
3D-TOGO: Towards Text-Guided Cross-Category 3D Object Generation

Zutao Jiang1, 6 *, Guangsong Lu 2 *, Xiaodan Liang 3, 4 ,
Jihua Zhu 1 †, Wei Zhang 2, Xiaojun Chang 5, Hang Xu 2 †

1 School of Software Engineering, Xi’an Jiaotong University
2 Huawei Noah’s Ark Lab
3 Sun Yat-sen University

4 MBZUAI
5 ReLER, AAII, University of Technology Sydney

6 PengCheng Laboratory
taozujiang@gmail.com, luguansong@huawei.com, xdliang328@gmail.com,

zhujh@xjtu.edu.cn, wz.zhang@huawei.com, xiaojun.chang@uts.edu.au, chromexbjxh@gmail.com

Abstract

Text-guided 3D object generation aims to generate 3D ob-
jects described by user-defined captions, which paves a flexi-
ble way to visualize what we imagined. Although some works
have been devoted to solving this challenging task, these
works either utilize some explicit 3D representations (e.g.,
mesh), which lack texture and require post-processing for
rendering photo-realistic views; or require individual time-
consuming optimization for every single case. Here, we make
the first attempt to achieve generic text-guided cross-category
3D object generation via a new 3D-TOGO model, which inte-
grates a text-to-views generation module and a views-to-3D
generation module. The text-to-views generation module is
designed to generate different views of the target 3D object
given an input caption. prior-guidance, caption-guidance
and view contrastive learning are proposed for achieving bet-
ter view-consistency and caption similarity. Meanwhile, a
pixelNeRF model is adopted for the views-to-3D generation
module to obtain the implicit 3D neural representation from
the previously-generated views. Our 3D-TOGO model gen-
erates 3D objects in the form of the neural radiance field with
good texture and requires no time-cost optimization for every
single caption. Besides, 3D-TOGO can control the category,
color and shape of generated 3D objects with the input cap-
tion. Extensive experiments on the largest 3D object dataset
(i.e., ABO) are conducted to verify that 3D-TOGO can bet-
ter generate high-quality 3D objects according to the input
captions across 98 different categories, in terms of PSNR,
SSIM, LPIPS and CLIP-score, compared with text-NeRF and
Dreamfields.

Introduction
Automatic 3D object generation has significant application
values for many practical application scenarios, including
games, movies, virtual reality, etc. In this paper, we study
a challenging yet interesting and valuable task, called
text-guided 3D object generation. With a text-guided 3D
object generation model, one can give a textual description
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of their wanted 3D object, and leverage such a model to
generate the corresponding 3D object, providing a flexible
path for visualizing what we imagined.

Along with the success of image generation models
(Goodfellow et al. 2014; Vaswani et al. 2017; Ho, Jain,
and Abbeel 2020), plenty of works have been devoted for
text-to-image generation (Reed et al. 2016; Zhang et al.
2017, 2018a; Xu et al. 2018; Dong et al. 2017; Ramesh et al.
2021; Ding et al. 2021, 2022; Nichol et al. 2021; Ramesh
et al. 2022), which shows appealing text-guided generation
results. However, there are still few works for text-guided
3D object generation. Some prior works generate 3D shapes
from natural language descriptions in the form of meshes
(Michel et al. 2022), voxels (Chen et al. 2018), point clouds
(Zhou, Du, and Wu 2021), and implicit functions (Liu
et al. 2022). While they provide promising results, the
issue is that they require tedious post-processing steps,
e.g. unwrapping a UV map in Blender, due to the lack of
texture when used for multimedia applications. Recently,
Neural Radiance Field (NeRF (Mildenhall et al. 2020)) has
been successfully applied to the novel view synthesis task.
Compared with other 3D representations, neural radiance
fields can be sampled at high spatial resolutions and is easy
to optimize. Empowered with the visual-language alignment
capability of the pre-trained CLIP model, Dreamfields (Jain
et al. 2022) leverages a given input text to guide the training
of neural radiance fields. The shortcoming of Dreamfields
is that it requires individually optimizing a network for
each input text, which is time-consuming and computation
expensive. Built on the disentangled conditional NeRF
(Schwarz et al. 2020) and CLIP model, CLIP-NeRF (Wang
et al. 2022) designs two code mappers to edit the shape and
color of existing 3D objects with a text or image prompt.
However, it only allows editing objects in the same category.

In this paper, we make the first attempt to achieve the
generic text-guided cross-category 3D object generation
and propose our 3D-TOGO model, standing on the progress
of text-to-image generation models and Neural Radiance
Fields. Our 3D-TOGO model consists of two modules:
a) a view-consistent text-to-views generation module that
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Figure 1: Generation results of our proposed 3D-TOGO
model. For each case, we show the input caption, 4 rendered
novel views of the generated 3D object and the transmittance
from the first view. Transmittance represents how visible a
point is from a particular view.

generates views of the target 3D object given an input
caption; b) a generic views-to-3D generation module for
3D object generation based on the previously-generated
views. Specifically, we adopt the Transformer-based auto-
regressive model (Vaswani et al. 2017) for our text-to-views
generation module, because of its excellent cross-modal
fusion capability. To complement the original token-level
cross-entropy loss, we introduce the fine-grained pixel-level
supervision signals for better view fidelity. We also incor-
porate caption-guidance by leveraging the visual-language
alignment ability from CLIP (Radford et al. 2021) for
better caption similarity. Furthermore, our text-to-views
generation module achieves better view-consistency by
conditioning on prior view and adopting a novel view
contrastive learning method. For the generic views-to-
3D generation module, we follow the diagram of the
previously-proposed pixelNeRF (Yu et al. 2021). As pix-
elNeRF optimizes neural radiance fields in the view space
of the input image, so we can process each generated view
independently and obtain an individual latent intermediate
representation for each generated view, which can be ag-
gregated across different views and generate the desired 3D
neural representation matched with the input text. Besides,

our views-to-3D generation module aims to learn scene
prior instead of remembering the training dataset, allowing it
to be used for generating objects across different categories.

We perform extensive experiments on the largest 3D
object dataset ABO (Collins et al. 2022). Quantitative and
qualitative comparisons against baseline methods, including
text-NeRF and Dreamfields (Jain et al. 2022), show that our
proposed 3D-TOGO model can better generate high-quality
3D objects according to the input captions across different
object categories. Compared to baseline methods, the av-
erage CLIP-score of our model surpasses 4.4 on randomly
selected text inputs, indicating better semantic consistency
between the input captions and the generated 3D objects
of our model. Besides, results from our 3D-TOGO model
show that text-guided 3D object generation allows for
flexible control over categories, colors and shapes. Our
main contributions are summarized as follows:

• We make the first attempt to resolve the new text-guided
cross-category 3D object generation problem and pro-
pose 3D-TOGO model, which has an efficient generation
process requiring no inference time optimization.

• We propose a text-to-views generation module to gen-
erate consistent views given the input captions. We de-
sign prior-guidance to improve the consistency between
adjacent views of a 3D object and introduce view con-
trastive learning to improve the consistency between dif-
ferent views of a 3D object. Caption-guidance is pro-
posed for better caption similarity. Fine-grained pixel-
level supervision is designed for better view fidelity.

• Our 3D-TOGO model can generate high-quality 3D ob-
jects across 98 categories. Besides, our 3D-TOGO model
is empowered with the ability to control the category,
color and shape according to the input caption.

Related Work
Text-to-Image Generation. Text-to-image generation fo-
cuses on generating images described by input captions.
Based on the progresses on generative models, including
generative adversarial networks (GANs (Goodfellow et al.
2014)), auto-regressive model (Vaswani et al. 2017) and dif-
fusion model (Ho, Jain, and Abbeel 2020), there are num-
bers of works for text-to-image generation. Among them,
many GAN-based models are proposed for better visual fi-
delity and caption similarity (Reed et al. 2016; Zhang et al.
2017, 2018a; Xu et al. 2018; Li et al. 2019a; Dong et al.
2017; Zhu et al. 2019; Tao et al. 2020; Ye et al. 2021). How-
ever, GANs suffer from the well-known problem of mode-
collapse and unstable training process. Besides GANs, an-
other line of works explore applying Transformer-based
auto-regressive model for text-to-image generation (Ramesh
et al. 2021; Ding et al. 2021; Esser et al. 2021; Ding et al.
2022; Zhang et al. 2021; Lee et al. 2022). Recent works
adopt diffusion model for text-to-image generation (Nichol
et al. 2021; Ramesh et al. 2022). However, as the diffusion
model predicts the added noise instead of the target images,
it is complicated to apply constraints on the generated im-
ages. We adopt the architecture of Transformer (Vaswani
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et al. 2017) for our view-consistent text-to-views genera-
tion module, due to its high cross-modality fusion capability
proven in the domain of multi-modal pre-training (Li et al.
2019b; Chen et al. 2020; Wang et al. 2021; Tan and Bansal
2019; Ni et al. 2021; Zhou et al. 2021; Zhuge et al. 2021)
and generation mentioned above. Furthermore, we adopt the
auto-regressive generation paradigm due to the aforemen-
tioned drawbacks of GANs and diffusion model.

Text-Guided 3D Object Generation. Compared with
text-to-image generation, it is more challenging to generate
3D objects from the given text description. Some early
works generate or edit 3D objects with a pre-trained CLIP
model (Radford et al. 2021). Text2Mesh(Michel et al.
2022) edits the style of a 3D mesh by conforming the
rendered images to a target text prompt with a CLIP-based
semantic loss. It is tailored to a single mesh and could
not generate 3D objects from scratch given a text prompt.
(Khalid et al. 2022) facilitates zero-shot text-driven mesh
generation by deforming from a template mesh guided by
CLIP. Text2shape (Chen et al. 2018) generates the voxelized
objects using text-conditional Wasserstein GAN (Arjovsky,
Chintala, and Bottou 2017), but only allows the 3D object
generation of individual category and the performance is
limited by the low-resolution 3D representation. CLIP-
Forge (Sanghi et al. 2022) models the distribution of shape
embeddings conditioned on the image features using a
normalizing flow network during the training stage, and
then conditions the normalizing flow network with text
features to generate a shape embedding during the inference
stage, which can be converted into a 3D shape via the shape
decoder. However, their generated 3D objects lack color
and texture and the quality of generated 3D objects is still
limited, which is crucial for practical applications. Recently,
(Liu et al. 2022) represents 3D shape with the implicit
occupancy representation, which can be used to predict an
occupancy field. They design a cyclic loss to encourage the
consistency between the generated 3D shape and the input
text. However, it cannot generate realistic 3D objects with
high fidelity. There are also some works focus on 3D avatar
generation and animation from text(Hong et al. 2022; Hu
et al. 2021; Canfes et al. 2022), while our work focuses on
3D object generation from text. Compared with the above
approaches, our 3D-TOGO model can generate high-quality
3D objects with color and texture across categories and
requires no inference time optimization.

Method
Figure 2 shows the framework of our proposed 3D-TOGO
model for text-guided 3D object generation. In this section,
we will first introduce our view-consistent text-to-views
generation module, which takes captions of 3D objects and
different camera poses as input, enabling the multi-view im-
age generation. Then we will introduce how to obtain the
3D implicit neural representation of the objects from the
previously-generated views.

View-Consistent Text-to-Views Generation Module
Given an input caption t, our text-to-views generation mod-
ule aims to generate 2D images {x̂i}Ni=1 of different camera

poses {Pi}Ni=1 for the corresponding 3D object described
by caption t, where N is the number of generated views
for a 3D object. {xi}Ni=1 denotes the ground truth images
in dataset. The generated images x̂i need to be consistent
with its corresponding input caption t and camera pose Pi.
Besides, different views of the same input caption need to
be view-consistent, i.e., images of different poses need to
be consistent with each other as they are rendered from the
same 3D object. For brevity, we omit the subscript of x, x̂,
and P in the rest of this section.

Base Text-to-Views Generation Module To generate im-
ages of different camera poses given an input caption, we
start with designing our base generation module to generate
image x̂ conditioned on caption t and camera pose P. We
adopt the architecture of Transformer (Vaswani et al. 2017)
due to its high cross-modality fusion capability (Li et al.
2019b; Wang et al. 2021; Ramesh et al. 2021; Ding et al.
2021; Lee et al. 2022). Following previous works, we trans-
form camera pose P, caption t and image x into sequences
of tokens, and train a decoder-only Transformer model with
a causal attention mask to predict the sequence of image to-
kens autoregressively conditioned on camera pose and cap-
tion tokens.

Specifically, our Transformer-based image generation
module consists of an VQGAN (Esser, Rombach, and Om-
mer 2021) model, serving as an image tokenizer for quan-
tizing the input image as discrete tokens and recovering
the origin image from these discrete tokens, and a Trans-
former model for fitting the joint distribution of camera
pose, caption and image tokens. The autoencoder model
consists of an encoder E, a decoder G and a codebook
Z ∈ RK×nz containing K nz-dimensional codes. Given an
image x ∈ RH×W×3, E first encodes the image into a two-
dimensional feature map F ∈ Rh×w×nz , and then the fea-
ture map F is quantized by replacing each pixel embedding
with its closest code within the codebook element-wisely:
F̂ij = argminzk

∥ Fij − zk ∥2. The decoder G is for tak-
ing the quantized feature map F̂ as input and reconstructing
an pixel-level image x̂ close to the original image x, i.e.,
x̂ ≈ x. With the aforementioned image tokenizer, image x
can be tokenized as a sequence of discrete tokens {Ii}NI

i=1.
Meanwhile, caption t is encoded into sequence of discrete
tokens {Ti}NT

i=1 with a Byte-Pair Encoding (BPE (Sennrich,
Haddow, and Birch 2015)) tokenizer. NI and NT denotes
the length of image token sequence and caption token se-
quence respectively. For camera pose P, we select NP poses
across different objects so that each camera pose is corre-
spond to an unique token denoted as V. The Transformer
is trained to predict the sequence of [V, {Ti}NT

i=1, {Ii}
NI
i=1]

auto-regressively, which minimizes cross entropy losses ap-
plied to the predicted tokens of camera pose, text and im-
age, respectively as follows: Lpose = CE(V̂,V), Ltxt =

Ei[CE(T̂i,Ti)], Limg = Ei[CE(Îi, Ii)], where V̂, T̂i and
Îi are the predicted tokens of camera pose, caption and im-
age respectively; Ei[·] denotes the expectation and CE rep-
resents cross-entropy loss.
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Figure 2: The framework of our 3D-TOGO model for text-guided 3D object generation. (a) Text-to-views generation module.
Fine-grained pixel-level supervision signal Lpixel and caption-guidance loss Lcaption are for better view fidelity and caption
similarity. (b) View contrastive learning for better view-consistency. (c) Views-to-3D generation module. It takes the previously-
generated views as input and generates the implicit 3D neural representation, from which novel views can be obtained.

Pixel-Level Supervision and Caption-Guidance One
shortage of the aforementioned base text-to-views genera-
tion module is that the training loss is applied on image
tokens, lacking fine-grained pixel-level supervision signals
and leading to low visual quality. To this end, to comple-
ment such token-level loss, we explore some pixel-level su-
pervision signals applied on the generated image x̂ (decoded
from the generated image tokens {Îi}NI

i=1 with the image to-
kenizer) for more fine-grained supervision signals and better
image fidelity. We first explore training losses between the
original image x and generated image x̂. In our preliminary
experiments, we tried L1 loss and Perceptual loss (Johnson,
Alahi, and Fei-Fei 2016). Similar results are observed so that
we use the simpler L1 loss as: Lpixel = L1(x̂, x). Gradient
back-propagation from the generated image x̂ to the gen-
erated image tokens {Îi}NI

i=1 is implemented with straight-
through estimator (Bengio, Léonard, and Courville 2013).

Besides, we explore some supervision signals applied be-
tween the generated image x̂ and input caption t, called
caption-guidance, for better caption similarity, i.e., the gen-
erated images better match the semantics of the input cap-
tions. To this end, we explore leveraging the power of the
CLIP model (Radford et al. 2021), which is pre-trained with
400 million image-text pairs collected from the Web and
shows excellent zero-shot visual-language alignment capa-
bility. Specifically, we utilize the pre-trained ViT-B/32 CLIP
model to calculate the similarity score between the gen-
erated image x̂ and input caption t and apply a caption-
guidance loss as: Lcaption = −SimCLIP (x̂, t), to enforce
the generation module to generate images that are more se-
mantically similar to the input caption.

prior-Guidance and View Contrastive Learning Until
now, it is still challenging for the text-to-views generation
module to generate view-consistent images among different

camera poses, as it is (1) trained to generate images con-
ditioned on only camera pose and caption, without infor-
mation from images of other poses, (2) without any view-
consistency supervision signal during training.

To improve the consistency between adjacent views, we
first propose to condition the generation module on a piece
of extra information: an image of another camera pose,
which we call prior view. To this end, we specify a fixed
order of different camera poses and condition image gener-
ation of the current camera pose on the previous one. Dur-
ing training, such prior view is masked half of the time so
that the generation module is able to perform image gener-
ation with and without prior view. During inference, given
an input caption t, the first view is generated without prior
view, while the others are generated using the previously
generated one as prior view one by one in order. Tokens
of input prior view and predicted prior view are denoted as
{Ipriori }NI

i=1 and {Îpriori }NI
i=1 respectively. A reconstruction

loss is also applied on the predicted prior view tokens as:
Lprior = Ei CE(Îpriori , Ipriori ).

Furthermore, we incorporate the concept of contrastive
learning for better view-consistency. In our case, as we can
see, different views of the corresponding object of an input
caption should be closer to each other, than to views of the
corresponding object of a different input caption. This is the
same as the objective of contrastive learning. To this end,
we propose view contrastive learning, where views of the
same object are treated as positive samples of each other,
while views of different objects are treated as negative sam-
ples of each other. During training, we generate two differ-
ent views x̂i, x̂j , i ̸= j of the same object, and a set of K
views X = {x̂′

1, x̂
′
2, ..., x̂

′
K} of different objects. Besides,

we learn an image encoder fenc for extracting view repre-
sentations fenc(x). Then the objective function of view con-
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trastive learning can be formulated as follows:

Lcontrastive = − log
exp(sim(fenc(x̂i), fenc(x̂j))/τ)∑
x∈X exp(sim(fenc(x̂i), fenc(x))/τ)

,

(1)
where sim(·, ·) denotes cosine similarity and τ denotes a
temperature parameter.

Finally, the overall objective function of our view-
consistent text-to-views generation module is as follows:

L =λposeLpose + λtxtLtxt

+ λpriorLprior + λimgLimg + λpixelLpixel

+ λcaptionLcaption + λcontrastiveLcontrastive,

(2)

where λpose, λtxt, λprior, λimg , λpixel, λcaption and
λcontrastive are the balancing coefficients.

Views-to-3D Generation Module
Given images Î = {x̂i}Ni=1 generated by the text-to-views
module, the aim of views-to-3D module is to obtain the
implicit neural representation of the generated 3D object,
where N is the number of generated images. In experiments,
we find that NeRF (Mildenhall et al. 2020) fails to obtain
high-quality novel view synthesis results in some cases, if
we naively optimize NeRF with the generated images. This
is because that there are still some small inconsistent con-
tents among the generated images. Therefore, we introduce
pixelNeRF (Yu et al. 2021) to firstly learn scene prior from
the ground-truth images I = {xi}Mi=1 across objects in the
training data, where M(M ≥ N) is the number of rendered
images of 3D objects. Please refer to (Yu et al. 2021) regard-
ing the network architecture details of pixelNeRF model.

Once obtaining the scene prior, we can encode the gener-
ated 3D object as a continuous volumetric radiance field f
of color c and density σ by using the generated multi-view
images Î . Similar to pixelNeRF, we use the view space of
the generated images instead of the canonical space. Spe-
cially, for a 3D query point y in the neural radiance fields,
we first retrieve the corresponding image features from Î
by {wi}Ni=1 = {Wi(πi(y))}Ni=1 , where Wi = E(x̂i) is the
feature volume extracted from the generated image x̂i, πi(y)
denotes the corresponding image coordinate on the image
plane of the generated image x̂i, and Wi(πi(y)) represents
the image feature extracted from feature volume Wi for the
3D query point y.

Then, we need to obtain the intermediate representation
U = {Ui}Ni=1 in each view space of the generated images
Î for query point y with view direction d as follows:

Ui = f1(γ(H(y)i), di;wi), (3)

where H(y)i = Piy = Riy + hi denotes that transforming
the query point y into the coordinate system of the generated
image x̂i, Pi is the world to camera transformation matrix,
Ri is the rotation matrix, hi is the translation vector, γ(·)
represents a positional encoding on the transformed query
point H(y)i with 6 exponentially increasing frequencies
(Mildenhall et al. 2020); di = Rid denotes transforming the
view direction d into the coordinate system of the generate

image x̂i; wi is the corresponding image feature extracted
from the generate image x̂i; f1(·) represents the layers of the
pixelNeRF to process transformed query point, transformed
view direction and the corresponding extracted image fea-
ture in the view space of the generated images Î indepen-
dently, which has been trained on the ABO training dataset.

After obtaining all the intermediate representation U =
{Ui}Ni=1, we use the average pooling operator η to aggregate
them and then pass the layers of the pixelNeRF to process
the aggregated representation. This process can be written
as:

f(y, d) = (σ(y), c(y, d)) = f2(η(Ui))
N
i=1, (4)

where f2 denotes the layers to process the aggregated repre-
sentation η(Ui)

N
i=1, σ(y) is the density of the 3D query point

y which is independent of the view direction d, c(y, d) rep-
resents the color of the 3D query point y in the view direc-
tion d, f(·) is the final continuous volumetric radiance field
which representing the generated 3D object matched with
the input caption t. For the photo-realistic rendering of the
generated 3D object, we use the volume rendering technique
proposed in (Mildenhall et al. 2020).

Experiments
Dataset. Our approach is evaluated on Amazon-Berkeley
Objects (ABO) (Collins et al. 2022), a large-scale dataset
containing nearly 8,000 real household objects from 98 cat-
egories with their corresponding nature language descrip-
tions. We use ABO dataset because it contains the categories
of other small datasets, such as ShapeNet(Chen et al. 2018).
Benefiting from their detailed texture and non-lambertian
BRDFs, the 3D models in ABO can be photo-realistically
rendered. To construct multi-view images dataset with their
nature language descriptions, we use Blender to render each
3D model into 256× 256 RGB-alpha images from 36 cam-
eras. Camera elevation is set as −30◦ and camera azimuth
is sampled uniformly from the range [−180◦, 180◦]. Totally,
286,308 multi-view images are rendered from 7,953 objects
belong to 98 categories. We randomly split 80%, 10%, 10%
objects as our training, validation, and test set, respectively.

Metrics. Following the settings of (Yu et al. 2021), we
evaluate the quality of our generated 3D objects by measur-
ing the quality of novel view synthesis. Specifically, PSNR,
SSIM(Wang et al. 2004), LPIPS (Zhang et al. 2018b) are
adopted as our metrics. We also compute the CLIP score
(Radford et al. 2021) between the rendered novel view im-
ages and the corresponding natural language description,
which can measure the semantic consistency of the gener-
ated 3D objects with the description. The ResNet-50 CLIP
model is adopted. Besides, we also adopt human evalua-
tion for comparison. Two metrics are considered: object fi-
delity (including view fidelity and consistency among differ-
ent views) and caption similarity. For each input caption,
results from different methods are shown in random order
and the workers are asked to order different results in terms
of these two metrics. The average rank from different work-
ers is used as the final score. 94 human evaluation results are
collected. The higher PSNR, SSIM and CLIP score, the bet-
ter; the lower LPIPS, object fidelity and caption similarity,
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Metric Method text1 text2 text3 text4 text5 text6 12 Texts Avg.

PSNR ↑ text-NeRF 18.15 19.96 0.79 22.02 18.12 0.48 14.04
Ours 20.12 23.34 26.41 24.02 23.80 26.53 24.98

SSIM ↑ text-NeRF 0.856 0.898 0.001 0.876 0.863 0.001 0.636
Ours 0.889 0.920 0.925 0.898 0.897 0.864 0.900

LPIPS ↓ text-NeRF 0.138 0.091 0.503 0.142 0.167 0.475 0.239
Ours 0.122 0.063 0.075 0.128 0.165 0.082 0.092

CLIP- Score ↑
Dreamfields 18.92 21.34 18.13 16.31 18.08 18.73 18.40
text-NeRF 26.65 20.28 13.90 21.12 23.16 11.84 18.38

Ours 27.08 22.67 20.98 22.74 24.13 25.08 22.84

Object Fidelity ↓
Dreamfields 3.00 2.56 2.04 2.94 2.94 1.94 2.63
text-NeRF 1.97 2.32 2.93 2.04 1.97 2.95 2.27

Ours 1.03 1.12 1.03 1.02 1.09 1.12 1.11

Caption Similarity ↓
Dreamfields 2.97 2.66 2.02 2.94 2.87 2.01 2.64
text-NeRF 1.98 2.19 2.95 2.03 1.97 2.95 2.25

Ours 1.05 1.15 1.03 1.03 1.16 1.04 1.11

Table 1: Quantitative comparison against text-NeRF (short for text-to-views generation + NeRF(Mildenhall et al. 2020)) and
Dreamfields (Jain et al. 2022).

the better.
Experimental Setup. We implement our algorithm with

Pytorch. The hyper-parameters of λpose, λtxt, λprior, λimg ,
λpixel, λcaption and λcontrastive are set to 0.1, 0.1, 0.1, 0.6,
1, 1 and 1 respectively. For our text-to-views generation
module, we use AdamW optimizer to train 20 epochs. For
the views-to-3D generation module, we use Adam optimizer
to train 100 epochs and randomly select 9 views during each
training step. More details are provided in the Appendix.

Driftwood Leather Ottoman

Hunter Green Low Back Modern Accent Chair

text-NeRF


Dreamfields


Ours


text-NeRF


Dreamfields
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Figure 3: Visual comparison against two baseline methods.
For each sub figure, the textual title is the input caption, and
the first 4 images are rendered novel views of the generated
3D object while the last two images are transmittance and
depth from the first view respectively.

Comparison Against Baselines
As our 3D-TOGO model generates objects in the form
of neural radiance fields, so we select two NeRF-based
text-guided 3D object generation methods as our baseline:
text-to-views generation module + NeRF (Mildenhall et al.
2020) (called text-NeRF for convenient in the following)
and Dreamfields (Jain et al. 2022). We use the code open-
sourced by the authors. As both text-NeRF and Dreamfields
require training an individual network for each given natural
language description, we randomly select 12 text descrip-
tions from our test set as the input captions. The selected
text descriptions are included in the Appendix. As there is no
ground truth for the generated views of Dreamfields, we do
not use PSNR, SSIM and LPIPS in the comparison against
Dreamfields.

Table 1 shows the quantitative comparison among dif-
ferent methods. Results of the first 6 descriptions and the
average of 12 descriptions are shown while results of the
rest 6 text descriptions are included in the Appendix. As we
can see, for all cases, 3D-TOGO achieves the best results.
Additionally, Figure 3 shows the qualitative comparison
among different methods. Results of the first 2 descriptions
are shown while results of the rest 10 descriptions are
included in the Appendix. As we can see, text-NeRF
generates broken objects, as there are still some small
inconsistent contents among the generated images. Figure 3
shows that Dreamfields cannot generate reasonable results.
This may be because Dreamfields cannot generalize to
household objects or it requires attentive hyperparameter-
tuning. Besides, both text-NeRF and Dreamfields require
time-consuming per-case optimization, while 3D-TOGO
can be used across objects.

Text-Guided 3D Object Generation
Figure 1 shows the cross-category text-guided 3D generation
results of our proposed 3D-TOGO model. Our model gen-
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Figure 4: 3D object generation results with controlled (a)
color and (b) shape. For each case, we show the input cap-
tion, 2 rendered novel views of the generated 3D object and
the transmittance from the first view.

prior contrastive caption L1 consistency-error ↓
9.47

✓ 8.88
✓ 9.17

✓ 9.23
✓ 9.35

✓ ✓ 8.61
✓ ✓ 8.81
✓ ✓ ✓ 8.74
✓ ✓ ✓ ✓ 8.56

GT 7.55

Table 2: Ablation study of our text-to-views generation
module. ‘prior’, ‘contrastive’, ‘caption’ and ‘L1’ indicates
prior-guidance, view contrastive learning, caption-guidance
and pixel-level L1 loss respectively.

erates high-fidelity 3D objects matching the input caption
across different object categories. Besides, Figure 4 shows
that our method can control the color and shape of the gen-
erated 3D objects by the input caption flexibly. More results
are included in the Appendix.

Ablation Study
In this section, we study the effectiveness of different ob-
jectives on the quality of generated views from the text-to-
views generation module and 3D objects from the views-
to-3D generation module respectively. For quantitative com-
parison of the quality of generated views, we adopt metrics
including FID (Heusel et al. 2017), KID (Bińkowski et al.
2018), CLIP score and consistency error. Consistency error
measures the average L2 error between views of adjacent
camera poses and reflects view consistency to some degree.
The lower the consistency error, the better view consistency.
Results of consistency error are shown in Table 2 while re-

prior contrastive caption L1 CLIP-score ↑
19.91

✓ 20.50
✓ 19.97

✓ 20.14
✓ 19.99

✓ ✓ 20.54
✓ ✓ 20.90
✓ ✓ ✓ 20.93
✓ ✓ ✓ ✓ 21.01

Table 3: Ablation study of our text-to-views generation mod-
ule and the effectiveness on 3D object generation.

sults of FID, KID, and CLIP-score are included in the Ap-
pendix.

View Generation Quality. Table 2 shows the quanti-
tative results of our text-to-views generation module. As
we can see, prior-guidance improves the consistency-error
from 9.47 to 8.88, and view contrastive learning further im-
proves it to 8.61, indicating both of these two improve-
ments contribute to improving view-consistency. Besides,
our complete text-to-views generation module achieves the
best consistency-error of 8.56.

3D Object Generation Quality. Table 3 shows the CLIP-
scores of our views-to-3D generation module for differ-
ent object categories. The detailed results for each category
will be provided in the Appendix. As we can see, 3D ob-
ject generation based on the results of our complete text-to-
views generation module achieves the best CLIP-score in all
shown categories and achieves the best average CLIP-score
among all categories of the ABO test set.

Conclusion

In this paper, we propose the 3D-TOGO model for the
first attempt to achieve the generic text-guided 3D object
generation. Our 3D-TOGO integrates a view-consistent
text-to-views generation module for generating views
of the target 3D object given an input caption; and a
generic cross-scene neural rendering module for 3D object
generation. For the text-to-views generation module, we
adopt fine-grained pixel-level supervision signals, prior-
guidance, caption-guidance and view contrastive learning
for achieving better view fidelity, view-consistency and
caption similarity. A pixelNeRF model is adopted for the
generic implicit 3D neural representation synthesis module.
Extensive experiments on the largest 3D object dataset ABO
show that our proposed 3D-TOGO model can better gener-
ate high-quality 3D objects according to the input captions
across 98 different object categories both quantitatively and
qualitatively, compared against text-NeRF and Dreamfields
(Jain et al. 2022). Our 3D-TOGO model also allows for
flexible control over categories, colors and shapes with the
input caption. We describe the potential negative societal
impacts and limitations of our work in the Appendix.
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