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Abstract

Temporal Activity Detection aims to predict activity classes
per frame, in contrast to video-level predictions in Activity
Classification (i.e., Activity Recognition). Due to the expen-
sive frame-level annotations required for detection, the scale of
detection datasets is limited. Thus, commonly, previous work
on temporal activity detection resorts to fine-tuning a classifi-
cation model pretrained on large-scale classification datasets
(e.g., Kinetics-400). However, such pretrained models are not
ideal for downstream detection, due to the disparity between
the pretraining and the downstream fine-tuning tasks. In this
work, we propose a novel weakly-guided self-supervised pre-
training method for detection. We leverage weak labels (classi-
fication) to introduce a self-supervised pretext task (detection)
by generating frame-level pseudo labels, multi-action frames,
and action segments. Simply put, we design a detection task
similar to downstream, on large-scale classification data, with-
out extra annotations. We show that the models pretrained with
the proposed weakly-guided self-supervised detection task out-
perform prior work on multiple challenging activity detection
benchmarks, including Charades and Muli THUMOS. Our
extensive ablations further provide insights on when and how
to use the proposed models for activity detection. Code is
available at github.com/kkahatapitiya/SSDet.

Introduction

Pretraining has become an indispensable component in the
deep learning pipeline. Most computer vision tasks leverage
large-scale labeled or unlabeled data to do pretraining in a
supervised or unsupervised way, which gives performance
boosts in downstream tasks, especially when training data
is scarce. Such benefits of pretraining have been observed
in many applications including object detection (Mahajan
et al. 2018; Dai et al. 2021b), segmentation (Poudel, Liwicki,
and Cipolla 2019), video understanding (Ghadiyaram, Tran,
and Mahajan 2019), reinforcement learning (Schwarzer et al.
2021) and language modeling (Liu et al. 2020). This behavior
can be attributed to models becoming more robust by looking
at more data, which helps generalize to unseen distributions
in the downstream tasks.

Even though pretraining generally helps downstream tasks,
the amount of boost depends on the compatibility of the pre-
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Figure 1: Our weakly-guided self-supervised pretraining strat-
egy: Previous work on temporal activity detection are usu-
ally pretrained on large-scale activity classification datasets
(e.g., Kinetics-400 (Carreira and Zisserman 2017)). However,
there is a disparity between pretraining and downstream tasks,
which hurts the detection performance. To bridge this gap, we
propose a new self-supervised pretext task (detection) which
leverages already-available weak labels (classification) to in-
troduce frame-level pseudo labels, multi-action frames and
action segments, similar to downstream. In fact, we design a
detection pretraining task on large-scale classification data,
without extra annotations.

trained task and the downstream task (Abnar et al. 2022). The
pretraining task (or distribution) should be as close as pos-
sible to the downstream task (or distribution) to achieve the
highest possible gain. However, in a traditional pretraining
pipeline, such compatibility may not always be an option.
We only have a few large-scale labeled datasets limited to
general tasks such as classification. Hence, models for most
downstream tasks are usually pretrained in a classification
task on either ImageNet-1K (Deng et al. 2009) (image do-
main) or Kinetics-400 (Carreira and Zisserman 2017) (video
domain), which often leaves a disparity between pretraining
and downstream tasks.

For instance, in temporal activity detection— which is de-
fined as predicting (one or more) activity classes per frame—
we have the same observation: although pretraining on ac-
tivity classification improves downstream detection perfor-
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Figure 2: Performance comparison between models pre-
trained for classification and the proposed weakly-guided
self-supervised detection, on downstream Charades (Sigurds-
son et al. 2016) activity detection setting. Representative
models pretrained for detection, using Volume Freeze, Vol-
ume MixUp and Volume CutMix achieve significant perfor-
mance boosts over their classification pretrained counterparts.
Relative improvement is shown as Classification-pretrained
— Detection—pretrained — Detection-pretrained (Ensemble).
Model names are shown for Classification pretrained versions
in space (red circles).

mance, it is limited by the disparity between tasks. As a
model can learn to aggregate temporal information when
pretraining for activity classification (looking at the bigger
picture), it may not be well-suited to do downstream activity
detection, which is fine-grained and requires the model to
retain temporal information as much as possible (looking
at the composition of atomic actions). To address this is-
sue, multiple previous work have proposed specific temporal
(Piergiovanni and Ryoo 2018, 2019; Kahatapitiya and Ryoo
2021) or graphical (Ghosh et al. 2020; Mavroudi, Haro, and
Vidal 2020) modeling in the downstream to capture aspects
not seen in the pretraining data, such as long-term motion,
human-object interactions, or multiple overlapping actions
in fine detail. However, it can be difficult for such finetuning
techniques to alleviate the data disparity effectively.

In this work, we propose a weakly-guided self-supervised
pretraining method for activity detection, using large-scale
classification data with no extra annotations. We augment
pretraining data to capture fine-grained details and use de-
tection as the pretraining (or pretext) task — a step closer
to bridging the gap with downstream detection (see Fig. 1).
Specifically, we first extend weak video-level labels of classi-
fication clips to create pseudo frame-level labels. Then, we
propose three self-supervised augmentation techniques to
generate multi-action frames and action segments within a
clip. Namely, we introduce Volume Freeze, Volume MixUp
and Volume CutMix. Volume Freeze creates a motion-less seg-
ment within a clip introducing segmented actions, whereas
Volume MixUp and Volume CutMix seamlessly merge multi-
ple clip segments into one, which tries to mimic the down-
stream data distribution of multiple actions per frame. Based
on the augmented data, models are pretrained on an activity
detection task. Our evaluations validate the benefits of the pro-
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posed pretraining strategy on multiple temporal activity de-
tection benchmarks such as Charades (Sigurdsson et al. 2016)
(see Fig. 2) and MultiTHUMOS (Yeung et al. 2018), with
multiple models such as X3D, SlowFast and Coarse-Fine.
We further investigate the extent of the detection-pretrained
features in our ablations and, recommend when and how to
use them best.

Our method leverages weak labels during pretraining, hav-
ing downstream settings unchanged. Also, we design a pre-
text task based on augmentations similar to the work in self-
supervision. Considering the traits of both domains, we term
our work as weakly-guided self-supervision.

Related Work

Video understanding: Spatio-temporal (3D) convolutional
architectures (CNNs) are commonly used for video modeling
(Tran et al. 2015; Carreira and Zisserman 2017; Xu, Das,
and Saenko 2017). Among these, multi-stream architectures
fusing different modalities (Simonyan and Zisserman 2014;
Feichtenhofer, Pinz, and Zisserman 2016) or different tem-
poral resolutions (Feichtenhofer et al. 2019) have achieved
state-of-the-art results. To improve the efficiency of video
models, Neural Architecture Search (NAS) has also been
explored recently in (Ryoo et al. 2020; Feichtenhofer 2020).
Multiple other directions either try to take advantage of long-
term motion (Yue-Hei Ng et al. 2015; Varol, Laptev, and
Schmid 2017; Piergiovanni and Ryoo 2018), graphical mod-
eling (Zhao, Thabet, and Ghanem 2021; Mavroudi, Haro,
and Vidal 2020), object detections (Baradel et al. 2018; Zhou
et al. 2019) or attention mechanisms (Chang et al. 2021; Fan
et al. 2021) to improve video understanding.

Fine-grained activity prediction: Making predictions per
frame is significantly challenging compared to activity clas-
sification (i.e., making predictions per video). It has two
flavors: (1) Temporal Activity Localization (TAL) which
predicts activity proposals: boundaries and corresponding
classes, assuming continuity of actions (Shou, Wang, and
Chang 2016; Escorcia et al. 2016; Buch et al. 2017; Yeung
et al. 2016; Shou et al. 2017; Zhai et al. 2021; Tirupattur et al.
2021; Liu et al. 2021; Guo et al. 2022), and (2) Temporal
Activity Detection which explicitly predicts classes per frame
(Piergiovanni and Ryoo 2019; Kahatapitiya and Ryoo 2021;
Dai et al. 2021a). We focus on the latter. Datasets for such
tasks provide frame-level annotations with possibly multiple
classes per frame (Caba Heilbron et al. 2015; Sigurdsson et al.
2016; Yeung et al. 2018).

Limited Supervision: This includes unsupervised (Sener
and Yao 2018; Kukleva et al. 2019; Gong et al. 2020),
self-supervised (Jain, Ghodrati, and Snoek 2020; Chen
et al. 2020a), weakly-supervised (Sun et al. 2015) or semi-
supervised (Ji, Cao, and Niebles 2019) settings, based on the
level of annotations used (Chen et al. 2022). Self-supervision
in particular, explores two directions: pretext tasks (Misra,
Zitnick, and Hebert 2016; Wei et al. 2018; Purushwalkam
et al. 2020; Zhukov et al. 2020; Recasens et al. 2021) or
contrastive learning (He et al. 2020; Chen et al. 2020b; Chen
and He 2021).
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Figure 3: Volume Augmentations for our weakly-guided
self-supervised detection pretraining: Volume Freeze, Vol-
ume MixUp and Volume CutMix. We first extend video-level
labels (of single-action videos from Kinetics-400 (Carreira
and Zisserman 2017)) into every frame, creating frame-level
pseudo labels. Next, to introduce action segments and multi-
action frames similar to downstream detection, we propose
the above three augmentation strategies. Volume Freeze stops
the motion of a video segment, creating a background seg-
ment (assuming no action can be performed without mo-
tion). Hard-labels are assigned for action and background
accordingly. Volume MixUp and CutMix introduce a seam-
less spatio-temporal (random) transition between two clips
inspired by similar ideas in image domain (Zhang et al. 2018;
Yun et al. 2019). Here, labels are weighted to create soft-
labels based on the alpha values or the area of each frame,
respectively. Augmented frames are best viewed zoomed-in.

Prior work on temporal activity localization have explored
limited supervision either during pretraining (Zhang et al.
2022; Xu et al. 2021a; Alwassel, Giancola, and Ghanem
2021; Xu et al. 2021b), or the downstream (Richard, Kuehne,
and Gall 2017; Nguyen et al. 2018; Liu et al. 2019; Yu et al.
2019; Liu, Jiang, and Wang 2019; Shi et al. 2020). We focus
on pretraining, defining a pretext task (as in self-supervision)
which also depends on video-level weak annotations to do
fine-grained predictions (as in weak-supervision). We keep
the downstream settings unchanged, with full supervision.
Our formulation however, is with the flavor of frame-level
predictions (activity detection), rather than predicting tempo-
ral proposals with boundaries and class labels (TAL). Thus,
ours is orthogonal to above work on pretraining, but can be
complementary to those on downstream finetuning.

Weakly-guided Self-supervised Pretraining

We introduce a self-supervised pretraining task for activity
detection, which leverages already-available weak labels in
large-scale classification datasets. This idea is primarily moti-
vated based on removing the disparity between classification
pretraining and downstream detection. Almost all the tempo-
ral activity detection works are pretrained for classification on
large-scale datasets such as Kinetics-400 (Carreira and Zisser-
man 2017). This is because (1) video models need large-scale
data to mitigate overfitting during training, and (2) detection
annotations (frame-level) are too expensive to collect for a
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large enough dataset. Even with such classification-based pre-
training at scale, the performance on downstream detection
task is unsatisfactory. One reason for this is the complexity of
the downstream task: predicting fine-grained activity classes
per frame is challenging. Also, it can be partially attributed
to the striking difference in tasks (and data distributions)
during pretraining and downstream detection. As shown in
Fig. 1, pretraining videos in general (eg: Kinetics-400) have
only a single action per clip with video-level annotations,
whereas, in a downstream detection task (eg: Charades), usu-
ally a model needs to predict multiple actions per each frame.
It means that although such classification-based pretraining
leveraged large-scale labeled data for training, the inherent
bias which comes with it acts as a limiting factor for the
downstream performance.

We try to bridge this gap by proposing a weakly-guided
self-supervised pretraining task that closely resembles the
downstream task. It shows similarities to both weak- (as we
leverage weak labels) and self-supervision (as we design a
pretext task based on augmentations). Specifically, we in-
troduce frame-level pseudo labels followed by multi-action
frames and action segments through a set of data augmenta-
tion strategies. By doing so, we benefit from the scale of data,
while having a similar data distribution (in terms of having
overlapping and segmented actions) as downstream detec-
tion. Next, we will introduce our pseudo labeling, volume
augmentations, and how we combine these ideas.

Frame-level Pseudo Labels

Downstream detection is about fine-grained predictions of
activity classes, which requires frame-level annotations to
train. However, large-scale classification datasets used for
pretraining contain video-level annotations. For instance, we
consider commonly-used Kinetics-400 (Carreira and Zisser-
man 2017), which contains a single action per clip with a
video-level label. As we wish to design a pretraining task
that closely-resembles downstream detection, we generate
frame-level labels from the available video-level labels, by
replicating the same label for every frame. Such labels can
be noisy because not every frame in a clip may contain the
annotated single video-level action. However, we know such
clips do not contain any additional actions, at least in the con-
text of the original action categories. It is worth noting that
we do not create new labels, thus no extra annotation effort is
spent generating frame-level pseudo labels for classification
data.

One may also consider a pretraining dataset such as Activ-
ityNet (Caba Heilbron et al. 2015) with multiple actions per
clip, instead of Kinetics-400 (Carreira and Zisserman 2017)
with a single action. In such a setting, an off-the-shelf action
proposal generator can be used to get such pseudo frame-
level labels for the proposed pretraining. However, in this
paper, we consider Kinetics pretraining as commonly-used
in most prior work.

Volume Augmentations

Based on the frame-level pseudo labels, we design a self-
supervised pretext task for detection on the pretraining data.
The idea here is to introduce action segments and multi-action
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Figure 4: Volume Freeze: Given an input clip of length n,
a randomly selected frame r is replicated for a random m
duration and appended in place. Overflowing frames from
the end of the clip (¢ > n) are discarded. Labels are hard
labels: either action or background. Frame number is shown
here with each frame.

frames similar to the downstream data. To do this, we propose
three augmentation methods specifically for video data (i.e.,
spatio-temporal volume): (1) Volume Freeze, (2) Volume
MixUp and, (3) Volume CutMix. Next, we will explain these
concepts in detail.

Volume Freeze: Since downstream data contains multiple
action segments per clip, we want to introduce the notion
of action segments in pretraining data as well. However, the
videos in the pretraining dataset (Kinetics-400) contain only
a single action per clip, in which, it is a challenge to have
such segments. Our solution here is to create an motion-less
(background) segment within a clip. We do this by randomly
selecting a frame in a given clip, and replicating it for a
random time interval (or number of frames). We call this
‘Background’. Such background segments are appended to
the original clip at the corresponding frame location, main-
taining the temporal consistency as much as possible. We
label the frozen segment with a new background label (zero-
label) assuming it does not depict the original action, without
any motion. Although this is a strong assumption (i.e., some
actions can be classified based on appearance only, without
motion), it allows the model to differentiate motion varia-
tions, giving a notion of different action segments. Volume
Freeze augmentation is shown in Fig. 3 (top) and elaborated
Fig. 4. It can be denoted as follows,

VF(v) = concat(v[l : r — 1], {v[r]} ™", v[r + 1 : n — m + 1]),
VF(l) = concat(I[1 : r — 1], {0}, l[r + 1 : n — m + 1]),

where VF(v) and VF(!) denote the augmented video and
associated label in Volume Freeze. Also, v and [ correspond
to a given video clip of length n and its frame-level pseudo
label (one-hot), respectively. We freeze a frame for random
m times (denoted by {-}™) at a random temporal location
r € [1,n — 1], where m € [2,n — r 4 1], and we concate-
nate it to the original clip to create an augmented clip of
the same original length n, discarding overflowing frames.
This guarantees that our model does not benefit from seeing
more frames compared to baseline. Also, the information
loss from discarding frames is not significant, as our clip-
sampling already has a significant randomness. The labels
for the augmented clip are created accordingly, where we
have zero labels for the frozen segment, and original frame-
level labels elsewhere. We further experiment with freezing
multiple segments within a clip, which has a limited gain.
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Volume MixUp: With Volume MixUp, we introduce multi-
action frames to pretraining clips, which originally have a
single action per clip. More specifically, we combine ran-
domly selected two clips with a random temporal overlap, so
that the overlapping region contains two actions per frame.
This is inspired by the MixUp operation in image domain
(Zhang et al. 2018). However, here we focus more on pre-
serving the temporal consistency in Volume MixUp when
combining two clips, by having seamlessly varying temporal
alpha masks for each clip. It means, we have a smooth transi-
tion from one clip to the other within the temporal overlap.
The labels for each clip are weighted with the corresponding
temporal alpha mask to create soft labels. Such an augmented
example with Volume MixUp is given in Fig. 3 (middle) and
elaborated in Fig. 5. This can also be denoted as,

VM(vn,v2)[t] = alt] - va[t] + (1 = aft]) - valt — 1],
VM1, 12)[f] = alf] - L] + (1 — alt)) - Laft — 7],

for two video clips v1 and v, of length ny and ny respectively.
v;[t] and I;[t] denote the ¢-th video frame and its correspond-
ing one-hot labels, and «[t] represents the scalar alpha values
at time ¢ for mixing frames. Both clips are temporally padded
to accommodate corresponding lengths 71, no and random
shift 7. The seamless temporal alpha mask for the overlapping
region is defined as,

n1—t

T (G —) if no + 1> ni,
aft] =
2r — 2t
T[o,1](|n2+n72‘) otherwise,

The truncation operator Tg 1)(-) clips the mask values
within the range of [0, 1]. It is defined in detail in appendix.
This makes «t] to be a piecewise linear function w.r.t. ¢.
In scenario 1 (ny + r > nq), the augmented clip transit as
Clip; — Clips, whereas in scenario 2, it works as Clip; —
Clip, — Clip;. It depends on the clip lengths n;,ny and
the random shift ». More details are in the Appendix. The
two-clips are selected randomly (without any constraints),
and hence the resulting mixed-up clip may contain artifacts.
However, such randomness helps to generalize better, as also
seen in (Zhang et al. 2018).

Volume CutMix: Similar to Volume MixUp, we introduce
multi-action frames with Volume CutMix. Here, given two
clips, we define an overlapping region and assign a seamlessly
changing spatial window for each clip within this region. This
is inspired by CutMix (Yun et al. 2019) operation in image
domain. In Volume CutMix however, we focus on a seamless
transition between clips in time. We introduce two strategies
for Volume CutMix: (1) Transient Window and (2) Transient
View (Constant Window). See Fig. 3 (bottom) and Fig. 6.

Transient Window: This is closely-related to our Volume
MixUp. Given two clips, we insert a random relative shift r
to create a random overlapping region. Clips are temporally
padded at the ends to accommodate different clip lengths
and shift. This can have the same two scenarios as before,
depending on n1,ny and r. However, rather than defining a
scalar alpha mask per frame, now we define a 2D spatial win-
dow M as a mask, which changes seamlessly in time, within
the overlapping region. The soft-labels for the overlapping
region are weighted based on the area of each window. For
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Figure 6: Volume CutMix: We have two settings: (1) Transient Window (top-left) and, (2) Transient View (top-right). In Transient
Window, random relative shift r is given similar to Volume MixUp. Smooth transition between clips is achieved when the
transient window is moving from left to right (this setting can have the same two scenarios as in Volume MixUp). In Transient
View, we have constant windows (half-sized) looking at transient views of the content inside (i.e., the content of each frame is
moved inside the corresponding window with time, in addition to the natural motion of the clip).

convenience, we define the two windows based on a moving location of this vertical plane (w;) can either depend on «t]
vertical plane as shown in Fig. 6. In between two windows, (in Transient Window) or be constant (in Transient View).
we have a short but smooth spatial transition, instead of a
hard spatial boundary. This operation can be denoted as, Combining Augmentations
VC(v1,v2)[t] = M[t] © vit] + (1 — M[t]) © valt — 7], In the previous subsections, we defined the components of
VC(l1,12)[t] = |M[¢]| - Lu[t] + (1 — IM[t]]) - e[t — 7], our pretraining scheme: namely, frame-level pseudo labeling

and volume augmentations. When combining augmentations,

where M(t] (defined below) is the spatial mask at time ¢. we use either (1) joint training or (2) model ensembling.

v; and [; represent a clip and the corresponding one-hot label

. The symbols ® and | - | mean Hadamard (element-wise) In Joint training, we combine the three augmentations during
product and area of the mask (defined as the average of all training. A simpler setting is to apply only a single randomly-
its elements), respectively. More details are in the Appendix. selected augmentation per clip (referred to as Joint train -
Transient View: In this setting, we keep the window size con- smgle)_. Or else, we can app}y up to all 3 augmentations per
stant for each clip (half of the frame) within the overlapping clip with a random probability (referred to as Joint train).
region (not random, but 7 in this case). For each window to Although the latter strategy seems flexible, applying multiple
cover the spatial range of each clip, we move each clip within of the proposed augmentations on a given sample can create
the constant window from left-to-right, in time. This artificial confusing inputs, which are hard to train with.

movement is introduced in addition to the natural motion in

each clip. We have a constant clip length and no random shift In Model ensembling, we apply only a single selected aug-

in this case, since a zero-padding in only one-half of a frame mentation among the proposed Volume Freezing, MixUp,
may cause problems for convolution kernels. With the same and CutMix during training. At inference, we combine pre-
notations as before, the augmented clip and labels can be dictions coming from such separate models trained with each
denoted as, augmentation. By doing so, we can combine the benefits of

VC(v1,v2)[t] = M G w1 [t] + (1 — M) ® vslt], each augmentation, without worrying about the input confu-

sion at training. However, this incurs more compute require-

ment at inference, compared to a jointly trained single model.
The spatial mask M defines a vertical plane to split each For fair comparison, we always report the numbers for joint

frame within the overlapping region into two windows. The training (i.e., same compute budget) alongside ensembles.

VC(ll, lz)[t] =0.5- ll[t] +0.5- lg[t].
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Experiments

To validate the benefits of our proposed method, we pretrain
on commonly-used Kinetics-400 (Carreira and Zisserman
2017) and evaluate on rather-complex Charades (Sigurds-
son et al. 2016) and MultiTHUMOS (Yeung et al. 2018) for
downstream detection, using the efficient video backbone
X3D (Feichtenhofer 2020). In addition to applying the pro-
posed augmentations at the input level, we also run a few ex-
periments with manifold augmentations (Verma et al. 2019),
where each augmentation method is applied to the feature
maps at a random depth of the network.

Kinetics-400 Detection Pretraining

By default, we initialize with our backbone X3D-M (medium)
with checkpoints provided in original work (Feichtenhofer
2020), as in common-practice for activity detection. This
allows shorter pretraining schedules and better convergence
for both our method and baseline. We pretrain X3D for 100k
iterations with a batch size of 64 and an initial learning rate
of 0.05 which is reduced by a factor of 10 after 80k iterations.
We use a dropout rate of 0.5. From each clip, we sample 16
frames at a stride of 5, following the usual X3D training setup.
During training, first, each input is randomly sampled in [256,
320] pixels, spatially cropped to 224x224, and applied a
random horizontal flip. Next, we extend the labels to every
frame as we described earlier, and apply one of the proposed
volume augmentations to a batch of input clips.

It is important to note that both our method and baseline are
always pretrained for the exact same number of iterations (i.e.,
gradient steps) and see a similar amount of data. Although,
Volume MixUp and CutMix combines multiple clips per
datapoint, each clip has a partial visibility, and each datapoint
has the same number of total frames. This results in the same
pretraining cost (see Appendix for details).

Charades Evaluation

We initialize X3D (Feichtenhofer 2020) with checkpoints
from our detection pretraining. From each clip, we sample
16 frames at a stride of 10 and train for 100 epochs with a
batch size of 16. Initially, we have a learning rate of 0.02,
which is decreased by a factor of 10 at 80 epochs. For Coarse-
Fine and SlowFastg., we follow the same two-staged training
strategy as in (Kahatapitiya and Ryoo 2021). We train all
methods on Charades with Binary Cross-Entropy (BCE) as
localization and classification losses. Our models and base-
lines are always trained for same number of total iterations
for fair comparison. At inference, we make predictions for 25
equally-sampled frames per each input in the validation set,
which is the standard Charades localization evaluation proto-
col (Sigurdsson et al. 2016) followed by all previous work.
Also, it is important to note that the original evaluation script
from the Charades challenge scales the Average Precision
for each class with a corresponding class weight. However,
in our ablations, we report the performance on predictions
for every frame, which gives a more fine-grained evaluation
without class-dependent weighting. Performance is measured
using mean Average Precision (mAP).
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Pretrain

Model Mod. mAP (%)

cls. |det.
Two-stream 13D (Carreira et al.) | R+F | v/ 17.22
3D ResNet-50 (He et al.) R |V 18.60
STGCN (Ghosh et al.) R+F | v 19.09
VS-ST-MPNN (Mavroudi et al.) |R+O | v/ 23.70
MS-TCT (Dai et al.) R |V 25.40
PDAN (Dai et al.) R+F | v 26.50
. v 20.66
X3D (Feichtenhofer) R v | (22.36) 23.94
. e . v 21.79
SE™ (Piergiovanni et al.) R v |22.24)23.92
¥ e . v 23.84
TGM + SE* (Piergiovannietal.) | R v 4112550
" . v 22.80
SlowFastj, (Feichtenhofer et al.)| R v |2473) 2532
. - v 25.10
Coarse-Fine (Kahatapitiya et al.) | R v 126.19) 26.95

Table 1: Performance on Charades (Sigurdsson et al. 2016).
We report the performance (mAP), input modalities used
(R: RGB, F: optical flow or O: object), and the pretraining
method: classification (cls.) or the proposed detection (det.).
These results correspond to the original Charades localiza-
tion evaluation setting (i.e., evaluated on evenly-sampled 25
frames from each validation clip). Model ensembles trained
with our detection pretraining significantly outperform their
counterparts, consistently. Coarse-Fine achieves a new state-
of-the-art performance of 26.95% mAP even with RGB
modality only, when pretrained with our proposed method.
Improved results from our pretrained ensembles are in bold
and joint-trained single-models are within (-). The best per-
formance from each pretraining is underlined. Model variants
with X3D backbone are denoted with *.

Results: We report the performance of state-of-the-art
methods comparing their pretraining strategy in Table 1.
These numbers are for the Charades standard evaluation pro-
tocol (Sigurdsson et al. 2016). We see a clear improvement
from the model ensembles pretrained with the proposed de-
tection task across multiple methods. The vanilla X3D (Fe-
ichtenhofer 2020) backbone without any additional modeling
achieves the biggest relative improvement of +3.28% mAP.
Detection pretraining also helps any lightweight temporal
modeling on top of pre-extracted features as in super-events
(Piergiovanni and Ryoo 2018) with a +2.13% mAP and in
TGM (Piergiovanni and Ryoo 2019) with a +1.66% mAP
improvement. Finally, we see the benefits in fully end-to-end
trained multi-stream networks such as SlowFastge (+2.52%
mAP) and Coarse-Fine Networks (Kahatapitiya and Ryoo
2021) (+1.85% mAP). We also show the performance of
our joint-trained single models, for fair comparison under
the same compute budget. Our models consistently outper-
forms baselines. It is important to note that even though our
detection ensembles are compute-heavy compared to base-
lines, they are still an order-of-magnitude efficient compared
to prior state-of-the-art PDAN (Dai et al. 2021a). Note that
SlowFastg. here is a variant of original SlowFast (Feichten-



Model Coarse/ | Fine/ Two-stream

Pretraining method mAP (%) Slow | Fast
Baseline (cls.) 17.28 Slowge; (cls.) - Fastge (cls.) 17.49 |17.28 20.31
Ours (det.) Volume Fr‘eeze 18.79 Slowget (VC) - Fastger (VC) 18.60 [18.99((+0.91) 21.22
w/ single augmentation Volume MixUp 19.18 Coarse (cls.) - Fine (cls.) 18.13 |17.28 23.29
Volume CutMix 18.99 Coarse (VC) - Fine (VC) 18.85 [18.99| (-0.46) 22.83
Ours (det.) Joint train 19.11 Coarse (VC) - Fine (cls.) 18.85 |17.28((+0.28) 23.57
w/ multiple augmentations Ensemble 20.50 Coarse (Ensemble) - Fine (cls.) - - 24.29
(a) Single stream of X3D (Feichtenhofer 2020): Each of =~ Coarse (Ensemble) - Fine (cls. + Ensemble)| - - 24.61

the volume augmentations provide consistent improve-
ments over the classification pretrained baseline. How-
ever, when combining augmentations, ensembles work
best compared to joint-training which can create confus-
ing inputs with multiple augmentations.

(b) Multi-stream SlowFastge (Feichtenhofer et al. 2019)/ Coarse-Fine (Ka-
hatapitiya and Ryoo 2021): Here, we see an interesting observation. Even
though detection pretrained models are consistently better as single-stream
networks (eg: either Coarse/Slow or Fine/Fast), when combined as multi-
stream networks, performance varies. We further investigate why this happens

in Appendix. Model ensembles give consistent improvements as expected.

Table 2: Ablations on Charades (Sigurdsson et al. 2016) with our volume augmentations in single or multi-steam models. Each
augmentation gives performance boosts, and best combined as ensembles. Detection pretrained models do not show gains as
good as baselines at different temporal resolutions or in temporal aggregation. This is discussed in detail in Appendix. Here, We
show the performance in mean Average Precision (mAP) for fine-grained predictions (i.e., making decisions per every frame
rather than evenly-sampled 25 frames from each validation clip).

hofer et al. 2019), with X3D (Feichtenhofer 2020) backbone,
adopted for detection in (Kahatapitiya and Ryoo 2021). We
show the performance vs. compute trade-off graph in Fig. 2.

Ablations: In Table 2, we discuss the benefit of each aug-
mentation, both separately and combined, followed by an
interesting observation in multi-stream models. Each of our
volume augmentation provide consistent gains, with +1.51%
mAP in Volume Freeze, +1.90% mAP in Volume MixUp
and +1.71% mAP in Volume CutMix. When combining aug-
mentations, if we apply multiple of them to a given input, it
may result in confusing frames. Rather, different augmenta-
tions can be complementary when used as ensembles, giv-
ing +3.22% mAP over the baseline (see Table 2a). In multi-
stream models, we observe that our detection pretrained mod-
els do not show similar gains as baselines, (1) at different
temporal resolutions or (2) in temporal aggregation (see Ta-
ble 2b). When selecting models based on this observation,
we see consistent improvement. A detailed discussion on this
and more ablations are included in the Appendix

MultiTHUMOS Evaluation

We follow the same training recipe as in Charades, starting
with a checkpoint pretrained for our detection. At inference,
we make predictions per every frame and report using mAP.

Results: In Table 3, we show that the state-of-the-art mod-
els pretrained with the proposed detection, consistently out-
perform those trained with classification, both in vanilla back-
bones such as X3D (Feichtenhofer 2020) (+3.71% mAP),
and in models which perform temporal modeling on-top of
pre-extracted features as in TGM (Piergiovanni and Ryoo
2019) (+3.99% mAP) or PDAN (Dai et al. 2021a) (+5.15%
mAP). PDAN, with our pretraining, significantly efficient
X3D backbone and only RGB modality achieves competi-
tive performance compared to multi-modal I3D (Carreira and
Zisserman 2017) counterparts.

1084

Pretrain

Model Mod. mAP (%)

cls. |det.
Two-stream I3D (Carreira et al.) | R+F | v/ 36.40
TGM + SE (Piergiovanni et al.) | R+F | v/ 46.40
PDAN (Dai et al.) R+F | vV 47.60
. v 37.17
X3D (Feichtenhofer) R v (38.92) 40.88
e . v 39.16
TGM + SE* (Piergiovanni et al.)| R v |@1.55) 43.15
* . v 39.20
PDAN™ (Dai et al.) R v |(42.13) 4435

Table 3: Performance on MultiTHUMOS (Yeung et al. 2018).
We report the performance (mAP), input modalities used (R:
RGB or F: optical flow), and the pretraining method: clas-
sification (cls.) or the proposed detection (det.). Model en-
sembling trained with our detection pretraining significantly
outperform their counterparts consistently, and shows overall
competitive results even with RGB modality only. Improved
results from our pretrained ensembles are in bold and joint-
trained single-models are within (-). The best performance
from each pretraining strategy is underlined. Model varients
with X3D backbone are denoted with *.

Conclusion

This work introduced a new weakly-guided self-supervised
pretraining strategy for temporal activity detection, leverag-
ing already-available weak labels. We defined a detection
pretraining task with frame-level pseudo labels and three
volume augmentation techniques, introducing multi-action
frames and action segments to the single-action classification
data. Our experiments confirmed the benefits of the proposed
method across multiple models and challenging benchmarks.
As takeaways, we further provide recommendations on when
to use such pretrained models based on our observations.
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