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Abstract

Existing lifting networks for regressing 3D human poses from
2D single-view poses are typically constructed with linear
layers based on graph-structured representation learning. In
sharp contrast to them, this paper presents Grid Convolution
(GridConv), mimicking the wisdom of regular convolution
operations in image space. GridConv is based on a novel Se-
mantic Grid Transformation (SGT) which leverages a binary
assignment matrix to map the irregular graph-structured hu-
man pose onto a regular weave-like grid pose representation
joint by joint, enabling layer-wise feature learning with Grid-
Conv operations. We provide two ways to implement SGT, in-
cluding handcrafted and learnable designs. Surprisingly, both
designs turn out to achieve promising results and the learn-
able one is better, demonstrating the great potential of this
new lifting representation learning formulation. To improve
the ability of GridConv to encode contextual cues, we in-
troduce an attention module over the convolutional kernel,
making grid convolution operations input-dependent, spatial-
aware and grid-specific. We show that our fully convolutional
grid lifting network outperforms state-of-the-art methods
with noticeable margins under (1) conventional evaluation
on Human3.6M and (2) cross-evaluation on MPI-INF-3DHP.
Code is available at https://github.com/OSVAI/GridConv.

Introduction
3D human pose estimation is essential for various applica-
tions. The task aims to recover the 3D positions of human
body joints from images or videos. Benefiting from great
advances in deep learning techniques, 3D human pose esti-
mation with a single image input has now become practical.

One mainstream solution family estimates 3D human
pose in two stages. The first stage detects 2D pose in an im-
age, and the second stage lifts detected 2D pose to its 3D
estimate. Along with the advent of many well-designed 2D
pose detectors, such as HRNet (Sun et al. 2019), 2D hu-
man pose detection technology is gradually becoming ma-
ture, showing significantly improved performance, even in
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outdoor scenarios with dramatic changes of background and
rarely seen situations with diverse occlusions. Driven by
this as well as the prevalence of effective methods to gen-
erate large amounts of 2D-to-3D human pose pairs, 2D-to-
3D pose lifting has become a critical research topic, and thus
has attracted increased attention recently. Many works (Fang
et al. 2018; Zhao et al. 2019; Kang et al. 2020) have been
devoted to advancing 2D-to-3D pose lifting research. These
works typically represent human pose as a 1D feature vector
or a graph, and use either fully connected network or graph
convolutional network to regress 3D pose from 2D input.

However, we observe that a pretty successful family of
deep learning techniques, convolutional neural networks for
image recognition and editing tasks, does not attract the in-
terest of researchers in the lifting field. A vital reason is that
graph-structured human skeleton pose having unbalanced
joint neighborhoods hinders the use of convolution opera-
tion with regular kernels. Motivated by the observation, we
address the pose lifting problem by formulating a novel grid-
based representation learning paradigm, attempting to intro-
duce a 2D coordinate system to measure joint relationships
and enable regular convolution operations and advanced de-
sign of building blocks. Regarding our goal, three critical
questions need to be considered: (1) Is it possible to trans-
form a human skeleton pose into an image-like grid coordi-
nate system? (2) How to preserve intrinsic joint relationships
of human skeleton during the transformation? (3) After such
transformation, can we use few modifications to convolu-
tional networks to pursue a high-performance lifting model?

To the first question, we propose Semantic Grid Transfor-
mation (SGT) which maps the irregular graph-structured hu-
man pose onto a regular weave-like grid pose representation
joint by joint. To the second question, we design a hand-
crafted layout that meanwhile preserves skeleton topology
and brings in a new kind of motion semantics. In addition,
to explore a better grid layout, we propose a learning-based
SGT called AutoGrids that automatically searches the lay-
out conditioned on the input distribution. To the last ques-
tion, SGT enables a new type of standard convolution op-
erations on the grid pose. We call this operation paradigm
Grid Convolution (GridConv). We further enhance the learn-
ing capability of GridConv by introducing an attention mod-
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ule over the convolutional kernels, making GridConv input-
dependent, spatial-aware and grid-specific.

The solutions for the above three questions constitute our
core contributions to constructing a new category of fully
convolutional network that lifts 2D pose to 3D estimate in
the weave-like grid pose domain. Extensive experiments on
public 3D human pose estimation datasets demonstrate su-
perior performance of our fully convolutional lifting net-
work to existing methods by using the proposed represen-
tation learning paradigm. Furthermore, our method retains
its effectiveness in the augmented training regime with syn-
thetic data or joint optimization of the 2D human pose de-
tector and the 2D-to-3D lifting network, showing further im-
proved performance.

Related Work
End-to-End 3D Human Pose Estimation
In the pre-deep-learning era, 3D human pose estimation usu-
ally relies on building a 2D pictorial model from images and
inferring plausible 3D targets from 2D evidence by Bayesian
probabilistic models (Belagiannis et al. 2014; Andriluka,
Roth, and Schiele 2010). With the booming of deep learn-
ing techniques and the availability of high-quality 3D human
dataset in the community, tremendous progress has been
achieved by end-to-end learning of 3D human pose estima-
tion (Pavlakos et al. 2017; Mehta et al. 2017b; Zhou et al.
2017, 2021). These approaches show significant advantages
over traditional ones.

With the rise of convolutional neural network techniques,
the technology for a related task, namely 2D human pose
detection, has become more and more mature. In recent
years, many prevailing 2D human pose detectors, such as
OpenPose (Cao et al. 2019) and HRNet (Sun et al. 2019),
have been proposed. Under this context, one critical research
problem arises: it is possible to infer 3D human pose di-
rectly from 2D pose detection? To this problem, an early
work (Zhou et al. 2016) used sparse representation on 3D
pose and inferred 3D pose under the condition of giving 2D
pose probability heatmap or coordinate. Later on, (Martinez
et al. 2017) proposed the two-stage 3D human pose esti-
mation paradigm with deep learning, which first detects 2D
body keypoints in an image and then regresses 3D pose co-
ordinate from 2D pose coordinate. Since then, a lot of meth-
ods have been proposed to improve 2D-to-3D pose lifting
scheme.

2D-to-3D Pose Lifting
The pioneering lifting work (Martinez et al. 2017) treated
input 2D pose as a generic 1D feature vector and directly
regressed 3D joint coordinate. Subsequent works attempted
to leverage prior knowledge of the human body skeleton to
improve lifting optimization. For example, (Sun et al. 2017)
exploited joint connection structure by representing pose as
a composition of bones. (Dabral et al. 2018) introduced ille-
gal articulation angle penalty and body symmetry constraint
in the training process. (Fang et al. 2018) modeled skele-
ton motion in three high-level aspects including kinematics,

symmetry, and motor coordination by defining joint rela-
tions in a recurrent network. Our work is similar to them in
modeling high-level joint relations, but the proposed repre-
sentation learning paradigm is differentiated from the others.

With the arising research of Graph Convolutional Net-
works (GCNs), many works represented human pose as a
graph by mapping joints and limbs as graph nodes and
edges, and substituted fully connected networks by GCNs
as their lifting models. Most of them (Ci et al. 2019; Zhao
et al. 2019; Cai et al. 2019; Liu et al. 2020; Zou et al. 2020)
focused on developing pose-relevant graph convolution op-
erators and network architectures. Some works (Zeng et al.
2021; Hu et al. 2021) argued that the default skeletal graph is
sub-optimal for perceiving long-distance joint relations, and
thus proposed to dynamically adjust the graph structure.

This work goes beyond graph representation for human
pose and formulates a semantically more informative lifting
representation learning paradigm. Moreover, with the help
of some sophisticated strategies that generate large-scale
synthetic 2D-to-3D data (Gong, Zhang, and Feng 2021), our
method can get further improvement after fine-tuning with
augmented data, showing its great generalization ability.

Method
In this section, we first describe the formulation of Semantic
Grid Transformation (SGT), which maps graph-structured
human pose to a uniform weave-like grid pose representa-
tion, giving birth to Grid Convolution (GridConv). For SGT,
we propose a handcrafted design and a learnable one. Then
we present the concept of GridConv as well as its dynamic
form. Finally, we detail the architecture of our grid lifting
network shown in Figure 1.

Semantic Grid Transformation
Suppose that we have a human pose G ∈ RJ×C , where J
denotes the number of body joints, C denotes the coordinate
dimensions for each joint (C = 2 for 2D pose, and C = 3
for 3D pose). The basic goal of SGT is to construct a grid
pose D ∈ RH×P×C , defined as a regular weave-like grid
representation with the spatial size of H×P filled by J body
joints, where HP≥J . By changing the setting of H×P , a
grid pose D could be either square or rectangular in shape,
e.g., 5×5 or 7×3. SGT mapping function φ is defined as:

D = φ(G) = S ×G, (1)

where S ∈ {0, 1}HP×J is a binary assignment matrix which
maps the graph-structured human pose G to the desired grid
pose D joint by joint. During the mapping, a grid node
Dp, p ∈ [1, HP ] in the grid poseD will be filled by a partic-
ular body joint Gj , j ∈ [1, J ] only if Sp,j = 1. Inverse SGT
φ−1 that mapsD toG is formed by inversing the assignment
process.

Recall that existing lifting methods typically adopt skele-
ton graph as pose representation. When constructing a grid
pose D, it is natural to allow the desired grid pose to inherit
joint features and preserve skeleton topology. Concretely,
given an edge set of skeleton graph E, this goal can be ac-
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Figure 1: (a) An architectural overview of the proposed grid lifting network. Here, 2D grid pose D
2D

, namely the network
input, is transformed from 2D human pose input G

2D
via an SGT module φ. D-GridConv layers learn latent feature embedding

on the grid pose. At the end of the network, an inverse SGT module φ−1 rearranges 3D grid pose D
3D

to target 3D human
pose G

3D
. (b) The internal architecture of D-GridConv module. The output grid pose is obtained by summing up two-branched

convolution results of padded inputs.

complished by adding the following two constraints to φ:

Sp,i ×
∑

q∈N(p)

Sq,j ≥ 1, ∃p ∈ [1, HP ], ∀(i, j) ∈ E (2)

J∑
k=1

Sp,k = 1, ∀p ∈ [1, HP ], (3)

where N(·) denotes the neighborhood of a certain grid node,
namely four adjacent nodes in the horizontal and vertical
directions.

On the one hand, by satisfying Equation (2), originally
connected body joints remain adjacent in the resulting grid
pose. On the other hand, Equation (3) restricts each row of
S as a one-hot vector, which allows each grid node to have
explicit semantic meaning (coordinate of a specific joint).
Equation (2) and (3) produce replicants of some joints in
the resulting grid layout and provide a loose collection of
solutions. This formulation of SGT earns two merits for in-
cubating handcrafted design and the learnable one.
Merits of SGT. (1) Grid nodes having both vertical and hor-
izontal edges offer multiple connection types for depicting
joint relationships, which allows us to handcraft a semanti-
cally richer pose structure. (2) A large number of solutions
existing in the assignment space make it possible to define
a learnable SGT by first describing the space in continuous
distribution and then searching an optimal point.

Two Designs for Implementing SGT
In light of the above discussion, we define and analyze the
advantages of SGT. Next, we provide a handcrafted SGT as
a basic design. And then, we present AutoGrids that auto-
matically learns SGT as a generalized design.
Handcrafted SGT design. We heuristically make the result-
ing grid pose well encode both the vertical (along kinematic
forward direction) and the horizontal (along kinematic peer
direction) relationships of body joints to the root joint (e.g.,
torso joint), preserving prior joint connections of the skele-
ton pose graph structure. The corresponding grid layout is
shown in Figure 2. Some joints have replicants in the grid,
which are averaged during inverse SGT. In Section 4, we test

K
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𝜙

𝜙!"

Figure 2: Handcrafted SGT. In a heuristic manner, torso joint
is set as the anchor. The remaining joints are arranged along
kinematic forward and peer directions into the vertical and
horizontal directions of the grid structure.

the efficacy of such a handcrafted layout and compare it with
many other variants.

Although handcrafted SGT already achieves remarkable
performance, it still faces some issues, such as the scenario
using a new definition of skeleton, where redesigning of
SGT is required. It motivates us to seek an automatic formu-
lation and to further excavate the learning potential of grid
representation.
Learnable SGT design. We shelve the constraint on pre-
serving prior graph-structured joint connections defined in
Equation (2), and propose a learnable module called Auto-
Grids to learn an adaptive assignment matrix conditioned on
the input human skeleton pose, which is jointly optimized
with our lifting network (its architecture will be clarified
later).

To learn an assignment matrix S filled by discrete binary
values, the difficulty lies in how to make the training process
differentiable. To address this problem, we adopt Gumbel
Softmax (Jang, Gu, and Poole 2017) which uses a contin-
uous distribution of assignment matrix to approximate the
sampling of S. Let Sprob ∈ RHP×J be a probability distri-
bution of an assignment matrix filled by continuous positive
values, whose element Sprobij indicates the probability score
assigning joint Gj of skeleton pose graph to grid node Di.

During training, AutoGrids module generates a soft as-
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Figure 3: Illustration of the learning process of AutoGrids.

signment matrix Ssoft by:

Ssoft = Sprob + ε, (4)

where ε ∈ RHP×J is a Gumbel noise that assists to resam-
ple the soft assignment matrix Ssoft from the probability
distribution Sprob. For forward inference, the desired binary
assignment matrix S can be easily determined by taking the
highest probability response per row on Ssoft according to:

Si = onehot
(
argmax

j
Ssoftij

)
. (5)

This discretization operation cuts off the backward gradi-
ent flow during training, so we use straight-through estima-
tor (Courbariaux, Bengio, and David 2015) for parameter
update. Specifically, in the backward, continuous gradient
approximation is used to directly update Ssoft.

Introduced noise interference encourages the exploration
on different grid pose proposals, which facilitates AutoGrids
module to identify a decent grid layout. Figure 3 illustrates
the learning process of AutoGrids. In the implementation,
AutoGrids module is jointly trained with the lifting network
in an end-to-end manner. Experiments in Section 4 show that
the learnable SGT works better than the handcrafted design.
And promising results of two designs validate the great po-
tential of grid representation learning paradigm.

Grid Convolution and Its Dynamic Form
Given a constructed grid pose D, now we can easily define
convolution operation on grid pose, dubbed GridConv, re-
sembling regular convolution operations in image space.
Vanilla form of GridConv. Mathematically, standard Grid-
Conv operation is defined as:

Dout =W ∗Din, (6)

where ∗ denotes the convolution operation; Din ∈
RH×P×Cin

and Dout ∈ RH×P×Cout

denote the in-
put feature and the output feature, respectively; W ∈
RK×K×Cin×Cout

denotes the convolutional kernel with ker-
nel sizeK×K. With proper padding strategy, the spatial size
H×P is maintained throughout the input and output of a
GridConv layer, which sharply contrasts with prevalent con-
volutional neural networks for image recognition tasks that
typically reduce spatial feature size at multiple stages.
Dynamic form of GridConv. According to the above def-
inition, with vanilla GridConv, convolutional kernel W is

𝑃

𝐻∗
𝜙

(a) Vanilla Grid Convolution

𝜋 %

𝜶⊙𝑾
(b) Dynamic Grid Convolution

𝐻×𝑃
⨀…

𝑾𝜶

………
{ }

𝑾

Figure 4: Illustration of (a) Vanilla GridConv and (b) Dy-
namic GridConv. For simplicity, just show a single filter of
the convolutional kernel.

shared to the input feature, with no consideration of differ-
ent grid locations or diverse body motions. To strengthen
its feature learning ability on rich contextual cues, we lever-
age the attention mechanism conditioned on the input fea-
ture to generate attentive scaling factors to adjust the con-
volutional kernel, making grid convolution operations input-
dependent, spatial-aware and grid-specific. We call this vari-
ant Dynamic Grid Convolution (D-GridConv). Specifically,
following Equation (6), D-GridConv is defined as:

α = π(Din) (7)

Dout
ij = (αij �W ) ∗Din

δij , (8)

where π denotes the attention module (defined as an SE-
typed structure (Hu, Shen, and Sun 2018)) to generate the
input-dependent scaling factor α ∈ RH×P×K×K for adjust-
ing the convolutional kernel W . Specifically, W is multi-
plied by αij ∈ RK×K on each grid patch in an element-
wise manner across channel dimension. δij denotes the in-
dex vector of local grid patch centered on grid (i, j) where
i ∈ [1, H], j ∈ [1, P ]. Figure 4a and 4b respectively illus-
trate how vanilla GridConv acts and how the attentive factor
makes D-GridConv dynamically change with respect to grid
pose. Custom-designed attention predictor on grid convolu-
tion distinguishes D-GridConv from the series of existing
attention methods.

Grid Lifting Network
With the above two components, SGT and D-GridConv, now
we can construct a new category of fully convolutional lift-
ing network in the grid pose domain, which we call Grid
Lifting Network (GLN). We use φ to map either detected or
labeled 2D pose G

2D
to 2D grid pose D

2D
as the input to

GLN. Then GLN uses a D-GridConv layer to expand the
channel dimension of the 2D grid pose from 2 to 256, next
uses two residual blocks (each incorporates two D-GridConv
layers and a skip connection) to learn latent feature embed-
ding progressively, and then uses another D-GridConv layer
to shrink the channel dimension from 256 to 3, and finally
gets 3D pose estimate G

3D
by applying φ−1 over the 3D

output from the last D-GridConv layer. Figure 1 shows an
architectural overview of our GLN. The entire processing
pipeline of our GLN takes the following form:

G
3D

= φ−1 (GLN (φ (G
2D

))) . (9)
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GLN is trained by minimizing the L2-norm distance be-
tween the inverse 3D pose in graph structure G

3D
and the

ground truth pose G
GT

3D
over all training samples:

L = ||G
3D
−G

GT

3D
||

2

2
. (10)

Relationship with GCN
The proposed grid-structured representation learning
paradigm mainly differs from GCN in two aspects: (1)
Data structure. Grid pose encodes parent-child relation
(along kinematic forward direction) and symmetry relation
(along kinematic peer direction) in the bidirectional layout,
yet graph pose encodes only the former one. (2) Feature
mapping scheme. GridConv aggregates all latent channels
of the neighboring nodes in a single step, yet GCN separates
it into two steps recognized as latent feature mapping and
neighborhood aggregation. The single-step scheme allows
GridConv to fully exploit relations of latent features.

Experiments
Datasets
Human3.6M. It is the largest indoor 3D human motion
benchmark with 3D labels collected by motion capture sys-
tem (Ionescu et al. 2014). The dataset consists of 11 ac-
tors playing a variety of activities. We follow the convention
that takes Subject 1,5,6,7,8 as the training set and Subject
9,11 as the evaluation set. We measure the result by Mean
Per Joint Position Error (MPJPE) in millimeters under three
protocols. Protocol 1 (P1) takes 2D pose detection from
HRNet (Sun et al. 2019) as input. Protocol 1* (P1*) takes
ground truth 2D pose as input. Protocol 2 (P2) takes 2D
pose detection as input and measures 3D error after aligning
3D estimate to the ground truth through rigid alignment.
MPI-INF-3DHP. It is another 3D human motion bench-
mark with 3D labels obtained by multi-view reconstruc-
tion (Mehta et al. 2017a). To evaluate the generalization
ability of our method, we consider challenging cross-dataset
evaluation, applying the model trained on Human3.6M for
direct test on the evaluation set of MPI-INF-3DHP. The eval-
uation metrics include MPJPE, Percentage of Correct Key-
points (PCK), and Area Under the Curve (AUC) of PCK.

Implementation Details
Considering that the number of body joints J popularly used
for these two datasets is 17, the size of grid pose H×P
should be no smaller than 6×3 or 5×4 due to HP≥J . We
use a grid pose with 5×5 size as our default setting.

In the grid lifting network, each D-GridConv layer is
composed of two-branch D-GridConv, batch normalization,
ReLU, and dropout operations. The attention module of D-
GridConv consists of global average pooling followed by
batch normalization and ReLU, two linear layers (reducing
channel dimension first to 16 and further to 3), and a Sig-
moid activation function. The convolutional kernel size is
fixed to 3×3. Two-branch D-GridConv divides the feature
extraction into two branches, applying grid convolution on
circular padded and replicate padded grid pose respectively,
and finally outputs the sum of their results.

We train the model with Adam optimizer using a batch
size of 200 and a learning rate starting at 0.001 for 100
epochs. In AutoGrids, Sprob is initialized by handcrafted
SGT for 5×5 grid and by random value for other sizes. We
stop adding Gumbel noise at the 30th epoch to slow down
the rate of grid pose changes. Our model has totally 4.79
million learnable parameters with 0.04 million from the at-
tention modules and <1k learnable parameters from Au-
toGrids. We train and test the model on a single NVIDIA
1080Ti GPU. Commonly, one run of model training takes
about 40 hours, and the runtime speed is over 1600 FPS.

Comparison with State-of-the-Art Methods
First, we describe experimental comparisons under conven-
tional single-dataset evaluation on Human3.6M and chal-
lenging cross-dataset evaluation on MPI-INF-3DHP.
Results on Human3.6M. In the upper half part of Table 1,
we compare our method with mainstream lifting methods
on Human3.6M. Note that two works (Ci et al. 2019; Zeng
et al. 2021) marked by § first predict 2D pixel coordinate
and a depth value for each joint, and then post-process them
into 3D physical coordinate with given camera intrinsics and
body root position in camera space. For a fair comparison
with them, we also report our result §, showing remark-
able gains (>1.6mm). For those approaches dealing with
temporal 2D pose input, we report their single-frame re-
sults. We can see that our method achieves the best MPJPE
of 47.6mm compared to existing lifting works. And data
normalization strategy § pushes our performance further to
46.3mm, showing great margins against lifting methods.

In the lower half part of Table 1, we jointly train the
2D detector and our grid lifting network in an end-to-end
manner, and compare our method to mainstream end-to-end
methods. Joint training improves our method to correct erro-
neous 2D detection results and shows significant model per-
formance improvements against the lifting-alone training.
Besides, our model from joint training outperforms most
end-to-end methods and approaches state of the art.

We further evaluate our method under all three proto-
cols, and summarize the performance comparison in Table 2.
Generally, our method outperforms most of existing works
under 2D ground truth input (P1*). When adopting data nor-
malization strategy §, our method is superior to state of the
arts under both 2D detection input and GT input.
Results on 3DHP. To better explore the generalization abil-
ity of our method, we compare it with previous works that
adopt cross-dataset evaluation. Detailed results are shown in
Table 3, in which we also include existing works performing
both from-scratch training and evaluation on 3DHP, in order
to have a more comprehensive comparison. We can observe
that our method outperforms all methods by significant mar-
gins with respect to all three metrics.

Qualitative Results
Next, we provide some qualitative comparisons of our best-
performed model trained on Human3.6M to illustrate the
ability to handle challenging scenarios with various view-
points and severe occlusions. Figure 5a and 5b show visual-
ization results respectively on Human3.6M and on 3DHP.
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Method Dir Dis Eat Gre Phon Phot Pos Pur Sit SitD Smok Wait Dog Wal Tog Avg

Martinez 2017 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Lee 2018 43.8 51.7 48.8 53.1 52.2 74.9 52.7 44.6 56.9 74.3 56.7 66.4 47.5 68.4 45.6 55.8
Fang 2018 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Zhao 2019 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6
Pavllo 2019 47.1 50.6 49.0 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8
Sharma 2019 48.6 54.5 54.2 55.7 62.6 72.0 50.5 54.3 70.0 78.3 58.1 55.4 61.4 45.2 49.7 58.0
Ci 2019 § 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7
Cai 2019 46.5 48.8 47.6 50.9 52.9 61.3 48.3 45.8 59.2 64.4 51.2 48.4 53.5 39.2 41.2 50.6
Li 2020 47.0 47.1 49.3 50.5 53.9 58.5 48.8 45.5 55.2 68.6 50.8 47.5 53.6 42.3 45.6 50.9
Zeng 2020 44.5 48.2 47.1 47.8 51.2 56.8 50.1 45.6 59.9 66.4 52.1 45.3 54.2 39.1 40.3 49.9
Zeng 2021 § 43.1 50.4 43.9 45.3 46.1 57.0 46.3 47.6 56.3 61.5 47.7 47.4 53.5 35.4 37.3 47.9
Ours 43.1 47.7 44.8 44.9 50.7 55.1 46.3 42.6 53.7 63.9 46.3 45.5 50.1 38.6 40.1 47.6
Ours § 39.9 47.7 44.7 43.9 49.2 53.5 44.4 43.7 53.1 61.6 45.4 44.7 47.4 37.7 37.9 46.3

Sun 2018 47.5 47.7 49.5 50.2 51.4 55.8 43.8 46.4 58.9 65.7 49.4 47.8 49.0 38.9 43.8 49.6
Yang 2018 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Moon 2019 50.5 55.7 50.1 51.7 53.9 55.9 46.8 50.0 61.9 68.0 52.5 49.9 41.8 56.1 46.9 53.3
Moon 2020 - - - - - - - - - - - - - - - 55.7
Zhou 2021 34.4 42.4 36.6 42.1 38.2 39.8 34.7 40.2 45.6 60.8 39.0 42.6 42.0 29.8 31.7 39.9
Ours e2e 36.9 44.4 41.9 43.3 45.6 47.8 43.0 40.7 50.7 60.6 44.3 43.6 43.9 33.9 35.0 43.7

Table 1: MPJPE comparison (mm) of our method against both mainstream lifting and end-to-end methods on Human3.6M. For
the comparison with lifting methods (upper half of the table), we report the results under Protocol 1 using 2D detection input.
T=1 denotes single-frame results of temporal methods. § denotes estimating 2D pixel and 3D depth jointly. For the comparison
with end-to-end methods (lower half of the table), we report the results under image input.

Method Special Mark MPJPE
P1 P1* P2

Martinez 2017 - 62.9 45.5 47.7
Zhao 2019 - 57.6 43.8 -
Fang 2018 - 60.4 - 45.7
Sharma 2019 - 58.0 - 40.9
Pavllo 2019 T=1 51.8 - 40.0
Ci 2019 § 52.7 36.3 42.2
Cai 2019 T=1 50.6 38.1 40.2
Zeng 2020 - 49.9 36.4 -
Li 2020 - 50.9 34.5 38.0
Yu 2021 - 67.0 40.1 -
Gong 2021 16 joints 50.2 36.9 39.1
Zeng 2021 § 47.9 30.4 39.0

Ours - 47.6 36.4 37.4
Ours § 46.3 29.5 37.6

Table 2: Comparison on Human3.6M under all protocols. §
denotes estimating 2D pixel and 3D depth jointly.

Ablation Study
Finally, we provide a lot of ablative experiments to study
different components and design aspects of our GLN. All
ablative experiments are performed on Human3.6M dataset.
Grid versus Graph. Grid pose has a similar structure to
graph pose, which makes it possible to be combined in graph
convolution framework. We investigate the combination by
setting two kinds of input pose: (1) graph-structured pose
having handcrafted-grid topology, denoted as Gcraft; (2)
handcrafted grid pose, denoted as Dcraft. We select two
GCN baselines LCN and SemGCN. For Dcraft, we mod-
ify their convolution layers to receive 5×5 grid input. Re-
sults shown in Table 4 demonstrate three facts. First, results
onGcraft (43.8→41.8, 39.7→39.4) indicate that grid-based
topology is helpful to pose learning. Second, results on

Method Cross Eval PCK AUC MPJPE

Mehta et al. 2017a 7 76.5 40.8 117.6
Mehta et al. 2017b 7 76.6 40.4 124.7
LCR-Net 2017 7 59.6 27.6 158.4
Zhou et al. 2017 7 69.2 32.5 137.1
Multi Person 2018 7 75.2 37.8 122.2
OriNet 2018 7 81.8 45.2 89.4

HMR 2018 3 77.1 40.7 113.2
LCN 2019 3 74.0 36.7 -
Li et al. 2020 3 81.2 46.1 99.7
SRNet 2020 3 77.6 43.8 -
SkeletalGCN 2021 3 82.1 46.2 -
PoseAug 2021 3 88.6 57.3 73.0
Ours 3 89.2 57.6 72.1

Table 3: Performance comparison on MPI-INF-3DHP.

Method Original Gcraft Dcraft

SemGCN (2019) 43.8 41.8 43.5
LCN (2019) 39.7 39.4 39.5
GridConv - - 39.0
D-GridConv - - 37.1

Table 4: Ablation study of applying grid pose on GCN meth-
ods. We report MPJPE under ground truth input.

Dcraft indicate that employing grid pose on GCN does not
ensure better performance (41.8→43.5, 39.4→39.5). Last,
GridConv family performing better indicates that grid con-
volution is more effective and more suitable for grid pose.
SGT designs for constructing grid pose. Although we pro-
vide both handcrafted and learnable SGT designs, a more
straightforward SGT design is to generate a grid pose ran-
domly. Hence it is necessary to compare their effectiveness.
Accordingly, we conducted a set of ablative experiments us-
ing these three designs separately to construct 5×5 grid pose,
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Li et.al. Gong et.al. OursLi et.al. Gong et.al. Ours

(a) Evaluation results on Human3.6M test set.
Li et.al. Gong et.al. Ours Li et.al. Gong et.al. Ours

(b) Cross-dataset results on MPI-INF-3DHP test set.

Figure 5: Visualization comparison between top-performing
methods and GLN. GT in blue and prediction in red.

Grid Pose by P1 P1* P2

Random SGT #1 49.3 38.5 38.5
Random SGT #2 49.5 38.2 38.5
Random SGT #3 49.5 37.9 38.3
Random SGT #4 49.6 37.8 38.4
Mean over #1-4 49.5 38.1 38.4

Handcrafted SGT 47.9
2.8%↓ 37.1

1.9%↓ 37.9
1.0%↓

Learnable SGT 47.6
0.6%↓ 36.4

1.9%↓ 37.4
1.3%↓

Table 5: Ablation study on GLN using different SGT designs
to construct grid pose. The size of grid pose is fixed to 5×5.

and report results in Table 5. When generating a random grid
pose, each joint is forced to appear at least once. Surpris-
ingly, it can be observed that random grid layouts show good
performance even with no semantic skeleton topology con-
straint contained. Comparatively, our handcrafted and learn-
able designs are obviously better than random ones.

Analysis of learnt grid pose patterns. To have a better un-
derstanding of learnable SGT design, in Figure 6, we visu-
alize two learnt grid pose patterns converted into an equiva-
lent graph structure where dotted edges denote neighboring
joints in grid pose. Tthe learnt grid pose patterns maintain
fewer skeleton edges, yet establish new edges to keep all
graph nodes reachable, which include many long-distance
connections (e.g. head to knees).

Grid size. A critical question is how to select a proper size
H×P for grid pose. Accordingly, we conducted an experi-
ment to compare the performance of training our lifting net-
work with different H×P settings of grid pose. Detailed re-
sults are shown in Figure 7. It demonstrates that 5×5 size
reaches the best performance, hence is set as the default.

Grid pose with different body joint numbers. A skeleton
pose with 17 body joints is used in our main experiments,
following many existing works. Table 6 shows results of
investigating the generalization ability of our method with
another skeleton of 32 body joints. Additional joints enrich
motion information and make the task more challenging.

MPJPE(P1*): 37.1
# Graph Edge: 16
# Extra Edge: 17

(a) Handcrafted.

MPJPE(P1*): 36.4
# Graph Edge: 9
# Extra Edge: 27

(b) Learnt #1.

MPJPE(P1*): 36.5
# Graph Edge: 10
# Extra Edge: 24

(c) Learnt #2.

Figure 6: Visualization of handcrafted and learnt grid pose
patterns converted into an equivalent graph structure.

Body Joint # (J)
Grid Pose Size (H×P )

17
5×5

32
7×5 ∆

Handcrafted SGT 37.1 35.0 2.1
Learnable SGT 36.4 33.4 3.0

Table 6: Ablation study on using different numbers of body
joints as input. We report MPJPE under ground truth input.

5 6 7
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36.4 37.0 39.8

38.1 37.8 37.7

N/A 37.2 37.0 37

38

39
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PJPE (G
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Figure 7: Ablation study on the effect of grid size H×P .

GridConv Channel Spatial Chn+Spat D-GridConv30

35

40

45

50

55

M
PJ
PE

(m
m
) 50.1

48.7 48.7 48.9 47.9

39.0 38.2 38.0 37.5 37.1

HRNet input
GT input

Figure 8: Ablation study on different attention designs.

Attention designs. Regarding the attention module for D-
GridConv, we also tried several other designs besides the
proposed one including: (a) channel-wise attention, similar
to SENet (Hu, Shen, and Sun 2018); (b) spatial-wise atten-
tion, a reduced version of CBAM (Woo et al. 2018); (c) spa-
tial+channel attention, similar to CBAM. Figure 8 compares
the performance, showing our design performs the best.

Conclusion
We take the lead in extending convolution operations to es-
timate 3D human pose from 2D detection by shifting pose
representation from graph to weave-like grid pose through
Semantic Grid Transformation. Based on grid layout, we
formulate grid convolution and construct grid lifting net-
work. Extensive experiments on two public benchmarks
demonstrate superiority of our method to previous works.
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