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Abstract

Weakly-supervised semantic segmentation aims to train a
semantic segmentation network using weak labels. Among
weak labels, image-level label has been the most popular
choice due to its simplicity. However, since image-level la-
bels lack accurate object region information, additional mod-
ules such as saliency detector have been exploited in weakly
supervised semantic segmentation, which requires pixel-level
label for training. In this paper, we explore a self-supervised
vision transformer to mitigate the heavy efforts on gener-
ation of pixel-level annotations. By exploiting the features
obtained from self-supervised vision transformer, our super-
pixel discovery method finds out the semantic-aware super-
pixels based on the feature similarity in an unsupervised man-
ner. Once we obtain the superpixels, we train the seman-
tic segmentation network using superpixel-guided seeded re-
gion growing method. Despite its simplicity, our approach
achieves the competitive result with the state-of-the-arts on
PASCAL VOC 2012 and MS-COCO 2014 semantic segmen-
tation datasets for weakly supervised semantic segmentation.
Our code is available at https://github.com/st17kim/semantic-
aware-superpixel.

1 Introduction
Image semantic segmentation, a task to assign a seman-
tic label to every pixel, has received much attention due
to its wide range of applications such as autonomous driv-
ing, medical diagnosis, and aerial imaging (Cordts et al.
2016; Ronneberger, Fischer, and Brox 2015). Recently, deep
learning (DL)-based semantic segmentation has received
special attention due to its excellent segmentation perfor-
mance (Long, Shelhamer, and Darrell 2015). One well-
known shortcoming of this approach is that it requires large-
scale training dataset with dense annotation for the network
training. Since the generation of fully-annotated dataset is
laborious, weakly supervised learning has received much
attention as a surrogate of the fully supervised learning
(Kolesnikov and Lampert 2016; Huang et al. 2018). Among
the various types of weak supervisions, image-level labels,
indicating the existing classes of an image, are popularly
used due to the simplicity (Huang et al. 2018). We hence-
forth refer to the semantic segmentation using the image-
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Figure 1: Superpixels obtained by SLIC (Felzenszwalb and
Huttenlocher 2004) and our method. The colors are only
used to indicate the different superpixels.

level labels as weakly-supervised semantic segmentation
(WSSS).

One major difficulty of WSSS is to discover object loca-
tions and shapes from image-level labels. A typical WSSS
approach is to locate the object regions using the class acti-
vation mapping (Zhou et al. 2016) and use these region in the
training of semantic segmentation network (Kolesnikov and
Lampert 2016; Li et al. 2018). However, since the pseudo-
labels generated from this approach are sparse and inaccu-
rate, there exists a considerable performance gap between
fully-supervised and weakly-supervised semantic segmen-
tation. To obtain the object region information, many recent
WSSS approaches exploit the extra supervisions (Yao and
Gong 2020; Li et al. 2021). One well-known approach is to
employ the saliency detectors to obtain the saliency map in-
dicating the class-agnostic object regions. While the saliency
maps are commonly used in many WSSS approaches, the
saliency detectors still requires huge effort for the detailed
pixel-level annotation.

Recently, DINO (Caron et al. 2021), a self-supervised
vision transformer trained by distillation mechanism with-
out labels, has achieved the comparable performance to the
state-of-the-art convolutional neural network models. In par-
ticular, the feature obtained by DINO appears to contain ex-
plicit information about the semantic segmentation of ob-
jects in an image. It has been shown that this DINO-based
features can be exploited in many computer vision tasks
such as unsupervised object detection (Siméoni et al. 2021)
or unsupervised saliency detection (Wang et al. 2022).

An aim of this paper is to relieve the thirst for pixel-level

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

1142



information for WSSS. To this end, we propose a semantic-
aware superpixel discovery method using the features ob-
tained from DINO. The main ingredient of our approach is
pair-wise relations of pixel indicating semantic similarities
of the pair of pixels. Based on the similarities, we identify
a seed pixel of an image and find the pixels having similar
features to the seed pixel. Then, a group of pixels, referred
to superpixel, sharing semantic similarities are identified it-
eratively in an unsupervised manner.

From our observations, our superpixels have two proper-
ties: 1) the superpixel contains long-range information even
if the consisting pixels are unconnected, meaning that the se-
mantically similar but apart pixels can be grouped together,
2) the number of superpixels depends on the complexity of
an input image (e.g., the number or kind of objects), mean-
ing that the number of superpixels is not pre-defined. In
Fig. 1, we show some examples for our superpixels.

After obtaining the semantic-aware superpixels, we train
the semantic segmentation network using the superpixel-
guided seeded region growing method. Although the quality
of initial seed (in terms of mIOU) might be poor, by expand-
ing the seeded regions to the neighboring superpixels, the
quality can be improved substantially. Unlike the conven-
tional seeded regions growing method that gradually expand
the seeded region to adjacent pixels (Huang et al. 2018), our
approach expands the seeded region to superpixels if the su-
perpixels are likely to be one of classes. Benefited from the
object shape expressed in the superpixel, our method can
generate of high-quality seed depicting the detailed object
boundaries.

The contributions of this paper are as follows:
• We propose a threshold-based superpixel algorithm using

the self-supervised vision transformer in an unsupervised
manner. Our method produces superpixels containing se-
mantically similar pixels which are friendly to semantic
segmentation tasks.

• We train the semantic segmentation network using the
initial seed while refining the seed using the superpixel-
guided seeded region growing method. The refined seed
becomes dense during the training process and signifi-
cantly boosts the segmentation performance.

• Our approach outperforms the state-of-the-art methods
on PASCAL VOC 2012 and MS-COCO 2014 semantic
segmentation datasets.

2 Related Work
Weakly Supervised Semantic Segmentation Basically, the
goal of weakly supervised semantic segmentation is to train
a semantic segmentation network using coarse labels such
as points, scribbles, or image-level labels. Due to sim-
plicity, WSSS using image-level labels is widely studied
(Kolesnikov and Lampert 2016). A typical approach is to
train a classification network and obtain an initial seed us-
ing the class activation mapping technique. Since the ini-
tial seed obtained by this approach is sparse and inaccu-
rate, there have been many efforts to improve the qualities of
seed. For examples, in (Wang et al. 2020), self-supervision
based on the equivariant attention mechanism is exploited to

discover object regions. In (Lee, Kim, and Yoon 2021), adv-
CAM method is proposed to find non-discriminative object
regions in an anti-adversarial manner. In (Lee et al. 2021),
an approach that encourages the network to perceive non-
discriminative object regions by reducing information bot-
tleneck is proposed.

Superpixel A superpixel is a set of homogeneous pix-
els based on features such as bright, color, or texture. To
perform the superpixel segmentation, a graph-based method
(Felzenszwalb and Huttenlocher 2004) or a clustering-based
method (Li and Chen 2015) has been popularly used. The
superpixels obtained from these methods are used in many
WSSS approaches to recover smooth object boundaries
(Zhang et al. 2013; Kwak, Hong, and Han 2017; Fan et al.
2020; Zhang et al. 2021). However, since the superpixels
used in these approaches are quite over-segmented, it is diffi-
cult to obtain long-range information from these superpixels
and discover the meaningful information for WSSS.

Seeded Region Growing The seeded region growing
method (Adams and Bischof 1994) is an unsupervised seg-
mentation technique that examines neighboring pixels of ini-
tial seed points and determines whether the neighboring pix-
els should be added to the region depending on a region sim-
ilarity criterion. For the successful image segmentation, it is
important to locate the initial seed to proper pixels and use a
criterion that can characterize the image regions. In (Huang
et al. 2018), an approach to exploit the initial seed generated
by a classification network in training of semantic segmenta-
tion network and computes pixel similarity using high-level
semantic features has been proposed.

Transformer The transformer and self-attention mod-
els have revolutionized machine translation and NLP fields
(Vaswani et al. 2017; Devlin et al. 2018). Recently, its adop-
tion to computer vision, the vision transformer (ViT) (Doso-
vitskiy et al. 2020), has shown great performance gain over
the convolutional neural network (CNN) models. Unfortu-
nately, to achieve such performance, the datasets contain-
ing enormous number of training images are required (e.g.,
JFT-300M dataset). As a means to alleviate this burden, self-
supervision-based training technique is proposed (Touvron
et al. 2021). In particular, in (Caron et al. 2021), it is demon-
strated that self-supervised ViTs can automatically segment
the background pixels of an image, even though they are not
trained using pixel-level supervision.

3 The Proposed Approach
In this section, we discuss the proposed WSSS framework.
We first introduce how to discover semantic-aware superpix-
els from the self-supervised vision transformer-based fea-
tures. We then discuss how to generate the initial seed for
training of the semantic segmentation network. We also ex-
plain how to train the semantic segmentation network using
the superpixel-guided seeded region growing method.

3.1 Superpixel Generation
For the successful semantic segmentation, the superpixels
should meet two following conditions: 1) Each superpixel
is a sufficiently large set of homogeneous pixels so that all
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pixels have the same semantic class. 2) The number of su-
perpixels depends on the number of the sets of semantically
similar pixels, not a pre-defined number. To obtain superpix-
els satisfying these conditions, we identify a pixel used as a
seed of a superpixel and then find out the pixels sharing sim-
ilar semantic features to the seed pixel. In our approach, we
use the vision transformer-based feature to group the pixels
into superpixels.

Before we proceed, we briefly review the vision trans-
former and its components. Vision transformers take a se-
quence of patches of fixed size P × P as input. For a color
image I of spatial size H × W , we have N = HW/P 2

patches. Each patch is first embedded in a d-dimensional la-
tent space via a trained convolutional projection layer and
delivered to the series of transformer blocks. The main part
of vision transformer consists of multiple blocks including
multi-head self-attention layers and multi-layer perceptrons.
In the front part of each block, there are three parallel linear
layers taking an input X ∈ R(N+1)×d to produce a query Q,
a key K, and a value V , all in R(N+1)×d. The resulting out-
put for each head is given by Y = softmax(QKT /d1/2)V ,
where softmax is applied row-wise. In our work, we con-
catenate the keys from all heads in the self-attention layer
of the last transformer block to obtain final features that are
the main ingredient in discovering the superpixels (Siméoni
et al. 2021).

Let fp ∈ Rd×1 be the feature vector corresponding to
pixel p of input image I and P = {1, 2, · · · , N} be the
set of indices of candidate pixels. We compute the pair-wise
feature similarity matrix A and the binary adjacency matrix
B indicating whether the similarity between two pixels is
positive as

Apq =
fT
p fq

∥fp∥2∥fq∥2
, Bpq =

{
1 if Apq > 0
0 otherwise (1)

where ∥ · ∥2 is ℓ2 norm.
The sum of the p-th row of B is defined as the degree

of pixel p, dp, which indicates the number of pixels having
semantically similar features to p. Based on dp, we can no-
tice how large the group of pixels having similar semantic
features to p is. If the features of objects of different class
are clearly distinguishable, we may conclude that semanti-
cally similar pixels have the same class. Accordingly, we
can guess whether p belongs to a large object (e.g., sky, car,
or building) or a small object (e.g., bottle, eyes, or wheel).
One way to identify a group of pixels representing an object
can be to select a pixel p∗, a seed pixel, and find the pixels
having similar semantic features to p∗.

One can wonder how to select a good seed pixel to find
a group of pixels, a superpixel. Here, we use a simple rule
using the degree of pixels. One can consider selecting p with
either the highest or the lowest degree to find a large or small
object, respectively. From our extensive experiments, we ob-
serve that it is better to identify small objects since there
could be a pixel having an overwhelming degree, resulting
in a grouping of the most pixels (see supplementary material
for comparison). Hence, our strategy to partition an image
into multiple superpixels is to find out a superpixel corre-
sponding to the smallest object and repeat this process after

Figure 2: A procedure of the proposed superpixel discovery
method.

excluding the pixels of the discovered superpixel from the
candidates.

To sum up, in each iterative step i, the seed pixel p∗i of
a superpixel Si is selected by finding out the pixel with the
lowest degree as p∗i = argminp

∑
q Bpq . Then, the pixels

to be included to superpixel Si are determined by following
criterion: Si = {q|Ap∗

i q
> τ} where τ is the pre-defined

threshold for feature similarity. We exclude the pixels of Si

from P and repeat this procedure until P becomes the empty
set. In Fig. 2, we illustrate the procedure of the proposed
superpixel method.

3.2 Initial Seed Generation
To generate the initial seed used for training of the semantic
segmentation network, we first train a classification network.
We follow the common practice to train the classification
network using the multi-label classification loss:

ℓcls =
1

C

C∑
c=1

(
− yc log(σ(x̂c))

− (1− yc) log(1− σ(x̂c))
)

(2)

where C is the number of foreground classes, yc is the
image-level label for class c, x̂c is the predicted class score
for class c, and σ(x) = 1/(1+e−x) is the sigmoid function.
Then, we obtain the class activation map(CAM) M of class
c as

Mp,c =

{
wT

c x′
p

maxq wT
c x′

q
if c is present class

0 otherwise
(3)

where x′
p is the output of the second last layer for pixel p and

wc is the weight of the last layer for class c. Using the CAM,
we can generate an initial seed L by assigning the class for
the confident foreground pixels as

Lp =

{
argmax

c
Mp,c if Mp,c > α

unlabeled otherwise
(4)

where α is the threshold.
On the other hand, background regions are not directly

identified from CAM since the classification network does
not learn the background class explicitly. A common ap-
proach to identify background regions is to set the low-
activated foreground regions in the CAM to the background
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Figure 3: The architecture for training of the semantic seg-
mentation network.

region. However, the discovered regions using this approach
may contain the foreground regions which are not expressed
in the CAM. To better identify the background regions, we
find the superpixel which is the least likely to be foreground
regions. Here, we assume that there are background regions
in every input image.

Specifically, we compute a class-agnostic foreground ac-
tivation map F by taking the maximum pixels for present
foreground classes as Fp = maxc∈C Mp,c where C is the set
of present classes in I . Then, the foreground score z(Si) is
computed as the average of F over Si, that is,

z(Si) =
1

|Si|
∑
p∈Si

Fp (5)

where |Si| is the number of pixels contained in Si. We select
Si with the lowest z(Si) as background pixels:

Lp = 0 for p ∈ Si s.t. Si = argmin
S′
i

z(S ′
i) (6)

where 0 indicates the background class. Although there ex-
ist very few images not containing background regions, we
can construct reliable seed for background class for the most
images.

3.3 Segmentation Network Training
Basically, the semantic segmentation network learns the ob-
ject regions from sparse initial seed constructed above. Dur-
ing the training process, the superpixel-guided seeded region
growing is performed to assign the classes to the promising
superpixels. We briefly illustrate the architecture for training
the segmentation network in Fig. 3.

Specifically, let H be the softmax output of segmenta-
tion network. We apply a simple probability threshold for
each superpixel. To preserve the confident pixels in the ini-
tial seed, we slightly modify the superpixel such that it ex-
cludes the pixels labeled in the initial seed. In other words,
we modify the superpixel S ′

i as S̃i = Si \ {p|Lp is labeled}.
Using the segmentation probability H , the average of prob-
ability of class c over S̃i is computed as

s(S̃i)c =
1

|S̃i|

∑
p∈S̃i

Hp,c. (7)

Figure 4: Examples for initial seed refined by superpixel-
guided seeded region growing during the training process.

Then, the class c is assigned to Lp if the two following cri-
teria are satisfied:

s(S̃i)c = max
c′

s(S̃i)c′ and s(S̃i)c > β. (8)

That is, the class c is assigned to the superpixel S̃i if S̃i is
the most likely to be class c and the average of probability if
greater than threshold β. Although the initial seed is sparse,
the labeled regions are expanding to neighboring superpixels
by region growing as the segmentation network is trained.
In Fig. 4, we show some examples illustrating the refined
seed obtained by superpixel-guided seeded regions growing
during the training process of the segmentation network.

We train the semantic segmentation network using the
balanced seed loss (Huang et al. 2018) that balances the
losses between background and foreground classes:

ℓseed = −
∑
p∈Lb

1

|Lb|
logHp,0 −

∑
p∈Lf ,c∈C

1

|Lf |
logHp,c (9)

where Hp,0 is the probability of background class at position
p, Lb = {p|Lp = 0} is the set of background pixels, and
Lf = {p|1 ≤ Lp ≤ C} is the set of foreground pixels. In
the loss computation, the unlabeled pixels are ignored.

4 Experiments
4.1 Datasets and Experiment Settings
We evaluate the proposed approach on the PASCAL VOC
2012 (Everingham et al. 2015) and MS-COCO 2014 (Lin
et al. 2014) segmentation benchmark datasets. PASCAL
VOC has 20 foreground classes and one background class
and consists of 1,464 training images, 1,449 validation im-
ages, and 1,456 test images. As in many practices (Chen
et al. 2017; Wei et al. 2017), additional dataset is augmented
to training dataset, resulting 10,582 training images in to-
tal (Hariharan et al. 2011). MS-COCO has 80 foreground
classes and one background class and consists of 82,783
training images and 40,504 validation images. In our experi-
ments, we only utilize image-level annotations for the train-
ing of semantic segmentation network. As a performance
measure, we use mean intersection-over-union (mIOU), av-
erage of IOUs over all classes. To obtain the result on the
PASCAL VOC test set, we submit the predicted results to
the official PASCAL VOC evaluation server.
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Method Val Test
IRN (Ahn, Cho, and Kwak 2019) 63.5 64.8
RRM (Zhang et al. 2020a) 66.3 66.5
ICD (Fan et al. 2020) 64.1 64.3
SAEM (Wang et al. 2020) 64.5 65.7
BES (Chen et al. 2020) 65.7 66.6
CONTA (Zhang et al. 2020b) 66.1 66.7
ECSNet (Sun et al. 2021) 66.6 67.6
CDA (Su et al. 2021) 66.1 66.8
CPN (Zhang et al. 2021) 67.8 68.5
CGnet (Kweon et al. 2021) 68.4 68.2
advCAM (Lee, Kim, and Yoon 2021) 68.1 68.0
RIB (Lee et al. 2021) 68.3 68.6
SIPE (Chen et al. 2022) 68.8 69.7
CLIMS (Xie et al. 2022) 69.3 68.7
AMN (Lee, Kim, and Shim 2022) 69.5 69.6
Ours 69.5 70.1

Table 1: Comparison of ResNet-based weakly-supervised
semantic segmentation methods’ mean IOUs on PASCAL
VOC 2012 val and test set with only image-level label su-
pervision.

For vision transformer, we employ off-the-shelf ViT-
Base/8 (Dosovitskiy et al. 2020) trained using DINO (Caron
et al. 2021). Without fine tuning the ViT, we use the key K of
the last (12th) transformer block as the features for generat-
ing superpixels as used in (Siméoni et al. 2021). For the clas-
sification network and segmentation network, we employ
ResNet50 and ResNet101 (He et al. 2016) as the backbone
network, respectively. Both networks are pre-trained on Im-
ageNet classification dataset (Russakovsky et al. 2015). For
the segmentation network architecture, we use deeplab-
ASPP module (Chen et al. 2017) appended to the ResNet101
backbone network. For the last layer, the parameters are ini-
tialized from the normal distribution. In the training of the
segmentation network, we only update parameters of convo-
lutional layers while fixing the parameters of batch normal-
ization layers. The obtained superpixels and the softmax out-
put of the segmentation network is post-processed by CRF
(Krähenbühl and Koltun 2011).

To improve the robustness of the segmentation network,
we apply the data augmentation techniques. We randomly
flip and scale ({0.5, 1, 1.5, 2}) input images. The resulting
images are cropped to 448×448 at random location. We also
apply color augmentation techniques by randomly changing
brightness, contrast, saturation, and hue. For the segmenta-
tion network, we use multi-scale inputs with scales, S =
{1, 0.75, 0.5} in both training and test phases (Chen et al.
2016, 2017). We set τ to 0.3 in superpixel discovery method.
We set α = 0.6 to identify the foreground pixels and
β = 0.7 for the criterion in seeded region growing. We use
the stochastic gradient descent optimizer with the momen-
tum 0.9. We set the weight decay to 0.0005 and the batch
size to 20. We employ polynomial learning rate policy (Liu,
Rabinovich, and Berg 2015) with initial learning rate 10−3

and power 0.9, i.e., L = 10−3 × (1− iter/maxiter)0.9. In
early training iterations, we gradually increase the learning

Method Val
SEC (Kolesnikov and Lampert 2016) 22.4
DSRG (Huang et al. 2018) 26.0
GSM (Li et al. 2021) 28.4
CONTA (Zhang et al. 2020b) 33.4
SGAN (Yao and Gong 2020) 33.6
IRN (Ahn, Cho, and Kwak 2019) 41.4
RIB (Lee et al. 2021) 43.8
SIPE (Chen et al. 2022) 43.6
AMN (Lee, Kim, and Shim 2022) 44.7
Ours 44.8

Table 2: Comparison of weakly-supervised semantic seg-
mentation methods’ mean IOUs on MS COCO 2014 val set.

rate from 10−6 to 10−3 through the first three epochs. The
learning rate for the last layers is multiplied by 10. We train
the segmentation network for 15 epochs. Our approach is
implemented with Tensorflow (Abadi et al. 2016). The clas-
sification network and the segmentation network are trained
on a single NVIDIA GeForce Titan Xp.

4.2 Comparisons with State-of-the-Art Methods
We evaluate the performance of the proposed method and
the state-of-the-art WSSS methods. In Table 1, we summa-
rize the mIOUs on PASCAL VOC 2012. All method use
only image-level labels without additional saliency super-
vision. In Table 2, we also summarize the mIOUs on MS-
COCO 2014. From the results, we observe that our approach
outperforms the conventional WSSS approaches. Specifi-
cally, our approach achieves mIOU of 69.5% and 70.1% for
val and test set, respectively, on PASCAL VOC 2012 and
44.8% for val set on MS-COCO 2014.

In particular, we use the same classification network as
used in (Ahn, Cho, and Kwak 2019; Lee et al. 2021). In (Fan
et al. 2020), the superpixels are used to recover the object
boundaries. In (Zhang et al. 2021), superpixel is exploited
in partitioning the input image into complementary patch.
Compared to these superpixel-based methods which are only
benefited from local information about the object bound-
aries, our approach takes advantage of local and global in-
formation contained in our semantic-aware superpixels.

4.3 Ablation Studies
In the proposed method, we use the feature obtained from
the DINO. To investigate the effects of different features,
we compare the superpixels generated using various fea-
tures and discuss the qualities of the obtained superpixels.
In this experiment, the features we use are: 1) the RGB val-
ues of image itself, the most basic feature of pixels, 2) the
CNN features obtained from supervised CNN (ResNet (He
et al. 2016)), and self-supervised CNN (MoCov3 (Chen,
Xie, and He 2021)), 3) transformer features obtained from
supervised transformer (ViT (Dosovitskiy et al. 2020)), and
self-supervised transformers (DINO (Caron et al. 2021) and
MAE (He et al. 2022) which is known to outperform DINO
in down-stream tasks). The backbones of CNNs and trans-
formers are ResNet50 and ViT-Base/16, respectively. The
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Figure 5: Superpixels generated using different features.

features of CNNs and transformers are the output of the last
layer and the key of the last transformer block, respectively.

We discuss the superpixels obtained from different fea-
tures. We show the examples of superpixels generated from
different features in Fig. 5. In these experiments, we first
generate the superpixels using the DINO feature with setting
τ = 0.3. The τ -values for other features are adjusted so that
the numbers of superpixels are similar to that of superpixels
generated from the DINO feature.

• RGB feature: We observe that we can find superpixels
using RGB values. However, since the RGB values are
low-level features, we cannot clearly partition the image.

• CNN features: We observe that we cannot properly gen-
erate the superpixels using CNN features of both super-
vised and self-supervised networks. This is because the
CNN feature of each pixel depends heavily on the neigh-
boring pixels, resulting in very high similarities between
almost all pairs of pixels. Hence, we cannot partition
the image when τ < 0.8. By setting τ to high value
(e.g., 0.9), we can obtain the partitioned images with poor
qualities.

• Transformer features: We observe that we can obtain the
superpixels with reasonable qualities using the features
of transformers. One notable point is that we need to set
τ to high value when we use the features of ViT and
MAE. This is because the ViT is trained to classify im-
ages which forces the network to recognize the object
itself and MAE is trained to predict the masked regions
which forces the network to understand overall context of
images. Hence, the ViT and MAE may not pay much at-
tention to the details of images, thereby generating highly
similar features on objects. On the other hand, DINO is
trained to extract diverse features for each image patch.
In fact, the features of DINO represents not only the ob-
jects but also their parts in detail so we used them in the
generation of superpixels.

In our superpixel discovery method, the seed pixel is the
pixel with the lowest degree so that the seed pixel might
fall in the smallest objects or their parts. By varying τ , we
can decide how many pixels will be grouped with the seed
pixel. In Fig. 6, we show some examples for our superpixel
for different threshold. The brightness indicates the order of
discovered superpixels, that is, the bright one is discovered
first and dark one is discovered later. When τ is small, we

Figure 6: Superpixels according to different thresholds τ .

τ 0 0.1 0.2 0.3 0.4 0.5
Val 64.8 65.0 64.6 65.1 63.8 62.9
Val+crf 69.3 69.5 69.1 69.5 68.4 67.5

Table 3: Comparison of mean IOUs on PASCAL VOC val
and test set using different superpixels.

obtain the superpixels containing whole object of semantic
class but may suffer from bad segmentation particularly for
small objects. When τ is large, we can obtain the superpix-
els whose pixels are highly likely to have the same semantic
class but may suffer from the oversegmentation.

To investigate the effect of τ in the segmentation perfor-
mance, we generate various superpixels using different τ
and use them to train the segmentation network. We summa-
rize the results in Table 3. We can observe that the segmen-
tation performance degrades when we use oversegmented
superpixel.

To examine the effect of α in generating the initial seed,
we conduct experiments using different initial seeds. We
summarize the results in Table 4. From the results, we see
that the best performance is obtained for α = 0.6. A no-
table point is that our initial seeds are generated in a differ-
ent way from the conventional approaches, in which there
are many efforts on obtaining the dense initial seeds. In-
terestingly, we can achieve higher performance gain from
superpixel-guided seeded region growing (denoted as ‘RG’)
when the initial seed is more sparse (i.e., α is high).

We study the effects of β in superpixel-guided seeded re-
gions growing. Similarly to (Huang et al. 2018), we apply
different β for background and foreground classes, βbg and
βfg , respectively. We summarize the segmentation perfor-
mance using various combinations of βbg and βfg in Ta-
ble 5. From the results, we see that we can achieve good seg-
mentation performance when we choose the two parameters

α RG 0.3 0.4 0.5 0.6 0.7 0.8
Val N 51.3 52.7 53.3 53.6 52.4 50.8
Val+crf N 58.0 60.0 60.0 59.7 57.1 53.9
Val Y 59.7 62.8 65.0 66.3 66.7 65.5
Val+crf Y 66.0 68.6 69.2 69.4 69.0 67.6

Table 4: Comparison of mean IOUs on PASCAL VOC val
set using different α for generating initial seed.
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Figure 7: Examples of our segmentation output for (a) PASCAL VOC 2012 and (b) MS-COCO 2014 val set.

βbg

0.5 0.6 0.7 0.8

βfg

0.5 60.3/64.3 59.3/62.7 56.5/59.7 51.5/53.9
0.6 62.1/66.5 62.3/66.5 61.0/65.2 57.5/61.4
0.7 58.0/61.8 61.3/65.7 62.3/66.8 61.3/66.2
0.8 51.9/53.6 55.5/58.5 60.3/64.8 61.2/66.6

Table 5: Comparison of mean IOUs for different βbg and βfg

on PASCAL VOC 2012 val set.

similarly. The best result is obtained using βbg = 0.7 and
βfg = 0.7. If β is too low, the classes can be easily assigned
to superpixel, resulting in an incorrect segmentation. In con-
trast, if β is too high, only highly-confident classes can be
assigned to superpixel so some superpixels could never be
labeled.

4.4 Qualitative Results

In Fig. 7, we provide qualitative results obtained from our
segmentation network. Although we do not use external
saliency map in the training of the segmentation network,
our approach can predict the objects with accurate bound-
aries.

In Fig. 8, we also provide some failure cases for the re-
fined seed in the training process and wrong prediction for
similar images in val set. In particular, for the classes known
to be difficult such as table or sofa, the seeded regions in the
initial seed rarely expand to the other superpixels.

Figure 8: Examples for failure cases of (a) the refined seed in
training process and (b) wrong prediction for similar images
in val images.

5 Conclusion
In this work, we have proposed a simple superpixel dis-
covery method to find out the semantic-aware superpix-
els in an unsupervised manner. Without relying on exter-
nal pixel-level labels, we can exploit the pixel-level infor-
mation on object boundaries contained in our superpixels.
We also have shown that our semantic segmentation net-
work training strategy using the superpixel-guided seeded
region growing method outperforms the conventional WSSS
approaches. Our extensive experiments have demonstrated
that our approach is effective in solving WSSS problem. A
limitation of the proposed approach is that it only shows the
effectiveness of superpixels in WSSS systems. We believe
that the proposed superpixel is helpful to solve more chal-
lenging computer vision tasks such as an unsupervised seg-
mentation segmentation.
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