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Abstract

Homography estimation is erroneous in the case of large-
baseline due to the low image overlay and limited receptive
field. To address it, we propose a progressive estimation strat-
egy by converting large-baseline homography into multiple
intermediate ones, cumulatively multiplying these intermedi-
ate items can reconstruct the initial homography. Meanwhile,
a semi-supervised homography identity loss, which consists
of two components: a supervised objective and an unsuper-
vised objective, is introduced. The first supervised loss is act-
ing to optimize intermediate homographies, while the second
unsupervised one helps to estimate a large-baseline homog-
raphy without photometric losses. To validate our method,
we propose a large-scale dataset that covers regular and chal-
lenging scenes. Experiments show that our method achieves
state-of-the-art performance in large-baseline scenes while
keeping competitive performance in small-baseline scenes.
Code and dataset are available at https://github.com/megvii-
research/LBHomo.

Introduction
Homography estimation is a basic task in computer vision
that has been widely used for a wide range of high-level vi-
sion tasks, such as image/video stitching (Guo et al. 2016),
video stabilization (Liu et al. 2013), SLAM (Du et al. 2020),
and HDR reconstruction (Liu et al. 2021b, 2022). Tradi-
tional methods typically use feature detection and match-
ing algorithms (Lowe 2004; Rublee et al. 2011), and subse-
quently solve direct linear transform (DLT ) (Hartley and
Zisserman 2003) with outlier suppression to obtain a ho-
mography matrix. However, these methods are highly de-
pendent on the extracted feature matches and may fail in
scenes that lack sufficient high-quality feature points. On the
other hand, learning-based methods take a pair of source and
target images as input and directly output the corresponding
homography matrix. They do not rely on matched key points
and thus are more robust than traditional methods. The
learning-based methods can be divided into two categories:
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Figure 1: Comparison of our method with an unsuper-
vised learning-based method, i.e., BasesHomo. The first row
shows two pairs of consecutive frames in different baseline
cases, we highlight the overlap region in red boxes. In the
second row, we superimpose the warped source image and
the target image, where misaligned pixels are visualized as
colored ghosts. Local details are enlarged in red and blue
boxes, where the latter is an error heatmap, the darker the
better. Our method can handle both situations, while Base-
sHomo fails in the large-baseline scene.

supervised methods (DeTone, Malisiewicz, and Rabinovich
2016) and unsupervised methods (Nguyen et al. 2018). The
supervised ones use synthetic image pairs for training due
to the lack of sufficient real-world image pairs with GT la-
bels, lacking realistic scene parallax causes unsatisfactory
generalization ability. Unsupervised methods adopt label-
free training strategies that aim to minimize the photomet-
ric distance between the warped source images and target
images, being better generalized to various scenes. With the
assistance of photometric losses (Zhang et al. 2020; Ye et al.
2021), the unsupervised methods perform well in small-
baseline scenes where the non-overlap rate between two im-
ages is less than 10%. However, in large-baseline scenes
where the non-overlap rate is between 20% and 50%, the
warped source image contains a number of out-of-boundary
pixels due to the large appearance and viewpoint changes,
causing it hard to minimize the photometric distance. As
shown in Fig. 1, BasesHomo (Ye et al. 2021) can suc-
cessfully align two images with large overlap but fails in
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small overlap, while our method is capable to handle both
cases. To address large-baseline cases, (Nie et al. 2021) pro-
posed an ablation-based strategy, which forces the two im-
ages to contain the same size of valid areas to ignore out-
of-boundary pixels. However, this strategy fails where dy-
namic objects exist in images. From the above, we find it is
non-trivial to estimate the homography of two images with
a large-baseline. To this end, we propose a progressive ho-
mography estimation strategy to address the large-baseline
challenge. Specifically, we convert the large-baseline prob-
lem into multiple intermediate phases by inserting several
images along with pre-defined homographies into the source
and target image, as shown in Fig. 2(a). The homography
between the source image and the target image can be ob-
tained by cumulatively multiplying these intermediate ho-
mographies. To achieve this, we design a homography iden-
tity loss to optimize our network in a semi-supervised way
by considering the advantages and weaknesses of supervised
and unsupervised learning. Our loss function consists of two
parts: a supervised objective and an unsupervised objective.
Firstly, given the pre-defined homographies, the supervised
one is utilized to optimize intermediate homographies of in-
serted images. Secondly, the unsupervised loss helps to esti-
mate a large-baseline homography without photometric loss.
More specifically, given the target image, our network pre-
dicts two homographies, the former being the last intermedi-
ate image to it and the later being the source towards it. Our
unsupervised loss minimizes the error between the homog-
raphy of the source and target image and the accumulative
multiplication result of all intermediate items, i.e. the homo-
graphies of inserted images and the homography of the last
intermediate and target image, as shown in Fig. 2(b).

With our progressive estimation strategy and semi-
supervised loss, the network can focus on homography op-
timization while avoiding the problems caused by photo-
metric losses. Additionally, we introduce a large-scale real-
world image pairs dataset for large-baseline homography
estimation considering there lacks a dedicated dataset for
such a task, which contains 5 categories of scenes as well
as human-labeled GT point correspondences for quantita-
tive evaluation. Extensive experiments demonstrate that our
method outperforms the state-of-the-art supervised methods
and unsupervised methods both quantitatively and qualita-
tively. Moreover, our method is also applicable to small-
baseline scenarios. To summarize, our main contributions
are threefold:

• We propose a progressive estimation strategy to address
large-baseline homography estimation by transforming
the large-baseline into several intermediate ones.

• We propose a semi-supervised homography identity loss
that enforces the network to focus on optimizing the ho-
mography.

• We introduce a large-scale dataset containing various
scenes for large-baseline homography learning and the
human-labeled evaluation set is also included. Experi-
mental results demonstrated that our method achieves
state-of-the-art performance.

Related Work
Traditional Homography Estimation
Traditional homography estimation methods usually com-
bine classic or learning-based feature extraction and match-
ing algorithms such as SIFT (Lowe 2004), ORB (Rublee
et al. 2011), BEBLID (Suárez et al. 2020), Super-
Point (DeTone, Malisiewicz, and Rabinovich 2018), SOS-
Net (Tian et al. 2019), SuperGlue (Sarlin et al. 2020),
LoFTR (Sun et al. 2021), and subsequently solve di-
rect linear transform with outliner suppression such as
RANSAC (Fischler and Bolles 1981), MAGSAC (Barath,
Matas, and Noskova 2019). However, feature-based meth-
ods usually crash in challenging scenes where sufficient fea-
ture matches cannot be obtained. In addition, some methods
can also solve a homography directly by using the Lucas-
Kanade algorithm (Baker and Matthews 2004) or calculating
the sum of squared differences (SSD) between two images
without extracted feature matches. A randomly initialized
homography is optimized in this way iteratively.

Deep Homography Estimation
Following the development of learning-based image align-
ment methods, such as optical flow (Li, Luo, and Liu 2021;
Luo et al. 2021; Han et al. 2022) and dense correspon-
dence (Truong et al. 2021a; Liu et al. 2021a), a deep homog-
raphy estimation network was first proposed by (DeTone,
Malisiewicz, and Rabinovich 2016). Deep homography es-
timation methods can be divided into two categories: su-
pervised and unsupervised. The former ones (Shao et al.
2021; Cao et al. 2022) utilize the generated image pairs with
ground-truth labels to train their models, but their general-
ization ability is limited due to the lack of realistic scene par-
allax in synthetic images. Unsupervised methods (Nguyen
et al. 2018; Kharismawati et al. 2020; Ye et al. 2021) opti-
mize their models with real-world image pairs by minimiz-
ing the photometric distance from the source image warped
by the estimated homography to the target image. To be
more robust, some methods (Zhang et al. 2020; Hong et al.
2022) introduce efficient masks to replace classic outlier re-
jection methods to remove undesired regions or focus on the
dominant plane. However, most of the previous methods are
proposed to estimate the homography of image pairs with
a small-baseline, large-baseline homography estimation, a
field with broader applications, has long been ignored.

Deep Image Alignment
Recently, some image stitching methods (Nie et al. 2021,
2020) use an individual homography estimation network for
coarse alignment and optimize the pre-aligned images by re-
construction networks to achieve better stitching results in
large-baseline scenes. However, their networks are not spe-
cially designed for such tasks, leading to unsatisfactory re-
sults. In addition, some geometric matching methods (Nie
et al. 2022a; Truong, Danelljan, and Timofte 2020; Truong
et al. 2021b) can also be applied to solve the large-baseline
image alignment. But their alignment is mainly realized by
mesh flow or dense flow, which contains the local motion
information of the images, while the homography matrix
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Figure 2: The left column (a) illustrates our proposed progressive estimation strategy, and right column (b) illustrates our
proposed unsupervised objective function.

∏
denotes the accumulative multiplication operation.

only represents the global motion. In contrast, we propose a
progressive estimation strategy and a semi-supervised con-
sistency constraint without photometric loss to address the
large-baseline homography estimation.

Method
Overview
In this section, we introduce a progressive strategy to ad-
dress large-baseline homography estimation. Specifically,
we transform the large-baseline into several intermediate
stages by inserting some intermediate images, i.e., Isi ∈
RH×W×3 (i ∈ [0, n]), into the source image Is ∈ RH×W×3

and target image It ∈ RH×W×3. We generate the inter-
mediate ones by a set of pre-defined homographies, i.e.,
Isi+1

= Wi+1(Isi ,Hi+1
gt ), where Wi+1 represents the warp

operation by the Hi+1
gt and Is0 is the initial Is. By randomly

sampling the pre-defined homographies with non-identity
matrices, it is effective to avoid the degenerate solutions of
accumulative multiplication results of intermediate homo-
graphies (Truong et al. 2021b). In addition, we ensure that
the non-overlap rate of the two inserted images is smaller
than that of the source and target image.

After generating n intermediate images, we get n + 2
sets of image pairs, i.e., (Isi , Isi+1

), (Isn , It), and (Is, It).
Our goal is to train a neural network fθ, with parameters θ,
that predicts homography matrix Hsisi+1 = fθ(Isi , Isi+1),
Hsnt = fθ(Isn , It), Hst = fθ(Is, It) relating Isi to Isi+1 ,
Isn to It, and Is to It respectively. Multiplying all of the
intermediate homographies Hsisi+1 and the Hsnt should be
equal to the Hst. With this equivalence constraint, we can
enforce the network to optimize the homographies them-
selves. To achieve this, we propose a semi-supervised ho-
mography identity loss to train our network, which is de-
scribed in the following section.

Homography Identity Loss
The point-wise correspondence between each set of image
pairs can be the mapping of the corresponding homography
matrix. Let us denote Xsi and Xt as the meshgrid coordi-
nate sets of Isi and It, respectively. The point-wise corre-

spondence of Xsi and Xsi+1
is associated by the Hsisi+1

using Xsi+1
= Hsisi+1

Xsi . Likewise, the correspondence of
Xsn and Xt is related by the Hsnt. Accordingly, the coor-
dinate correspondence between the source and target image
can be expressed as Xt = HstXs = (Hsnt × Hsn−1sn ×
· · · × Hs0s1)Xs, where × denotes the cross-product opera-
tion. Therefore, the homography of the source image and the
target image Hst can be obtained by multiplying the Hsnt

and Hsisi+1
. The corresponding identity equation can be ex-

pressed as
0∏

i=n−1

Hsisi+1 = H−1
snt × Hst. (1)

In essence, our optimization goal is not to minimize the dis-
tance between the warped source image and the target im-
age, but to minimize the error between estimated homogra-
phies based on Eq.(1) in an unsupervised manner. The unsu-
pervised objective function (Lunsup) is formulated as

Lunsup = |H−1
snt × Hst −

0∏
i=n−1

Hsisi+1 |1, (2)

where | · |1 denotes the L1 norm. Since the intermediate im-
ages are generated through the pre-defined homographies, so
we can estimate the homographies of intermediate images in
a supervised way. The supervised objective function (Lsup)
is formulated as

Lsup =

n−1∑
i=0

|Hsisi+1 − Hi+1
gt |1, (3)

and the Hsisi+1
in Eq.(2) can be replaced with the Hi+1

gt .
However, due to the cancellation effect amid the estimated
homography terms, artlessly replacing Hsisi+1

with Hi+1
gt

may obtain degeneration solutions, e.g., Hst = I3×3. To
avoid this situation, we rewrite Eq.(2) as

Lunsup =

n−1∑
i=0

λi|(H−1
si+1t × Hst)−

0∏
j=i

Hj+1
gt |1. (4)

Our final semi-supervised homography identity loss
LHIL combines the Lsup and Lunsup as LHIL = Lunsup+
λwLsup, where the λw is a weighting factor, we eliminate
this hyper-parameter by automatically balancing the weights
over each training batch as λw = Lunsup/Lsup.
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Figure 3: The overall pipeline of our proposed network. Firstly, we resize the original images into lower resolution ones and
use a multi-scale CNN encoder to obtain the pyramid features. The correlation layers are used to improve the utilization of
feature information and expand the receptive field. Finally, we use a coarse-to-fine homography estimation module to obtain
homography flows and solve DLT to get the corresponding homography matrices.

Multi-Scale Homography Estimation Network
There are two challenges for the large-baseline homogra-
phy estimation: 1) the overlap rate between two images is
low, and 2) the receptive field of CNN-based models is lim-
ited (Nie et al. 2022b). To overcome these problems, we
design a multi-scale homography estimation network, as
shown in Fig. 3, that combines a multi-scale CNN encoder
and correlation layers to leverage feature information and
expand the receptive field. Subsequently, the global and lo-
cal correlation maps are fed into a coarse-to-fine homogra-
phy estimation module to obtain the final results.
Multi-scale CNN Encoder. Given a pair of images Is and
It, we use a multi-scale CNN encoder consists of four cas-
caded residual blocks and max-pooling layers to extract
multi-scale features as Fk ∈ R

H

22+k × W

22+k ×dk

, k ∈ [0, 2].
Features at the top pyramid layer have the lowest resolution,
representing the most global information, which are subse-
quently used to generate the global correlation map. The size
of the global correlation map is determined by the size of the
input features, which requires a significant computation in
the case of high-resolution images. Therefore, we resize the
Is and It to Îs and Ît with fixed lower resolution H

′ ×W
′
.

The Îs and Ît are fed into the encoder to produce features
as F̂k. As shown in Fig. 3, we select F0, F1, F̂1, and F̂2

to form a four-layer feature pyramid. A set of homographies
can be estimated from the pyramid layers, which are trans-
mitted in a coarse-to-fine manner.
Feature Correlation. Previous unsupervised meth-
ods (Zhang et al. 2020; Ye et al. 2021; Hong et al. 2022)
estimate homography without using correlation layers.
However, we find that the correlation is effective for feature
matching. Specifically, the F̂2 contains more global infor-
mation than others, we use the global correlation layer to
represents the pairwise similarity between spatial positions
in the source feature F̂2

s and target feature F̂2
t as

C2
g(xs, xt) = F̂2

s (xs)
⊤F̂2

t (xt), (5)

where xs and xt denote the coordinate position of the source
and target feature, and C2

g is the global correlation map of
the source and target feature. The result is a 4D tensor, we
reshape it to a 3D tensor of size H

′

16 × W
′

16 × H
′
×W

′

256 .

For the rest feature maps, i.e., F0, F1, F̂1, we apply the
local correlation layer proposed in (Truong et al. 2020) to
evaluate the feature similarity between two feature maps, de-
noted as C0

l , C1
l , and Ĉ

1

l . The search region R is set to con-
strain the search space and result in local correlation maps
with the size of Cl is H(′)

22+k × W (′)

22+k × (2R+ 1)2.
Coarse-to-Fine Homography Estimation Module. Given
feature correlations, we adopt two coarse motion estimators
(CME) and two fine motion estimators (FME) to extract the
global and local motion from the correlations. As discussed
above, the relative motion between Is and It can be mapped
by a homography. Therefore, We compute the homography
flow (Li, Luo, and Liu 2021) as Fst = Xt − Xs to facil-
itate the learning of motion information and subsequently
solve the DLT to obtain a unique homography. The homog-
raphy flow of Îs and Ît is expressed as F̂st. Specifically, the
C2

g is fed into the CME to estimate the coarse homography

flow F̂
2

st, and the fine F̂
1

st is obtained by combining F̂
2

st and
Ĉ

1

l as input through the FME. Likewise, the homography
flow F1

st and F0
st can be generated with the corresponding

features and correlations via motion estimators. Moreover,
the LRR blocks (Ye et al. 2021) are inserted at FME to re-
ject motion outliers implicitly, detailed architectures of the
CME and FME are illustrated in Fig 3. Finally, we convert
the flows into the corresponding homographies by solving
the DLT .

Network Training
As mentioned in (DeTone, Malisiewicz, and Rabinovich
2016), it is non-trivial to directly estimate a homography ma-
trix. Therefore, we use the homography flow as the supervi-
sion object during the training stage. Besides, we resize the
initial images to fixed-resolution to improve the applicability
to high resolution images, our supervised and unsupervised
objectives are accordingly converted into

Lunsup =

n−1∑
i=0

λi(|Fst − Fsi+1t −
0∑

j=i

Fj+1
gt |1

+ |F̂st − F̂si+1t −
0∑

j=i

F̂
j+1

gt |1),

(6)
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Figure 4: A glace of our dataset. The dataset contains five categories as shown in the first five columns. The rightmost two
columns show several examples of human labeled point correspondences for quantitative evaluation.

Lsup =

n−1∑
i=0

|Fsisi+1 − Fi+1
gt |1 +

n−1∑
i=0

|F̂sisi+1 − F̂
i+1

gt |1. (7)

The most relative representations of our homography flow
are the 8 bases flow (Ye et al. 2021) and optical flow. While
the former performs well in small-baseline scenes, it crashes
in large-baselines. Compared to optical flow, with the as-
sistance of our supervised objective and LRR blocks, our
homography flows tend to represent the global motion be-
tween two images. Importantly, the homography flows are
only used to facilitate training, and DLT will be used to
transform the flows into homography matrices.

Experiments
Dataset. We introduce a large-scale dataset for large-
baseline homography estimation considering there lacks
a dedicated dataset for this task. Our dataset contains
5 categories, including regular (RE-L), low-texture (LT-
L), low-light (LL-L), small-foregrounds (SF-L), and large-
foregrounds (LF-L) scenes. We select image pairs from real-
world scenes and ensure the average non-overlap rate be-
tween the source and target images is from 20% to 50%. Our
dataset contains ≈78k image pairs in totally, and 1.8k image
pairs are randomly chosen from all categories as the eval-
uation data. For each evaluation image pair, we manually
labeled more than 6 uniform distributed matching points for
quantitative comparisons. Some examples of our dataset are
illustrated in Fig. 4.
Implementation Details. In the training stage, we randomly
crop patches of size 320×480 near the center of the initial
images as input, and the resolution of resized images is set
to (H

′ ×W
′
) = (256 × 256). The number of inserted im-

ages is set to n = 2, and the non-overlap rate of the two in-
termediate images is less than 20%. We empirically set the
λi in Eq.(7) to 10−i. Our network is implemented with Py-
Torch, and the training is performed on four NVIDIA RTX
2080Ti GPUs. The Adam optimizer (Kingma and Ba 2015)
is adopted with an initial learning rate of 5×10−4 for model
optimization, and it decays by a factor of 0.8 after every
epoch. The batch size is set to 16.

Comparison with Existing Methods
Quantitative Comparison. We report the quantitative re-
sults of all comparison methods on our large-baseline eval-
uation set in Table 1, where rows 3-8 are traditional feature-
based methods, rows 9-14 are learned feature-based meth-

ods, rows 15-18 are deep homography estimation methods,
and rows 19-22 are deep image alignment methods which
can be applied to large-baseline scenes. I3×3 in the first
row refers to the identity transformation, of which the er-
rors reflect the original distance between point pairs. And we
have retrained all deep learning-based methods, except the
Supervised (DeTone, Malisiewicz, and Rabinovich 2016),
on our training set represented by ∗. As shown in Table 1,
our method achieves state-of-the-art performance in all cat-
egories of the large-baseline dataset. In the regular (RE-L)
scenes, our method and SIFT+RANSAC achieve the best
results, because the feature-based methods can obtain suf-
ficient high-quality matching points in regular scenes and
thus perform well. But feature-based methods fail in other
challenging scenes, especially in low-light (LL-L) and low-
texture (LT-L), while our method does not rely on feature
detection and correspondence matching, being more robust
than traditional methods in these scenarios. For example, our
method reduces the error on LT-L by 66.4% compared to
SIFT+MAGSAC. Moreover, image alignment methods per-
form better than feature-based methods in some challeng-
ing scenarios, our method still produces lower errors, e.g.,
our method reduces the error on LL-L by 53.0% compared
to UNSUPDIS. The small-foreground (SF-L) and large-
foreground (LF-L) scenes contain dynamic objects, affect-
ing the estimation of homography. Compared with other
deep learning-based methods using photometric losses for
optimization, our method outperforms them in LF-L and SF-
L benefiting from our homography identity loss.

Additionally, we also conduct experiments on the small-
baseline dataset (Zhang et al. 2020), which also contains
5 categories RE-S, LT-S, LL-S, LF-S, and SF-S. Consider-
ing the small relative motion between two images in small-
baseline scenes, we set n = 1 and reduce the non-overlap
rate of the source and inserted image. As reported in Table
2, our method outperforms the existing four deep learning-
based methods with the error reduced from 0.50 to 0.44.
Qualitative Comparison. We compare the qualitative re-
sults of our method and other methods on our large-baseline
dataset. Fig. 5 shows the visualization results of our method
and four other methods in large-baseline scenes. Our method
shows superiority in LT-L and LL-L scenes, where feature-
based methods all fail due to insufficient key points ex-
tracted, as shown in Fig. 5(b) and Fig. 5(c). The other two
deep image alignment methods can not align these images
as well as ours. More specifically, they try to align the island
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1) RE-L LT-L LL-L LF-L SF-L Avg-L

2) I3×3 94.60 (+15428.0%) 106.48 (+550.9%) 99.42 (+1036.2%) 43.57 (+407.8%) 67.27 (+718.4%) 82.27 (+698.7%)

3) SIFT+RAN 1.66 (+0.0%) 26.47 (+61.8%) 20.37 (+132.8%) 9.05 (+5.5%) 8.22 (+0.0%) 13.15 (+27.7%)
4) SIFT+MAG 1.74 (+13.3%) 16.36 (+0.0%) 28.74 (+228.5%) 12.39 (+44.4%) 12.19 (+48.3%) 14.29 (+38.7%)
5) ORB+RAN 5.74 (+677.3%) 71.91 (+339.6%) 25.19 (+187.9%) 19.08 (+122.4%) 44.36 (+439.7%) 33.26 (+222.9%)
6) ORB+MAG 6.68 (+833.3%) 74.21 (+353.6%) 26.52 (+203.1%) 19.85 (+131.4%) 44.82 (+445.3%) 34.42 (+234.2%)
7) BEBLID+RAN 19.68 (2991.3%) 90.50 (+453.2%) 52.32 (+497.9%) 30.76 (+258.5%) 61.32 (+646.0%) 50.92 (+394.4%)
8) BEBLID+MAG 21.26 (+3253.6%) 90.96 (+456.0%) 53.87 (+515.7%) 31.99 (+272.8%) 61.36 (+646.5%) 51.89 (+403.8%)

9) SOSNet+RAN 1.86 (+33.2%) 29.76 (+81.9%) 18.92 (+116.2%) 13.59 (+58.4%) 8.96 (+9.0%) 14.61 (+41.8%)
10) SOSNet+MAG 2.02 (+59.8%) 35.42 (+116.5%) 19.18 (+119.2%) 19.02 (+121.7%) 11.95 (+45.4%) 17.52 (+70.1%)
11) SuperPoint+RAN 1.74 (+13.3%) 32.29 (+97.4%) 12.97 (+48.2%) 11.83 (+37.9%) 14.90 (+81.3%) 14.75 (+43.2%)
12) SuperPoint+MAG 1.86 (+33.2%) 35.19 (+115.1%) 13.34 (+52.5%) 12.90 (+50.4%) 14.28 (+73.7%) 15.51 (+50.6%)
13) LoFTR+RAN 1.73 (+11.6%) 16.85 (+3.0%) 25.96 (+196.7%) 8.58 (+0.0%) 10.52 (+28.0%) 12.73 (+23.6%)
14) LoFTR+MAG 1.78 (+19.9%) 18.27 (+11.7%) 26.31 (+200.7%) 9.89 (+15.3%) 11.74 (+42.8%) 13.60 (+32.0%)

15) Supervised 94.59 (+15426.0%) 106.46 (+550.7%) 99.41 (+1036.2%) 43.40 (+405.9%) 67.13 (+716.7%) 82.20 (+698.1%)
16) Unsupervised∗ 94.13 (+15349.8%) 105.94 (+547.6%) 98.76 (+1028.7%) 43.35 (+405.2%) 67.01 (+715.3%) 81.84 (+694.6%)
17) CAHomo∗ 92.11 (+15015.0%) 99.91 (+510.7%) 91.27 (+943.1%) 35.80 (+317.2%) 58.72 (+614.3%) 75.56 (+633.6%)
18) BasesHomo∗ 77.07 (+12518.7%) 95.76 (+485.3%) 81.67 (+833.3%) 32.99 (+284.5%) 49.15 (+498.0%) 67.33 (+553.7%)

19) UNSUPDIS 3.49 (+303.8%) 34.00 (+107.8%) 8.75 (+0.0%) 12.29 (+43.2%) 10.93 (+33.0%) 13.89 (+34.9%)
20) UNSUPDIS∗ 3.40 (+288.8%) 34.88 (+113.2%) 9.26 (+5.8%) 11.05 (+28.8%) 9.46 (+15.1%) 13.61 (+32.1%)
21) DAMG 2.55 (+147.7%) 19.54 (+19.4%) 9.10 (+4.0%) 11.74 (+36.8%) 10.03 (+22.0%) 10.59 (+2.8%)
22) DAMG∗ 2.17 (+84.7%) 20.12 (+23.0%) 8.78 (+0.3%) 10.82 (+26.1%) 9.62 (+17.0%) 10.30 (+0.0%)

23) Ours 1.66 (+0.0%) 5.49 (-66.4%) 4.11 (-53.0%) 7.57 (-11.8%) 6.95 (-15.5%) 5.16 (-49.9%)

Table 1: The point matching errors (PME) of our method and all comparison methods on our large-baseline dataset. The best
results are highlighted in bold, the second best results are underlined. The percentages in the parentheses indicate the relative
change in comparison to the second best results. RAN and MAG denote RANSAC and MAGSAC, respectively.

1) RE-S LT-S LL-S LF-S SF-S Avg-S

2) I3×3 7.75 7.65 7.21 3.39 7.53 6.70

3) Supervised 1.51 4.48 2.76 3.00 2.62 2.87
4) Unsupervised 0.79 2.45 1.48 1.10 1.11 1.39
5) CAHomo 0.73 1.01 1.03 0.70 0.92 0.88
6) BasesHomo 0.29 0.54 0.65 0.41 0.61 0.50

7) Ours 0.29 0.64 0.45 0.39 0.45 0.44

Table 2: The point matching errors (PME) of our method
and deep learning-based comparison methods on the small-
baseline dataset. The best results are highlighted in bold.

in Fig. 5(b) since it has more texture than the surrounding
area, while only our method successfully aligns the scene.
In Fig. 5(d) and Fig. 5(e), UNSUPDIS and DAMG even per-
form worse than some feature-based methods because their
optimization strategy is based on photo losses and thus can-
not obtain satisfactory results in scenes with dynamic ob-
jects. Our method avoids the drawbacks of the photometric
losses and thus generates more accurate results. Please refer
to the supplementary material for more qualitative results.
Robustness Evaluation. Furthermore, we evaluate the ro-
bustness of all comparison methods on the large-baseline
scenes by setting thresholds to calculate the proportion of
inlier predictions. Specifically, points with errors lower than
the threshold are considered inliers. As such, we set the
threshold from 1.0 to 50.0. Our method significantly out-
performs other methods from threshold 10.0 to 50.0. With
a threshold of 10, our inlier proportion is 7.7% higher than
the second best (89.1% vs. 81.4%), and our method does not

1) Modification RE-L LT-L LL-L LF-L SF-L Avg-L

2) n = 1 1.91 6.49 4.71 7.11 7.26 5.50
3) n = 3 1.64 9.77 4.05 8.70 7.92 6.42

4) LPL 59.41 75.47 53.56 30.91 48.29 53.53
5) LABPL 5.81 18.56 15.47 10.62 10.69 12.23
6) Only Lsup 1.78 10.41 5.25 10.87 9.18 7.50
7) Only Lunsup 2.50 8.63 5.84 6.78 7.07 6.16

8) Corner offsets 4.73 13.21 9.31 15.19 15.09 11.51
9) 8 bases flow 7.14 13.04 13.18 12.50 14.56 12.09

10) Default 1.66 5.49 4.11 7.57 6.95 5.16

Table 3: Results of ablation studies, please refer to the text
for more details.

produce any points with an error greater than 50.

Ablation Studies
We conduct extensive ablation studies to verify the effec-
tiveness of our proposed components, and the results are re-
ported in Table 3.
Progressive Estimation Strategy. In this experiment, we
choose to vary the number of inserted intermediate images to
verify the effectiveness of our progressive estimation strat-
egy, as shown in rows 2 and 3. With only one image inserted,
i.e., n = 1, the average error of our method is 5.50, which
already surpasses other comparison methods in Table 1, but
can still be reduced. After inserting three images, i.e., n = 3,
the average error increased by 1.26 compared to n = 2.
This is because the more images are inserted, the more accu-
rate intermediate results should be interpolated, otherwise,
the cumulative error increases significantly (Liu et al. 2009,
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Figure 5: Qualitative results of our method and other competitive methods on the large-baseline dataset. The images are gener-
ated by superimposing the warped source images on the target image. Error-prone regions are highlighted with red boxes, and
the blue boxes show the content difference between two images in the error-prone regions. Best viewed with zooming in.

2013). Even though the number of inserted images varies,
our strategy still achieves superior results compared to other
methods, and the optimal results can be obtained when the
number of inserted images is moderate.

Homography Identity Loss. To verify the effectiveness of
our homography identity loss, we first compare our loss
function with the photometric losses used in (Ye et al. 2021)
and (Nie et al. 2021), as shown in rows 4 and 5. We can see
that optimizing with photometric loss (Ye et al. 2021), i.e.,
LPL leads to failure in all scenarios, which is consistent with
what we have discussed in the Introduction. The ablation-
based photometric loss (Nie et al. 2021), i.e., LABPL, avoids
the effect of out-of-boundary pixels, it is not able to handle
scenes with dynamic objects. Our proposed loss performs
better than both of them in all scenes, which demonstrates
the usefulness of our loss function. In addition, our homog-
raphy identity loss is a semi-supervised loss, to verify the
effectiveness of semi-supervised learning, we remove the
Lsup and Lunsup respectively for optimization. As shown
in rows 6 and 7, the average error of training with Lsup only
is higher than that of training with Lunsup only (7.50 vs.
6.16), which is due to the fact that our supervised objec-
tive is constructed based on the synthetic data and is there-
fore not ideal in terms of generalizability. But solely using
Lunsup is worse than solely using Lsup in RE-L and LL-L
scenarios. By combining the advantages of supervised and
unsupervised learning, our semi-supervised loss can achieve
better results.

Homography Flow. In the training stage, we adopt the ho-
mography flow to facilitate network training. From another
perspective, our homography flow is equivalent to a form
of dense offsets, similar to the commonly used corner off-

sets (Nguyen et al. 2018; Zhang et al. 2020). However, our
homography flow contains more motion information and
achieves better results, as shown in row 8. Another similar
form is the 8 bases flow (Ye et al. 2021), it performs well in
the small-baseline scenes but crashes in the large-baseline,
as shown in row 9.

Limitations
Although our method achieves state-of-the-art performance
in large-baseline scenes compared with the existing meth-
ods, it still has its limitation of being applied to scenes with
multiple planes where a homography theoretically cannot
perform alignment well. We will leave the solution for the
multiple planes alignment as future work.

Conclusion
In this work, we have presented a new deep framework for
large-baseline homography estimation. We note that it is
non-trivial to directly estimate a large-baseline homography
and thus propose a progressive estimation strategy to con-
vert it into several intermediate phases. The homography
of two images can be obtained by cumulatively multiply-
ing these intermediate ones. Meanwhile, we propose a semi-
supervised homography identity loss to enforce the net-
work focus on optimizing the homography itself, avoiding
the problems of photometric losses. Moreover, we present
a large-scale dataset for large-baseline homography estima-
tion, which consists of five categories of scenes. Extensive
experiments and ablation studies prove the effectiveness of
our newly proposed components and demonstrate the supe-
riority of our method over the existing methods.

1030



Acknowledgements
This work was supported in part by the National Natural Sci-
ence Foundation of China (NSFC) under grant No.61872067
and in part by the Natural Science Foundation of Sichuan
Province (NSFSC) under grant No.2023NSFSC0462.

References
Baker, S.; and Matthews, I. 2004. Lucas-kanade 20 years on:
A unifying framework. International Journal of Computer
Vision, 56(3): 221–255.
Barath, D.; Matas, J.; and Noskova, J. 2019. MAGSAC:
marginalizing sample consensus. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 10197–10205.
Cao, S.-Y.; Hu, J.; Sheng, Z.; and Shen, H.-L. 2022. It-
erative Deep Homography Estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 1879–1888.
DeTone, D.; Malisiewicz, T.; and Rabinovich, A. 2016.
Deep image homography estimation. arXiv preprint
arXiv:1606.03798.
DeTone, D.; Malisiewicz, T.; and Rabinovich, A. 2018. Su-
perpoint: Self-supervised interest point detection and de-
scription. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 224–
236.
Du, S.; Guo, H.; Chen, Y.; Lin, Y.; Meng, X.; Wen, L.; and
Wang, F.-Y. 2020. GPO: Global Plane Optimization for Fast
and Accurate Monocular SLAM Initialization. In Proceed-
ings of the IEEE International Conference on Robotics and
Automation, 6254–6260.
Fischler, M. A.; and Bolles, R. C. 1981. Random sample
consensus: a paradigm for model fitting with applications
to image analysis and automated cartography. Communica-
tions of the ACM, 24(6): 381–395.
Guo, H.; Liu, S.; He, T.; Zhu, S.; Zeng, B.; and Gabbouj, M.
2016. Joint video stitching and stabilization from moving
cameras. IEEE Transactions on Image Processing, 25(11):
5491–5503.
Han, Y.; Luo, K.; Luo, A.; Liu, J.; Fan, H.; Luo, G.; and
Liu, S. 2022. RealFlow: EM-Based Realistic Optical Flow
Dataset Generation from Videos. In European Conference
on Computer Vision, 288–305.
Hartley, R.; and Zisserman, A. 2003. Multiple view geometry
in computer vision. Cambridge university press.
Hong, M.; Lu, Y.; Ye, N.; Lin, C.; Zhao, Q.; and Liu, S. 2022.
Unsupervised Homography Estimation with Coplanarity-
Aware GAN. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 17663–17672.
Kharismawati, D. E.; Akbarpour, H. A.; Aktar, R.; Bunyak,
F.; Palaniappan, K.; and Kazic, T. 2020. CorNet: Unsuper-
vised Deep Homography Estimation for Agricultural Aerial
Imagery. In European Conference on Computer Vision, 400–
417.

Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In International Conference on
Learning Representation.

Li, H.; Luo, K.; and Liu, S. 2021. GyroFlow: Gyroscope-
Guided Unsupervised Optical Flow Learning. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, 12869–12878.

Liu, F.; Gleicher, M.; Jin, H.; and Agarwala, A. 2009.
Content-preserving warps for 3D video stabilization. ACM
Transactions on Graphics, 28(3): 1–9.

Liu, S.; Li, H.; Wang, Z.; Wang, J.; Zhu, S.; and Zeng, B.
2021a. Deepois: Gyroscope-guided deep optical image sta-
bilizer compensation. IEEE Transactions on Circuits and
Systems for Video Technology, 32(5): 2856–2867.

Liu, S.; Yuan, L.; Tan, P.; and Sun, J. 2013. Bundled camera
paths for video stabilization. ACM Transactions on Graph-
ics, 32(4): 1–10.

Liu, Z.; Lin, W.; Li, X.; Rao, Q.; Jiang, T.; Han, M.; Fan,
H.; Sun, J.; and Liu, S. 2021b. ADNet: Attention-guided
deformable convolutional network for high dynamic range
imaging. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 463–
470.

Liu, Z.; Wang, Y.; Zeng, B.; and Liu, S. 2022. Ghost-free
High Dynamic Range Imaging with Context-aware Trans-
former. In European Conference on Computer Vision, 344–
360.

Lowe, D. G. 2004. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion, 60(2): 91–110.

Luo, K.; Wang, C.; Liu, S.; Fan, H.; Wang, J.; and Sun, J.
2021. UPFlow: Upsampling Pyramid for Unsupervised Op-
tical Flow Learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 1045–
1054.

Nguyen, T.; Chen, S. W.; Shivakumar, S. S.; Taylor, C. J.;
and Kumar, V. 2018. Unsupervised deep homography:
A fast and robust homography estimation model. IEEE
Robotics and Automation Letters, 3(3): 2346–2353.

Nie, L.; Lin, C.; Liao, K.; Liu, M.; and Zhao, Y. 2020. A
view-free image stitching network based on global homog-
raphy. Journal of Visual Communication and Image Repre-
sentation, 73: 102950.

Nie, L.; Lin, C.; Liao, K.; Liu, S.; and Zhao, Y. 2021. Unsu-
pervised deep image stitching: Reconstructing stitched fea-
tures to images. IEEE Transactions on Image Processing,
30: 6184–6197.

Nie, L.; Lin, C.; Liao, K.; Liu, S.; and Zhao, Y. 2022a.
Depth-Aware Multi-Grid Deep Homography Estimation
With Contextual Correlation. IEEE Transactions on Circuits
and Systems for Video Technology, 32(7): 4460–4472.

Nie, L.; Lin, C.; Liao, K.; and Zhao, Y. 2022b. Learning
edge-preserved image stitching from multi-scale deep ho-
mography. Neurocomputing, 491: 533–543.

1031



Rublee, E.; Rabaud, V.; Konolige, K.; and Bradski, G. 2011.
ORB: An efficient alternative to SIFT or SURF. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, 2564–2571.
Sarlin, P.-E.; DeTone, D.; Malisiewicz, T.; and Rabinovich,
A. 2020. Superglue: Learning feature matching with graph
neural networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 4938–
4947.
Shao, R.; Wu, G.; Zhou, Y.; Fu, Y.; Fang, L.; and Liu, Y.
2021. Localtrans: A multiscale local transformer network
for cross-resolution homography estimation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, 14890–14899.
Suárez, I.; Sfeir, G.; Buenaposada, J. M.; and Baumela, L.
2020. BEBLID: Boosted efficient binary local image de-
scriptor. Pattern Recognition Letters, 133: 366–372.
Sun, J.; Shen, Z.; Wang, Y.; Bao, H.; and Zhou, X. 2021.
LoFTR: Detector-free local feature matching with trans-
formers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 8922–8931.
Tian, Y.; Yu, X.; Fan, B.; Wu, F.; Heijnen, H.; and Balntas,
V. 2019. Sosnet: Second order similarity regularization for
local descriptor learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
11016–11025.
Truong, P.; Danelljan, M.; Gool, L. V.; and Timofte, R. 2020.
GOCor: Bringing globally optimized correspondence vol-
umes into your neural network. Advances in Neural Infor-
mation Processing Systems, 33: 14278–14290.
Truong, P.; Danelljan, M.; and Timofte, R. 2020. GLU-Net:
Global-Local Universal Network for Dense Flow and Cor-
respondences. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition.
Truong, P.; Danelljan, M.; Van Gool, L.; and Timofte, R.
2021a. Learning Accurate Dense Correspondences and
When To Trust Them. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
5714–5724.
Truong, P.; Danelljan, M.; Yu, F.; and Van Gool, L. 2021b.
Warp consistency for unsupervised learning of dense corre-
spondences. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 10346–10356.
Ye, N.; Wang, C.; Fan, H.; and Liu, S. 2021. Motion basis
learning for unsupervised deep homography estimation with
subspace projection. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 13117–13125.
Zhang, J.; Wang, C.; Liu, S.; Jia, L.; Ye, N.; Wang, J.; Zhou,
J.; and Sun, J. 2020. Content-aware unsupervised deep ho-
mography estimation. In European Conference on Com-
puter Vision, 653–669.

1032


