Our predictions are clearer than
Pathdreamer (Koh et al. 2021b) – in last row, our model produces more realistic images of the wooden cabinet at 1.4m, the
ceiling rafters at 5.7m, and the passageway 7.5m away.

vironments seen during training (Val-Seen) and previously
unseen (Val-Unseen) environments. Since the top and bot-
tom 12.5% of each Matterport3D pano is blurred, we crop
these areas before calculating FID and re-state the previ-
ously reported results from Pathdreamer for fair compari-
son. On Val-Unseen, based on FID score, our model out-
performs Pathdreamer in all settings. When using a single
context image for 1-step prediction, we improve FID scores
from 27.6 to 19.6. Similarly, when using 3 panos as con-
text, FID scores improve from 32.0 to 22.3. We notice sim-
ilar gains for multi-step (1-6 steps) prediction. On Val-seen,
we improve FID scores slightly over Pathdreamer but per-
form worse on multi-step prediction in Val-Seen environ-
ments. We attribute this to Pathdreamer’s recurrent training
regime for their Structure Generator, under which the model
is trained over multiple prediction steps while accumulat-
ing its own outputs as additional context. In initial experi-
ments we found that this improved results in the training en-
vironments, but did not generalize to unseen environments,
perhaps because the accumulated context from the model
predictions doesn’t reconcile with the target image used in
the L1 depth reconstruction loss. In unseen environments
(which is our focus), our model performs better on FID score
at every step. As shown in Fig. 2, despite using a far simpler
model than Pathdreamer that does not require ground-truth
semantic segmentation inputs, our model produces a clearer

image of the wooden cabinet at 1.4m, the wooden ceiling
rafters at 5.7m, and the passageway at 7.5m away.

Human evaluations. We perform human evaluations of
1,000 image pairs from our model and Pathdreamer. Each
pair is evaluated by 5 different human evaluators, similar to
Koh et al. (2021a). Since human evaluators may be unfa-
miliar with the distortion characteristics of 360◦ equirectan-
gular images, for each pair evaluators are shown a random
perspective projection from the generated images with 102◦
horizontal field-of-view and 16:9 aspect ratio. Images gen-
erated by our model are preferred over Pathdreamer images
in 60.4% of cases (see Fig. 3). For images with unanimous
preference (preferred by 5/5 raters), our model is greatly pre-
ferred: 30.7% compared to 12.3% for Pathdreamer.

Ablation Studies
To validate the design choices detailed earlier, we perform
an extensive ablation study summarized in Tab. 2.

Loss functions. We find that the adversarial loss and L1

depth reconstruction loss are both essential to strong per-
formance: dropping the L1 loss (row 2) reduces genera-
tion quality for 1 step ahead (FID@1 increases from 19.6
to 22.7), as well as over longer horizons (FID@{1-6} in-
creases from 58.0 to 64.8). When we include the VGG per-
ceptual loss (Johnson, Alahi, and Fei-Fei 2016) (row 3), we
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Row Ablation 1 Step 1–6 Steps

1 Ours 19.6 58.0
2 − L1 depth loss 22.7 64.8
3 + VGG perceptual loss 18.2 66.5
4 + KLD for noise conditioning 22.6 65.2
5 + Shared decoder 24.1 56.9
6 − Random masking and conv layers 24.2 68.0
7 + Ground-truth depth in GAN loss 24.3 66.1

Table 2: Ablations on Matterport3D (FID on Val-Unseen),
using 1 context image.

0%

25%

50%

75%

100%

OursPathdreamer

0/5

1/5

2/5

3/5

4/5

5/5

Majority 
Vote

Number of 
Votes

Matterport3D

38.7%

61.3%

Figure 3: Human evaluations (↑) on MP3D comparing our
model to Pathdreamer.

RE10K FID ↓
Method All Indoors

SynSin (Wiles et al. 2020) 34.7 -
PixelSynth (Rockwell, Fouhey, and Johnson 2021) 25.5 23.6
Ours 23.5 21.5

Table 3: FID scores (↓) over the RE10K val set and a subset con-
taining only indoor images.

find that FID@1 is improved (19.6 to 18.2), but FID@{1-6}
deteoriates (58.0 to 66.5). This is likely because visual qual-
ity is improved at the cost of RGB and depth consistency,
which is essential for rollouts over multiple prediction steps.
When KLD loss for stochastic noise conditioning (Denton
and Fergus 2018; Koh et al. 2021b) is included (row 4), gen-
eration quality worsens slightly for both 1 step and 1-6 steps
ahead (FID@1 from 19.6 to 22.6, and FID@{1-6} from 58.0
to 65.2). While modeling stochasticity can be beneficial, we
leave this out to maximize generation quality. Notably, even
with the inclusion of the KLD loss and noise conditioning
our results still outperform Pathdreamer, particularly in 1
step predictions (FID@1 of 22.6 vs. 27.2).

Separate decoders. As described previously, we use a
shared encoder with two separate decoders for RGB and
depth. Using a single shared decoder (row 5) degrades gen-
eration quality for 1 step (FID@1 deteriorates from 19.6 to
24.1), although longer rollouts see slight improvement, im-

0%

25%

50%

75%

100%

OursPixelSynth

0/5

1/5

2/5

3/5

4/5

5/5

Majority 
Vote

Number of 
Votes

RealEstate10K (Indoors)

17.4%

82.6%

Figure 4: Human evaluations (↑) comparing our model against
PixelSynth on RE10K.

proving FID@{1-6} from 58.0 to 56.9. This is likely due
to marginally improved consistency between the RGB and
depth outputs, which is essential for multistep prediction.

Random masking and conv layers. We insert 4 addi-
tional 3×3 convolutional layers between the encoder and the
decoders to increase the model’s receptive field and better
propagate global image information. This is combined with
random masking of upto 75% guidance pixels during train-
ing. These changes significantly improve generation qual-
ity both in one-step predictions (FID@1 improves from 24.2
in row 6 to 19.6) and over multiple steps (FID@{1-6} im-
proves from 68.0 to 58.0).

Ground-truth depth for GAN loss. During training, the
adversarial GAN (Goodfellow et al. 2014) hinge loss (Lim
and Ye 2017) is computed on the generated RGB-D image.
We experimented with replacing the generated depth chan-
nel with the ground-truth depth channel, to explore whether
this would help enforce RGB and depth consistency. Our
findings suggest that it does not, with FID@1 degrading
from 19.6 to 24.3 and FID@{1-6} from 58.0 to 66.1.

RealEstate10K Experiments

Training. The RealEstate10K (Zhou et al. 2018b) dataset
consists of a collection of real estate walkthrough videos.
In its raw form, the dataset lacks depth images and cam-
era poses, which are required to create point clouds and
re-project guidance images. The PixelSynth (Rockwell,
Fouhey, and Johnson 2021) and SynSin (Wiles et al. 2020)
models, which we compare to, include a depth estimation
module which is trained on the RE10K dataset using re-
projection losses. We use MiDaS (Ranftl, Bochkovskiy, and
Koltun 2021), a pretrained transformer-based monocular
depth estimation model, and we do not finetune on RE10K.
See Appendix for more details. As with the Matterport3D
experiments, we train our model for single-step prediction,
using a perspective camera projection for the guidance im-
ages rather than the equirectangular camera model used in
the Matterport3D experiments. Following PixelSynth, we
select image pairs for training with a camera rotation of
20◦ − 60◦ that are estimated to be ≤ 1m apart, and train
and evaluate with an image resolution of 256× 256.
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Depth Context 
Image

Guidance 
image PixelSynth Ground TruthOurs 

Figure 5: Comparison of predictions on the RealEstate10K (Zhou et al. 2018b) dataset. In these selected examples, our model
completes the scene by imagining adjacent rooms (Row 1, Row 2), while keeping wall and carpet colors consistent (Row 1) .

Evaluation. Given an RGB context image and a target
camera pose, the model must generate an RGB image for
the target pose. We evaluate using the same 3,600 context-
target image pairs and camera poses as PixelSynth. Since
the scaling of the camera poses is arbitrary, during evalu-
ation we scale the MiDaS depth predictions to match the
PixelSynth depth predictions as closely as possible, so that
the depth predictions and camera poses have consistent scal-
ing. Qualitatively, the guidance images used by each model
are extremely similar. We verify that none of the videos con-
tributing evaluation images are in our training set.

FID Scores. As reported in Tab. 3, our model outperforms
existing methods, achieving an FID score of 23.5 compared
to 25.5 and 34.7 achieved by PixelSynth (Rockwell, Fouhey,
and Johnson 2021) and SynSin (Wiles et al. 2020) respec-
tively. Notably, PixelSynth results were achieved by gener-
ating 50 sample target images for each input example, and
ranking them according to a combination of discriminator
loss and the entropy of a scene classifier trained on MIT
Places 365 (Zhou et al. 2018a) to select the best. Our re-
sults represent a single prediction from our model. Since we
excluded outdoor scenes from our training data, we also re-
port results on a subset of only indoor images (3,122 of the
3,600 images, based on manual inspection). On this subset,
we achieve an FID score of 21.5 vs. 23.6 from PixelSynth.

Human Evaluations. Similar to Matterport3D, we per-
form human evaluations on RE10K. As shown in Fig. 4,
human annotators significantly prefer images generated by
our model over PixelSynth, rating them as more realistic in
77.3% of cases. In addition, for images which achieve unan-
imous preference (selected by 5/5 raters), our model is mas-
sively preferred, spanning 40.5% of images compared to just
3.5% for PixelSynth. Qualitative comparisons in Fig. 5 show
that our model completes some of the scenes by imagining
adjacent rooms (Row 1, Row 2), while keeping wall and car-

pet colors consistent (Row 1), and introducing new elements
like lamps and a wall painting (Row 3).

Trajectory Augmentation in VLN
Motivated by our strong generation results, we investigate
the usefulness of our model for synthetic trajectory aug-
mentation, i.e., augmenting the training data for a vision-
based navigation robot by spatially perturbing training tra-
jectories post hoc. We focus on vision-and-language navi-
gation (VLN) using the Room-to-Room (R2R) dataset (An-
derson et al. 2018b). This task requires an agent to follow
natural language navigation instructions in unseen photore-
alistic indoor environments, by navigating between locations
where high-res 360◦ Matterport3D panos have been cap-
tured. Training data consists of 14K instruction-trajectory
pairs, where each trajectory is defined by a sequence of
panos that are adjacent in a navigation graph. Constrained by
the location of captured images, VLN agents tend to overfit
to the incidental details of these trajectories (Zhang, Tan, and
Bansal 2020), which contributes to the large performance
drop in unseen environments (refer Tab. 5). We hypothesize
that spatially perturbing the location of the captured images
could reduce overfitting and improve generalization.

VLN Agent and Metrics
We base our experiments on the VLN�BERT agent (Hong
et al. 2021), an image-text cross-modal transformer with a
recurrent state that is updated over time as the agent moves.
The agent is trained using a mixture of imitation learning
and A2C (Mnih et al. 2016). To make the baseline as strong
as possible, we first upgrade the image representation used
by the model from ResNet-152 (He et al. 2016) trained
on Places365 (Zhou et al. 2018a) to MURAL-large (Jain
et al. 2021), an EfficientNet-B7 architecture (Tan and Le
2019) trained on 1.8B web image-text pairs. As illustrated
in Tab. 4, this improves the agent’s Success Rate (SR ↑) on

1175



MP3D Camera Capture

Our Model

SimCLR Augmentation

Habitat Simulator

Original Trajectory Perturbed TrajectoryLegend

Figure 6: Comparing SimCLR image augmentations to tra-
jectory augmentation using our model and/or the Habitat
simulator.

the R2R Val-Unseen split from 62.2% to 67.3%, which beats
even the recent state-of-the-art HAMT model (Chen et al.
2021). SR is defined as the proportion of trajectories ending
within 3m of the end of the target location. We also report
Navigation Error (NE ↓), the average distance in meters be-
tween the agent’s final position and the target, and Success
rate weighted by the normalized inverse of the Path Length
(SPL ↑) (Anderson et al. 2018a).

Trajectory Augmentation
To implement synthetic trajectory augmentation, we con-
tinually re-sample pano locations while training the VLN
agent. We perturb the agent’s position with a transla-
tion sampled uniformly at random from (−1.5m, 1.5m)
for directions parallel to the ground plane and from
(−0.1m, 0.1m) for height. To avoid perturbing the pano lo-
cation through a wall or inside an object, we reject any per-
turbation that exceeds the depth returned in that direction.
The pano is generated at 1024×512 resolution by our model
trained on Matterport3D, using the nearest two ground-truth
RGB-D panos as context. We compare to two alternatives:
(1) data augmentation using carefully tuned SimCLR (Chen
et al. 2020) operations like random cropping, color distor-
tion and Gaussian blur operations, and (2) rendering the
spatially-perturbed pano from the textured mesh using the
Habitat (Savva et al. 2019) simulator.

Results
As shown in Tab. 4, trajectory augmentation using our model
improves the agent’s SR and SPL on Val-Unseen by 1%
(Row 5 vs Row 2), reducing the gap between Val-Seen and
Val-Unseen from 8% to 4%. In contrast, Pathdreamer aug-
mentations (Row 3), SimCLR image-based data augmenta-
tion (Row 4), or textured mesh based renders using Habi-
tat (Row 5) produce no improvements over the upgraded
model (Row 2). Trajectory augmentation using a combina-
tion of Habitat and our model (Row 7) produced the largest
improvement in SR (+1.5%), virtually closing the gap be-
tween Val-Seen and Val-Unseen performance, and on the un-
seen test set this model outperforms all published prior work
(Tab. 5). The R2R dataset (Anderson et al. 2018b) is a ma-
ture benchmark at this time, and such gains do not come eas-

# Model
Val-Seen Val-Unseen

NE ↓ SR ↑ SPL ↑ NE ↓ SR ↑ SPL ↑

1. VLN�BERT 3.0 71 66 4.0 62 57
2. + MURAL 2.8 74 69 3.6 67 61
3. + Pathdreamer - - - 3.4 68 61
4. + SimCLR 3.3 69 64 3.6 67 60
5. + Habitat 3.5 65 60 3.5 67 61
6. + Ours 3.1 71 66 3.4 68 62
7. + Habitat 3.3 68 63 3.3 69 62

Table 4: VLN performance on R2R (Anderson et al. 2018b)
Val-Unseen . Synthetic trajectories from our model can im-
prove an already improved model by up to 1.5% on Val-
Unseen (Row 6, 7), while image-based data augmentations
(Row 4), simulator renders (Row 5) or Pathdreamer augmen-
tations (Koh et al. 2021b) (Row 3) alone are ineffective.

Model
Val-Unseen Test-Unseen

NE ↓ SR ↑ SPL ↑ NE ↓ SR ↑ SPL ↑

Fast-Short 5.0 56 43 5.1 54 41
EnvDrop 5.2 52 48 5.2 51 47
PREVALENT 4.7 58 53 5.3 54 51
RelGraph 4.7 57 53 4.8 55 52
VLN�BERT 3.9 63 57 4.1 63 57
HAMT 2.3 66 61 3.9 65 60
Ours 3.3 69 62 3.7 66 60

Table 5: VLN results on R2R (Anderson et al. 2018b)
comparing against best performing prior work. Ours uses
VLN�BERT+ Habitat.

ily. Unlike Pathdreamer (Koh et al. 2021b), which requires
integration at inference time, our visual augmentation pro-
cedure is completely training based, and this can be applied
to train virtually any off-the-shelf VLN agent.

Conclusion
Synthesizing immersive 3D environments from limited im-
ages is a challenging task brought into focus by several
recent works. These approaches are highly complex, with
many separately trained stages and components. We pro-
pose a simple alternative: an image-to-image GAN trained
with random input masking combined with other architec-
ture changes. Perhaps surprisingly, our approach outper-
forms prior work in human evaluations and on FID, and its
useful for generative data augmentation as well. We achieve
state-of-the-art results on the R2R dataset by spatially per-
turbing the training images with our model, improving gen-
eralization to unseen environments.
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