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Abstract

Recent self-supervised video representation learning methods
focus on maximizing the similarity between multiple aug-
mented views from the same video and largely rely on the
quality of generated views. However, most existing methods
lack a mechanism to prevent representation learning from
bias towards static information in the video. In this paper,
we propose frequency augmentation (FreqAug), a spatio-
temporal data augmentation method in the frequency domain
for video representation learning. FreqAug stochastically re-
moves specific frequency components from the video so that
learned representation captures essential features more from
the remaining information for various downstream tasks.
Specifically, FreqAug pushes the model to focus more on
dynamic features rather than static features in the video via
dropping spatial or temporal low-frequency components. To
verify the generality of the proposed method, we experiment
with FreqAug on multiple self-supervised learning frame-
works along with standard augmentations. Transferring the
improved representation to five video action recognition and
two temporal action localization downstream tasks shows
consistent improvements over baselines.

Introduction

There has been growing attention on transferring knowledge
from large-scale unsupervised learning to various down-
stream tasks in natural language processing (Devlin et al.
2018; Radford et al. 2019) and computer vision (Chen et al.
2020a; He et al. 2020; Grill et al. 2020) communities. Con-
sidering data accessibility and possible applications, video
representation learning has great potential as a tremendous
amount of videos with diverse contents are created, shared,
and consumed every day. In fact, unsupervised or self-
supervised learning (SSL) of video via learning invariance
between multimodal or multiple augmented views of an in-
stance is being actively studied (Han, Xie, and Zisserman
2020; Alayrac et al. 2020; Recasens et al. 2021; Huang et al.
2021b; Qian et al. 2021; Feichtenhofer et al. 2021).

Recent studies in image SSL indicate that a careful se-
lection of data augmentation is crucial for the quality of the
feature (Wen and Li 2021) or for improving performance in
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downstream tasks (Tian et al. 2020; Zhao et al. 2021). How-
ever, augmentations for video SSL have not been sufficiently
explored yet. For videos, in terms of spatial dimension, the
standard practice is adopting typical image augmentations
in a temporally consistent way, i.e., applying the same aug-
mentation to every frame (Qian et al. 2021). Meanwhile, a
few previous works have investigated augmentations in the
temporal dimension, including sampling a distant clip (Fe-
ichtenhofer et al. 2021), sampling clips with different tem-
poral scales (Dave et al. 2021) or playback speeds (Chen
etal. 2021; Huang et al. 2021a; Duan et al. 2022), and drop-
ping certain frames (Pan et al. 2021). Although effective,
sampling-based augmentations in the temporal dimension
inevitably modulate a video as a whole regardless of sig-
nals in a clip varying at different rates. These methods are
limited in resolving the spatial bias problem (Li, Li, and Vas-
concelos 2018) of video datasets which requires distinguish-
ing motion-related features from static objects or scenes.
Adding a static frame (Wang et al. 2021b) is a simple heuris-
tic to attenuate the temporally stationary signal, but it is hard
to generalize to the real world’s non-stationary signal in the
spatio-temporal dimension. The need for a more general way
to selectively process a video signal depending on the spatial
and temporal changing rates motivates us to consider fre-
quency domain analysis.

In digital signal processing, converting a signal to the fre-
quency domain using discrete Fourier transform (DFT), then
processing the signal is widely used in many applications.
Filtering in the frequency domain is one example that at-
tenuates a specific frequency range to remove undesirable
components, such as noise, from the signal. With its effec-
tiveness in mind, we propose filtering video signals in the
frequency domain to discard unnecessary information while
keeping desired features for the SSL model to learn.

Fig. 1 shows the outcome of filtering out low-frequency
components (LFC) from videos. When the spatial filter is ap-
plied, plain surfaces of objects in the scene are erased while
their boundary or shapes are remained. As for the temporal
filter, stationary parts of the video, e.g., static objects or the
background, are removed while dynamic parts, e.g., a per-
son moving, are retained. These results are aligned with the
previous discoveries that high-frequency components (HFC)
carry essential information for image and video understand-
ing (Wang et al. 2020; Kim et al. 2020).
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Figure 1: Impact of removing low-frequency components
(LFC). (a) Filtering spatial LFC can attenuate spatially re-
dundant information, e.g. colors, while keeping the shape
patterns. (b) Removing temporal LFC filters out temporally
stationary information, e.g. the background, while keeping
the motion pattern.

In this work, we propose frequency augmentation (Fre-
gAug), a novel spatio-temporal augmentation in the fre-
quency domain by randomly applying a filter to remove se-
lective frequency bands from the video. Specifically, we aim
to alleviate representation bias for better transferability by
filtering out spatially and temporally static components from
the video signal. FreqAug is composed of a 2D spatial filter
and a 1D temporal filter, and their frequency band can be de-
termined by the filter type and its cutoff frequency. In video
SSL, FreqAug can be applied to each view independently
on top of other video augmentations so that the model learns
invariance on LFC (Fig. 4). In particular, applying FreqAug
with high-pass filter results in obtaining the representation
with less static bias via learning invariant features between
the instance and its HFC. Note that what we are claiming is
not that only HFC are important but rather a matter of rel-
ative importance. Since FreqAug is applied randomly, LFC
still get involved in the invariance learning.

We demonstrate the effectiveness of the proposed
method by presenting transfer learning performance on
five action recognition datasets: coarse-grained (UCF101
and HMDBS51) and fine-grained (Diving48, Gym99,
and Something-Something-v2) datasets. Additionally, the
learned features are evaluated via the temporal action seg-
mentation task on Breakfast dataset and the action localiza-
tion task on THUMOS’ 14 dataset. Empirical results show
that FreqAug enhances the performance of multiple SSL
frameworks and backbones, which implies the learned repre-
sentation has significantly improved transferability. We also
make both quantitative and qualitative analyses of how Fre-
gAug can affect video representation learning.

Related Work
Frequency Domain Augmentations

Lately, several studies on frequency domain augmentation
have been proposed for the 1D speech and 2D image do-
mains. For speech or acoustic signals, a few works incorpo-
rated augmentations that are masking (Park et al. 2019) or
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filtering (Nam, Kim, and Park 2021) a spectrogram or mix-
ing that of two samples (Kim, Han, and Ko 2021). In the
image domain, Xu et al. (Xu et al. 2021b) tackled the do-
main generalization problem by mixing spectrum amplitude
of two images. A concurrent work (Nam and Lee 2021) in-
troduced randomly masking a certain angle of Fourier spec-
trum based on the spectrum intensity distribution for X-ray
image classification. These methods are relevant to ours in
that they randomly alter a spectrum for data augmentation,
but differs in the following two respects. First, to the best
of our knowledge, our work is the first 3D spatio-temporal
augmentation in the frequency domain for video represen-
tation learning and investigates the transferability to various
downstream tasks. Second, our method differs from the ex-
isting frequency domain augmentations in that it selectively
filters out a certain frequency band, e.g., low-frequency com-
ponents, rather than random frequency components through
the entire range. We empirically show the superiority of se-
lective filtering over the random filtering strategy (Table 2).

Video Self-Supervised Learning

Self-supervised learning (SSL) through multi-view invari-
ance learning has been widely studied for image recogni-
tion and other downstream tasks (Wu et al. 2018; Chen et al.
2020a; He et al. 2020; Chen et al. 2020b; Grill et al. 2020;
Caron et al. 2020; Chen and He 2021). In video SSL, previ-
ous works exploited the view invariance-based approaches
from the image domain and explored ways to utilize unique
characteristics of the video including additional modalities,
e.g., optical flow, audio, and text (Wang et al. 2021a; Huang
et al. 2021b; Xiao, Tighe, and Modolo 2021; Han, Xie, and
Zisserman 2020; Miech et al. 2020; Alayrac et al. 2020; Al-
wassel et al. 2020; Recasens et al. 2021; Behrmann et al.
2021). However, we focus more on the RGB-based video
SSL methods in this study. CVRL (Qian et al. 2021) pro-
posed a temporally consistent spatial augmentation and tem-
poral sampling strategy, which samples two positive clips
more likely from near time. RSPNet (Chen et al. 2021) com-
bined relative speed perception and video instance discrim-
ination tasks to learn both motion and appearance features
from video. Empirical results in (Feichtenhofer et al. 2021)
show four image-based SSL frameworks (Chen et al. 2020b;
Grill et al. 2020; Chen et al. 2020a; Caron et al. 2020) can
be generalized well to the video domain. MoCo-BE (Wang
et al. 2021b) and FAME (Ding et al. 2022) introduced a reg-
ularization that reduces background influences on SSL by
adding a static frame to the video or mixing background, re-
spectively. Suppressing static cues (Zhang, Wang, and Ma
2022) in the latent space is another way to reduce spatial
bias. Our work is also a study on data augmentation for video
SSL, but we propose to modulate the video signal in the fre-
quency domain in a more general and simpler way.

Method
Preliminary

In this work, we aim to augment spatio-temporal video sig-
nals in a frequency domain by filtering particular frequency
components. Discrete Fourier transform (DFT), a widely



used technique in many digital signal processing applica-
tions, provides appropriate means of converting a finite dis-
crete signal into the frequency domain for computers. For
simplicity, let us consider 1D discrete signal x[n] of length
N, then 1D DFT is defined as,

N-—1
X[k = afn]eCr/Nkn, 1)
n=0

where X k] is the spectrum of z[n] at frequency k
0,1,..., N—1. Since DFT is a linear transformation, the orig-
inal signal can be reconstructed by inverse discrete Fourier
transform (iDFT):

X[k]ej(Qﬂ/N)kn. (2)

ID-DFT can be extended to the multidimensional DFT
by simply calculating a series of 1D-DFT along each di-
mension. One can express d-dimensional DFT in a concise
vector notation as,

N-1
Xk — Z In€7j27rk(n/N),

n=0

3

where k = (kq, k2, ...,kq) and n = (n1,nq,...,n4) are d-
dimensional indices from 0 to N = (Ny, N, ..., Ny) and
n/N is defined as (ny /N1, n2/Na, ...,ng/Ng). We omit the
equation of d-dimensional iDFT as it is a straightforward
modification from Eq. 2.

Filtering Augmentation in Frequency Domain

Filtering in signal processing often denotes a process of sup-
pressing certain frequency bands of a signal. Filtering in fre-
quency domain can be described as an element-wise multi-
plication ® between a filter F' and a spectrum X as,

X=F0oX, )

where X is a filtered spectrum. A filter can be classified
based on the frequency band that the filter passes or rejects:
low-pass filter (LPF), high-pass filter (HPF), band-pass fil-
ter, band-reject filter, and so on. LPF passes a low-frequency
band while it filters out high-frequency components from the
signal; HPF works oppositely. Let us consider a simple 1D
binary filter, also known as an ideal filter, then LPF and HPF
can be defined as,

1A [E] < feo
Fiprlk] = {0 otherwise, ®
Fipg[k] = 1= Fipy K], ©

where f., is the cutoff frequency which controls the fre-
quency band of the filter.

In this work, we propose frequency augmentation (Fre-
qAug, Fig. 2), which utilizes 3D-DFT with the binary filter
approach to augment video data in the frequency domain
by stochastically removing certain frequency components.
Since video signals have three dimensions, i.e., T, H, and W,
the filter also can be 3D and have three independent cutoff
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Figure 2: Frequency augmentation (FreqAug). Filtering in
the frequency domain is a sequential process of 1) trans-
forming a video to a spectrum by DFT; 2) applying the de-
sired filter by element-wise multiplication; 3) transforming
the filtered spectrum back to the video domain by iDFT.
Figures on the right are an example of applying spatio-
temporal high-pass filters. In filtered spectrum (2nd row),
low-frequency components of spatial (small black regions
inside yellow boxes, see the first one for the close-up)
and temporal (the red box) axis are removed. FreqAug
is placed after other augmentations and randomly applied
when r~U (0, 1) is less than the augmentation probability p.

frequencies. We introduce a single spatial cutoff frequency
f2 that handles both H and W dimension, and one temporal
cutoff frequency f!, for T dimension. Then 1D temporal fil-
ters are identical to Eq. 5 and Eq. 6, and 2D spatial LPF can
be defined as,

1 if |kp| < f5 and |ky| < f5,
0 otherwise,

Fiplkns k) (7
and Fy ; is obtained in the same way as Eq. 6. Finally, the
spatio-temporal filter F' can be obtained by outer product
between the temporal filter F'* and the spatial filter F'* as,

F = FSt[ktvkha kw] = Ft[kt] ® Fs[khakw]? (8)

where ® is outer product. The final 3D filtered spectrum

X can be represented as an element-wise multiplication be-
tween F and the spectrum X as Eq. 4.

Additionally, FreqAug has one more hyperparameter, the
augmentation probability p, which determines how fre-
quently the augmentation is applied. FreqAug processes the
input only when the random scalar r, sampled from uniform
distribution U (0, 1), is less than p.

Fig. 2 presents a block diagram of FreqAug and a visual-
ization of a video sample and its spectrum at each stage of
FreqAug. Note that FreqAug blocks are located after other
augmentations or noramlization, and operate with indepen-
dent r for each view. For the spectrum, lower absolute spa-
tial frequencies are located near the center of the spectrum at
each column ((kp, k.,) = (0,0)) and lower absolute tempo-
ral frequencies are located near the third spectrum (k; = 0).
For visualization, we apply spatial and temporal HPF with

5 =0.01and f!, = 0.1, respectively. In the filtered spec-
trum (2nd row), spatial low-frequency (small black region



inside yellow boxes) and temporal low-frequency (red box)
components are removed.

Experiment
Experiment Settings

Here, we provide essential information to understand the fol-
lowing experiments. Refer to Appendix A1l for more details.
Datasets. For pretraining the model, we use Kinetics-400
(K400) (Carreira and Zisserman 2017) and Mini-Kinetics
(MK200) (Xie et al. 2018). With the limited resources, we
choose MK200 as a major testbed to verify our method’s ef-
fectiveness. For evaluation of the pretrained models, we use
five different action recognition datasets: UCF101 (Soomro,
Zamir, and Shah 2012), HMDB51 (Kuehne et al. 2011), Div-
ing48 (DV48) (Li, Li, and Vasconcelos 2018), Gym99 (Shao
et al. 2020), and Something-something-v2 (SSv2) (Goyal
et al. 2017). Following the standard practice, we report
the finetuning accuracy on the three datasets: UCF101,
HMDBS51, and Diving48. Note that we present split-1 accu-
racy for UCF101 and HMDBS1 by default unless otherwise
specified. For Gym99 and SSv2, we evaluate the models
on the low-shot learning protocol using only 10% of train-
ing data since they are relatively large-scale (especially the
number of samples in SSv2 is about twice larger than that
of our main testbed MK200). For temporal action localiza-
tion, Breakfast (Kuehne, Arslan, and Serre 2014) and THU-
MOS’ 14 (Idrees et al. 2017) dataset are used.
Self-supervised Pretraining. For self-supervised pretrain-
ing, all the models are trained with SGD for 200 epochs.
Regarding spatial augmentation, augmentations described
in (Chen et al. 2020b) are applied as our baseline. For tem-
poral augmentation, randomly sampled clips from different
timestamps compose the positive instances. Also, two clips
are constrained to be sampled within a range of 1 second.
Each clip consists of T frames sampled from 7" x 7 consec-
utive frames with the stride 7. In terms of FreqAug, we use
the following two default settings: 1) FreqAug-T (temporal)
uses temporal HPF with a cutoff frequency 0.1; 2) FreqAug-
ST (spatio-temporal) is a combination of spatial HPF with a
cutoff frequency 0.01 alongside with FreqAug-T.
Finetuning and Low-shot Learning. We train the models
for 200 epochs with the initial learning rate 0.025 without
warm-up and zeroed weight decay for supervised finetuning
and low-shot learning. Only fundamental spatial augmenta-
tions (Feichtenhofer et al. 2021) are used.

Temporal Action Segmentation and Localization. We
train an action segmentation model, MS-TCN (Farha and
Gall 2019) following (Behrmann et al. 2021), and a local-
ization model, G-TAD (Xu et al. 2020) for evaluating the
learned representation of pretrained encoders.

Evaluation. For Kinetics, UCF101, and HMDBS51, we re-
port average accuracy over 30-crops following (Feichten-
hofer et al. 2019). In the case of Diving48, Gym99, and
SSv2, we report the spatial 3-crop accuracy with segment-
based temporal sampling. For temporal action segmentation,
frame-wise accuracy, edit distance, and F1 score at overlap-
ping thresholds 10%, 25%, and 50% are used. For tempo-
ral action localization, we measure mean average precision
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Finetune Low-shot (10%)

Backbone| Augment. | 16T THMDBS TIDV43[Gym99] 55v2
Baseline || 870 | 3565 | 678 299 | 253

SO-50 |+FA-ST || 90.0 | 616 |71.0| 348 | 281
+FA-T || 898 | 608 |703| 352 | 28.1

Bascline || 845 | 552 | 749 303 | 239

SO-18 |+FA-ST || 885 | 578 |758]| 353 | 257
+FA-T || 887 | 588 |757| 347 | 261

Bascline || 862 | 604 | 646 425 | 292

RQ2+1)D |+ FA-ST | 90.0 | 659 |67.7| 484 | 315
FFAT || 895 | 652 |702]| 483 | 305

Baseline || 89.0 | 595 | 70.1| 42.0 | 30.3

S3D-G |+FA-ST || 902 | 63.6 |710| 445 | 31.1
LFA-T || 904 | 622 |688| 443 | 315

Table 1: Evaluation results on Mini-Kinetics. We evaluate
FreqAug (FA) with diverse backbones, including SlowOnly-
50 (SO-50), SlowOnly-18 (SO-18), RQ2+1)D and S3D-G,
via finetuning and low-shot learning protocols.

(mAP) with intersection-over-union (IoU) from 0.3 to 0.7.
Backbone. Our default encoder backbone is SlowOnly-50
(S0O-50), a variant of 3D ResNet originated from the slow
branch of SlowFast Network (Feichtenhofer et al. 2019). We
evaluate our method on R(2+1)D (Tran et al. 2018) and S3D-
G (Xie et al. 2018) models as well.

SSL Methods. We implement MoCo (Chen et al. 2020b)
and BYOL (Grill et al. 2020) for pretraining the video
model. We set MoCo as our default SSL method.

Action Recognition Evaluation Results

In Table 1, we present the evaluation results of MoCo with
FreqAug pretrained on MK200. We validate on four differ-
ent backbones: SlowOnly-50 (SO-50), SlowOnly-18 (SO-
18), R(2+1)D, and S3D-G, which have various input resolu-
tions (number of frames 7', stride 7), depth, and network ar-
chitecture. First, MoCo pretrained SO-50 with FreqAug sig-
nificantly improves the baseline in all five downstream tasks.
The absolute increments of top-1 accuracy range from 2.5%
to 5.3% depending on the task. We observe that FreqAug-
ST shows comparable or better accuracy than FreqAug-T in
four out of five tasks, indicating the synergy between spa-
tial and temporal filters. The results of the other three back-
bones show that FreqAug boosts the performance in almost
all cases regardless of temporal input resolutions and the net-
work architecture. Please refer to Appendix A3.1 for results
with other SSL methods, A3.2 for the detailed setup of each
backbone and results of 3D-ResNet-18 and other input reso-
lutions, and A4.6 for comparison with other augmentations.

Ablation Study

On Hyperparameters. We conduct three types of ablation
studies on MK200 to search for proper hyperparameters in
Fig. 3. SO-50 pretrained with MoCo is used as the baseline
model. For ease of visualization, we first min-max normal-
ize top-1 accuracies for each task using all ablation mod-
els, then present average accuracy over five action recogni-
tion tasks. We also mark the accuracy of models with de-
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Figure 3: Hyperparameter ablations on Mini-Kinetics. (a)
temporal cutoff frequency (f!,) and augmentation probabil-
ity (p) for FreqAug-T, and (b) spatial cutoff frequency (f2,)
for FreqAug-ST. Other parameters set fixed. Min-max nor-
malized accuracies of 5 tasks are averaged.

Filter Finetune . Low-shot (10%)
UCF101|HMDB51 |Diving48|Gym99| SSv2
No filter 87.0 56.5 67.8 29.9 | 253
HPF (default) | 89.8 60.8 70.3 352 | 28.1
LPF (f,=0.2) | 84.1 51.3 66.3 262 | 222
LPF (f!,=0.3) | 85.8 54.4 67.9 28.8 | 24.2
LPF (f!,=0.4) | 87.9 56.1 69.2 303 | 25.5
Random (M=2)| 88.9 59.0 69.1 334 | 26.9
Random (M=3)| 89.1 58.0 69.1 333 | 259
Random (M=5)| 88.2 56.5 69.5 315 | 252

Table 2: Temporal filtering strategy comparison on Mini-
Kinetics: 1) LPF with cutoff frequency (f¢,) and 2) random
masking policy with mask parameter (M).

fault FreqAug-ST or FreqAug-T in dotted line for a better
comparison. Note that the cutoff frequencies are searched in
consideration of the minimum interval between each com-
ponent: 1/7" for temporal and 1/H (or 1/W) for spatial
dimension. Fig. 3 shows that FreqAug with default hyper-
parameters, (a) f!,=0.1 and p=0.5 for FreqAug-T, and (b)

o,=0.01 for FreqAug-ST, achieves the best performance.
Detailed description and more ablation studies can be found
in Appendix A3.4 and A3.5.

On Filtering Strategy. In Table 2, we compare two vari-
ants of temporal filtering strategy on MoCo-pretrained SO-
50: LPF and random masking. LPF strategy is masking
frequency components less than f!, as opposed to default
HPF. We tested f!,€{0.2,0.3,0.4} and observe that the per-
formance becomes worse than the baseline as more high-
frequency components are filtered out. The results show a
clear contrast between HPF and LPF strategies, and choos-
ing a proper frequency band for the filter is essential. We also
tested temporal random mask, like SpecAugment (Park et al.
2019), with mask parameter M. Larger M indicates that a
larger mask size can be sampled. Refer to Appendix A2.2
for the detail. The scores for random policy (M €{2,3,5})
are better than the baseline but cannot reach the HPF policy’s
score, which confirms the validity of selective augmentation.
Refer to Appendix A4.5 for filtering in video domain.
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Finetune
Model BB | T|Epochs t7=r10TTHMDBS 1[DV4S
RSPNet: S3D-G|64| 200 | 89.9 506 | N/A
MoCo-BE 13D |16] 50 | 86.8 554 | 62.4
FAME + 13D |16] 200 | 88.6 61.1 |72.9
ASCNet + S3D-G|64| 200 | 90.8 60.5 | N/A
pMoCo (p=2)F |SO-50| 8| 200 | 91.0 N/A | N/A
pBYOL (p=2)7 |SO-50|8 | 200 | 92.7 N/A | N/A
CVRL SO-50(32| 800 | 92.2 66.7 | N/A
RSPNet: S3D-G|64| 1000 | 93.7 64.7 | N/A
MoCo (ours)  |SO-50|8 | 200 | 90.6 628 | 729
MoCo + FA-ST |SO-50( 8 | 200 | 92.1 65.6 | 74.0
MoCo + FA-T |SO-50|8| 200 | 91.8 65.1 |73.8
BYOL (ours) |SO-50| 8| 200 | 92.9 67.7 | 71.9
BYOL + FA-ST|SO-50( 8 | 200 | 93.7 683 | 74.4
BYOL + FA-T |SO-50|8| 200 | 93.2 67.7 | 722

Table 3: Comparison with RGB-based models pretrained on
Kinetics-400. Backbone (BB), number of frames (T), and
pretrain epochs are specified. The UCF101 and HMDBS51
accuracies are averaged over 3 splits. 1: evaluated on split-
1; £: ambiguous or not specified which splits are used.

Method Pretrain [Acc.|Edit[F1@{0.10, 0.25, 0.50}
SO-50 f Sup. [59.0(59.5| 54.7 | 49.2 | 37.6
LSFD, N Self-sup.|60.6|60.0| 52.0 | 42.8 | 35.3
MoCof 59.9160.4| 57.2 | 52.0 | 40.2
+ FreqAug-ST+ |Self-sup.|65.2|163.9| 61.7 | 56.6 | 45.2
+ FreqAug-Tf 65.9(64.8| 62.5 | 57.1 | 45.3

Table 4: Temporal action segmentation on Breakfast. All
features are evaluated with MS-TCN. ‘Edit’ denotes edit dis-
tance. T: scores are averaged over 10 evaluations on split-1.

Comparison with Previous Models

Table 3 presents K400 experiments with FreqAug compared
to previous video SSL works. For a fair comparison, SSL
models are chosen based on three criteria: augmentation-
based, RGB-only (without multimodality including optical
flow), and spatial resolution of 224 x 224. We report the
average accuracy of 3 splits for UCF101 and HMDBS5I.
We set p=0.3 for BYOL + FreqAug-ST. Note that p of
pMoCo and pBYOL indicates the number of views from dif-
ferent timestamps, so models with p=2 are directly compa-
rable to our models. First, both FreqAug-ST and FreqAug-T
consistently outperform the baseline MoCo and BYOL on
UCF101, HMDBS1, and Diving48. Compared with other
models trained with similar epochs, MoCo and BYOL with
FreqAug outperform all the others with similar training
epochs. Interestingly, FreqAug demonstrates its training ef-
ficiency by defeating RSPNet on HMBDS51 and surpassing
CVRL; they are pretrained for 1000 and 800 epochs, respec-
tively. We expect training with more powerful SSL methods
and longer epochs can be complementary to our approach.

Other Downstream Evaluation Results

In Table 4, we report the results of temporal action segmen-
tation task on the Breakfast dataset. We experiment with the
features extracted from MoCo pretrained SO-50 on K400.



Method Pretrain [mAP@{0.3, 0.4, 0.5, 0.6, 0.7} Avg
TSM Su 46.6(39.5|30.1|20.1| 12.2 {29.7
TSM + BSP P 152346.3/39.8(30.8| 21.1 |38.1
TSNt Su 45.7136.8128.2|19.0| 11.3 |28.2
SO-50t P 151.1|442|342(24.7] 153 |339
MoCof 52.2145.6137.3128.0| 18.2 {36.3
+ FreqAug-STT|Self-sup.| 54.1 |47.4|39.4129.6| 19.8 |38.1
+ FreqAug-TT 55.448.7|40.3|30.3| 20.2 {39.0

Table 5: Temporal action localization on THUMOS’ 14. Fea-
tures are pretrained on K400 and evaluated with G-TAD. {:
scores are mean over 5 runs.

Method Sup. Finetune Low-shot (10%)
MK200|UCF101|[HMDB51|Diving48|Gym99] SSv2
SO-50 77.4 91.0 61.0 72.3 36.4 | 25.5
+ FA-ST| 78.6 91.3 62.9 73.2 39.2 | 27.1
+FA-T | 78.0 91.5 65.4 71.0 40.0 | 26.2

Table 6: Supervised pretraining with FreqAug (FA).
SlowOnly-50 (SO-50) pretrained on MK200. Sup. denotes
supervised action recognition accuracy.

In addition, we report the performance of the extracted fea-
ture by officially released SO-50 (Fan et al. 2020) pre-
trained on K400 by supervised learning. The results show
that MoCo-pretrained with FreqAug substantially improves
the baseline on all metrics. We conjecture that foreground
motion can easily be separated in the videos with static back-
grounds by the FreqAug-enhanced feature. Furthermore,
MoCo with FreqAug surpasses its supervised counterpart
and LSFD (Behrmann et al. 2021) in all metrics, which is
the only video SSL method evaluated on this task.

In Table 5, we report the results of temporal action lo-
calization on THUMOS’ 14 dataset. We use the features ex-
tracted from MoCo pretrained SO-50 on K400. The results
show that MoCo features outperform supervised features
from RGB-only TSN (Wang et al. 2016) and SO-50. More-
over, adding FreqAug to MoCo improves the localization
performance even further than the baseline. We also com-
pare our results to BSP (Xu et al. 2021a), a localization-
specific pre-training method, showing similar or better lo-
calization performances. Note that BSP is pre-trained in su-
pervised manners while our encoders are pre-trained with
fully unsupervised. For more results and analysis, please
refer to Appendix A3.6 and A4.8.

Discussion
FreqAug for Supervised Learning

One may wonder whether using FreqAug in supervised
learning is still effective; here, we evaluate FreqAug in a
supervised scenario to demonstrate the versatility of our
method. Table 6 shows the performance of MK200 pre-
trained SlowOnly-50 by supervised learning for 250 epochs.
Note that p=0.3 is used since we observed lower accuracy
with a too large p. When we applied FreqAug on top of ba-
sic augmentation, we observe overall performance improve-
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MoCo
UCF101 top-1: 87.0%

MoCo + FreqAug
UCF101 top-1: 90.0%

=

MSE=(0.0057, 0.0059) (0.0030, 0.0071)
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Figure 4: t-SNE visualization of the output features from
original frames (blue) and its temporal HFC (red) or LFC
(green). Mean squared error (MSE) between original fea-
tures with HFC/LFC are presented under each plot. MoCo
pretrained SlowOnly-50 models with or without FreqAug
(and UCF101 finetuning acccuracies) are compared. Fre-
qAug makes features of HFC close to that of original clips
which results in better downstream performance. If red and
blue dots are too close, they can be perceived as purple.
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Figure 5: Comparing downstream models pretrained with or
without FreqAug on UCF101. (a) Accuracy difference ac-
cording to the LFC ratio of the sample. (b) Grad-CAM of a
clip from a bin with large LFC (red arrow in (a)).

ments, including the performance of the five downstream
tasks and the MK200 pretraining task.

Influence on Video Representation Learning

We take a closer look at how the downstream performance
of the features learned through FreqAug can be improved
compared to the baseline. Fig. 4 shows t-SNE (van der
Maaten and Hinton 2008) plots of features from original
clips (blue) with both high-frequency components (HFC)
and low-frequency components (LFC) and either high-pass
or low-pass filtered clips (red/green) in temporal dimension.
The distance between two features is measured using mean
squared error (MSE). We compare features from MoCo pre-
trained SlowOnly-50 on MK200 with or without FreqAug-
ST. The samples are from the validation set of MK200, and

't =0.2 are set for both HPF and LPF. We observe that the
distance between original clips and its temporal HFC sub-
stantially decreased when the model is pretrained with Fre-
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Figure 6: Standard deviation of spectrum intensity over tem-
poral axis. The histogram illustrates the standard deviation
(std) distribution of clips in the K400 training set. Top fig-
ures show examples of small std (left) and large std (right)
videos; top, middle, and bottom rows denote original frames,
filtered frames, and spectrum with its std, respectively. Red
box indicates where the temporal frequency is zero.

gAug while there are relatively small changes in the distance
between the clip and its LFC; which means FreqAug does
not reduce the overall distance between features. It indicates
that FreqAug makes the model extract relatively more fea-
tures from HFC via invariance learning between HFC and all
frequency components in the video. We believe the feature
learned via FreqAug whose HFC has been enhanced, leads
to better transferability of the model as shown empirically.
Refer to Appendix A4.1 for more t-SNE analysis.

To analyze the effect of FreqAug on the downstream task,
we group data instances in UCF101 according to the amount
of temporal LFC each video has and present accuracy incre-
ment in each group caused by FreqAug in Fig. 5 (a); refer
to Sec. A4.2 for the detailed description. The result shows
that the effectiveness of FreqAug tends to be amplified even
more on videos with a higher proportion of temporal LFC;
those videos are expected to have a large portion of static
scenes, background, or objects. In Fig. 5(b), we visualize a
sample from a bin with a large LFC (red-arrowed in (a));
original frames, GradCAM (Selvaraju et al. 2017) of MoCo
baseline (Baseline) and MoCo+FreqAug (FreqAug) models
from top to bottom. We observed that FreqAug correctly fo-
cuses on the person juggling a soccer ball while Baseline
fails to recognize the action because it focuses on the back-
ground field. Refer to Appendix A4.3 for more samples.
In conclusion, FreqAug helps the model focus on motion-
related areas in the videos with static backgrounds.

Analysis on Temporal Filtering

As aforementioned, FreqAug can help the model focus on
motion-related information by randomly removing the back-
ground with a temporal high-pass filter. However, one may
doubt whether FreqAug is only effective with videos whose
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Std. Finetune Low-shot(10%)
< 0.05[> 0.05|UCFI0I[HMDBS51[Diving48|Gym99] SSv2
no FreqAug 87.0 56.5 67.8 299 | 253
v 89.4 59.3 70.9 324 | 274
v 88.8 58.3 69.9 324 | 27.0
v v 89.8 60.8 70.3 352 | 28.1

Table 7: Impact of samples with large temporal variations to
the temporal filter. Samples of temporal spectrum std. below
or above threshold (0.05) are rejected to apply the temporal
filter in FreqAug-T. Tested on MK200.

background can be easily removed. In order to resolve the
doubt above, we conduct further analysis by applying Fre-
gqAug on different subsets of the training dataset according
to the spectrum intensity over the temporal axis.

As in the top left clip of Fig. 6, videos with a low stan-
dard deviation of spectrum intensity over the temporal fre-
quency (o) tend to have temporally varying backgrounds
due to rapid camera moving or abrupt scene change, which
makes a naive filter hard to remove background. The spec-
trum intensity will be concentrated on the temporal zero-
frequency (red boxes) when the scene change is small over
time (right). Otherwise, the spectrum spreads across all tem-
poral frequencies (left). In other words, o, gets decreased if
many scene transitions exist. For quantitative analysis, we
take the logarithm and mean over spatial frequency to the
spectrum and then calculate std. over time. As we expected,
the background of videos with a small o, is often not elimi-
nated, and some traces of other frames are mixed.

The histogram in Fig. 6 shows that around half of the clips
in K400 have relatively small o;. Then, a question naturally
arises about how those clips with small o; affect the learn-
ing with FreqAug. We argue that the clips with a visually
remaining background are also helpful for FreqAug. To sup-
port our claim, we conduct a quantitative experiment in Ta-
ble 7 to confirm the impact of the temporal filter on videos
with small o;. We study with two variants of FreqAug-T,
which exclude the clips of either small o; (i.e., under 0.05)
or large o; (i.e., over 0.05) when applying the filter. The
result demonstrates that FreqAug outperforms the baseline
with a large margin, even in the case of clips with small ;.
This implies that the temporal filter enhances the represen-
tation of clips with both small and large temporal variations.
Therefore, this experiment validates our claim that the role
of temporal filtering is not limited to background erasing.

Conclusion

In this paper, we have proposed a simple and effective fre-
quency domain augmentation for video representation learn-
ing. FreqAug augments multiple views by randomly remov-
ing spatial and temporal low-frequency components from
videos so that a model can learn from the essential features.
Extensive experiments have shown the effectiveness of Fre-
qAug for various SSL frameworks and diverse backbones on
seven downstream tasks. Lastly, we analyze the influence of
FreqAug on both video SSL and its downstream tasks.
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