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Abstract

Humans naturally use referring expressions with verbal utter-
ances and nonverbal gestures to refer to objects and events.
As these referring expressions can be interpreted differently
from the speaker’s or the observer’s perspective, people effec-
tively decide on the perspective in comprehending the expres-
sions. However, existing models do not explicitly learn per-
spective grounding, which often causes the models to perform
poorly in understanding embodied referring expressions. To
make it exacerbate, these models are often trained on datasets
collected in non-embodied settings without nonverbal ges-
tures and curated from an exocentric perspective. To ad-
dress these issues, in this paper, we present a perspective-
aware multitask learning model, called PATRON, for relation
and object grounding tasks in embodied settings by utiliz-
ing verbal utterances and nonverbal cues. In PATRON, we
have developed a guided fusion approach, where a perspec-
tive grounding task guides the relation and object grounding
task. Through this approach, PATRON learns disentangled
task-specific and task-guidance representations, where task-
guidance representations guide the extraction of salient mul-
timodal features to ground the relation and object accurately.
Furthermore, we have curated a synthetic dataset of embodied
referring expressions with multimodal cues, called CAESAR-
PRO. The experimental results suggest that PATRON outper-
forms the evaluated state-of-the-art visual-language models.
Additionally, the results indicate that learning to ground per-
spective helps machine learning models to improve the per-
formance of the relation and object grounding task. Further-
more, the insights from the extensive experimental results
and the proposed dataset will enable researchers to evaluate
visual-language models’ effectiveness in understanding refer-
ring expressions in other embodied settings.

Introduction
Humans naturally use multimodal cues, such as verbal utter-
ances and non-verbal signals (gazes and pointing gestures),
to refer to objects and events, known as referring expressions
(McNeill 2012; Arbib, Liebal, and Pika 2008; Liszkowski
et al. 2006, 2004; Tomasello 2010; Tang et al. 2020; Stacy
et al. 2020; Kratzer et al. 2020). In prior work, understanding
referring expressions has been generally modeled as ground-
ing relations and objects in visual scenes using verbal ut-
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terances, which is known as referring expression compre-
hension (REF) (Yang, Li, and Yu 2019; Yu et al. 2016; Ka-
math et al. 2021; Akula et al. 2021). These models are often
trained in non-embodied settings, where the visual scenes
contain objects but disregard human nonverbal signals. Con-
sequently, these models cannot generalize well in compre-
hending real-world human interactions.

Several recent works have attempted to address the task
of comprehending referring expressions by incorporating
nonverbal gestures with verbal utterances in embodied set-
tings (known as embodied referring expression comprehen-
sion (E-REF)) (Chen et al. 2021; Schauerte and Fink 2010).
However, some crucial issues remain unaddressed in these
recent works. Particularly, most embodied referring expres-
sion datasets only capture human interactions from an ob-
server perspective with exo-centric views. People innately
use an understanding of perspective, which can be observed
in how humans interchangeably use perspectives from the
speaker and the observer when referring to objects during
interactions. For example, a person can refer to an object as
“the red lamp to the left of the black hat” from the speaker’s
perspective or “the red lamp to the right of the black hat”
from the observer’s perspective (Fig. 1). Thus, understand-
ing perspectives can help a model to ground relations and
objects. However, the existing datasets do not contain data
from other perspectives (e.g., speaker, observer, neutral) and
visual views (e.g., exo, ego, top) to train such a model.

Recent works studied REF and E-REF by designing two
separate tasks: a relation grounding task (Goyal et al. 2020;
Dai, Zhang, and Lin 2017; Zhuang et al. 2017; Zhang et al.
2017) and an object grounding task (Chen et al. 2021;
Achlioptas et al. 2020; Lee et al. 2022; Kazemzadeh et al.
2014). In a non-embodied setting, the relation grounding
task is defined as determining whether a verbal utterance
appropriately describes the spatial relationships between ob-
jects in a visual scene. In an embodied setting, this relation
grounding task is defined as determining whether a verbal
utterance and nonverbal signals (gazes and pointing ges-
tures) refer to the same object. The object grounding task
aims to identify a referred object using a verbal utterance
and nonverbal gestures. These tasks have many use-cases in
real-world interactions. For example, if a person verbally de-
scribes an object but nonverbally points to another object,
an AI-driven agent can identify these incoherent multimodal
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Figure 1: Comprehending embodied referring expressions requires an understanding of the perspective, i.e., whether an object
is verbally described from the speaker’s or observer’s perspective. In these scenarios, nonverbal signals (gaze and pointing
gesture) can complement verbal utterance to ground an object (a & c). However, sometimes people verbally describe an object
and point to or gaze at another object (b & d). Thus, it is also crucial to ground relation for comprehending referring expressions.

cues, using the relation grounding task, and request clarifica-
tion. In another case, if a person points to an object and asks,
“what is the object to the right of the black hat?”, then the
AI agent can use the object grounding task to identify the re-
ferred object (presented in Fig. 1). Thus, training models on
these two related tasks (relations and objects grounding) and
the previously mentioned perspective grounding task can en-
able achieve seamless human-AI interactions (HAI).

To address these challenges, we have developed a novel
perspective-aware multitask model, PATRON, for the rela-
tion and object grounding task using multimodal cues. In
PATRON, we have designed two cooperative tasks, one for
the perspective grounding (auxiliary task) and another for
the relation and object grounding (target task). In the aux-
iliary task module, PATRON learns disentangled represen-
tations (task-specific and task-guidance) to learn perspec-
tive grounding. In the target task module, PATRON uses our
proposed guided fusion approach that utilizes task-guidance
representations from the auxiliary task as prior information
to extract guided multimodal representations. PATRON uses
a self-attention-based fusion approach to extract supplemen-
tary target task-specific representations. Finally, PATRON
fuses task-guided and target task-specific disentangled rep-
resentations to learn relation and object grounding.

Additionally, to overcome the shortcomings of the exist-
ing datasets, we have developed a dataset, called CAESAR-
PRO, to train and evaluate models for comprehending em-
bodied referring expressions. In CAESAR-PRO, each em-
bodied referring expression is captured from three visual
views (ego, exo, and top), and the verbal utterances are
generated from three perspectives: speaker, observer, and
neutral. We have evaluated the performance of PATRON
and state-of-the-art visual-language models by applying on
the CAESAR-PRO dataset for perspective and relation-
object grounding tasks. Our extensive experimental analy-
sis suggests that perspective learning can improve the per-
formance of visual-language models, including PATRON,
for the relation-object grounding task. Moreover, our pro-
posed perspective-aware guided fusion approach helps PA-
TRON to outperform all the evaluated models by achiev-
ing the highest accuracy of 74.13% and 81.15% in relation-
object and perspective grounding tasks, respectively. More-
over, our ablation study indicates that disentangling mul-
titask representations can help extract salient multimodal
features and significantly improve the performance of the

relation-object grounding task. Our proposed perspective-
aware E-REF model, the dataset, and the insights from our
studies open new research directions in HAI.

Related Work
Embodied Referring Expression Comprehension: Sev-
eral datasets and models have been developed for REF (Mao
et al. 2016; Liu et al. 2019; Viethen and Dale 2008). For
example, Kazemzadeh et al. (2014) developed a dataset of
referring expressions to ground objects in photographs of
natural scenes. Lee et al. (2022) curated another dataset
to develop model for comprehending referring expressions
through visual question-answering. One of the crucial limi-
tations of these datasets is that the data samples are curated
in non-embodied settings, where human presence and non-
verbal gestures are not considered in referring expressions.
As a result, the models trained on these datasets cannot per-
ceive the nonverbal cues that are often necessary for E-REF.

Recently, a few datasets have been developed for E-REF
with verbal utterances and nonverbal gestures. For example,
Chen et al. (2021) developed a dataset of embodied referring
expressions where a human refers to an object using a ver-
bal utterance and nonverbal gestures. However, one of the
crucial limitations of this dataset is that the data samples are
captured solely from an exocentric perspective. Thus, mod-
els trained on these datasets will be biased towards an ex-
ocentric perspective and will not comprehend embodied re-
ferring expressions from different perspectives.

Multimodal Representation Learning: Several multi-
modal representation learning models have been proposed
for various tasks, such as human activity recognition (Is-
lam and Iqbal 2020, 2021; Samyoun* et al. 2022; Islam,
Yasar, and Iqbal 2022; Feichtenhofer et al. 2019), motion
prediction (Yasar*, Islam*, and Iqbal 2022; Yasar and Iqbal
2021), visual-question answering (Lu et al. 2019; Li et al.
2019), and referring expression comprehension (Yu et al.
2016; Mao et al. 2016). Existing models for REF predom-
inately use similar cross-attention or self-attention methods
to fuse multimodal representations (Goyal et al. 2020; Lee
et al. 2022). However, due to lack of perspective diversity
and nonverbal gestures, these models do not explicitly learn
the perspective taking and the understanding of human non-
verbal interaction necessary to comprehend REF.
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Multitask Learning: Several multitask models have been
designed to learn multiple tasks (Ruder 2017; Hashimoto
et al. 2016; Zhang and Yang 2017; Guo et al. 2018; Gagné
2019; Zhou et al. 2020a). The aim of designing these mod-
els is two-fold: maximizing shared representations among
the tasks and compressing the size of models by maximiz-
ing shared learnable parameters across tasks (Ruder 2017;
Xu et al. 2018; Zhou et al. 2020b; Achille et al. 2019; Zamir
et al. 2018). Moreover, since tasks in these models are occa-
sionally independent and competitive, training approaches
can determine which tasks should be learned together (Guo,
Lee, and Ulbricht 2020; Jang, Gu, and Poole 2016), further
improving model performance. For example, Standley et al.
(2020) uses cooperative and competitive task relationships
to optimize the shared representations and improve the per-
formance of multiple tasks. A few works use cooperative re-
lationships among tasks to fuse multimodal representations.
For example, Islam and Iqbal (2022) uses activity-group in-
formation (auxiliary task) to fuse representations for activ-
ity recognition (target task), where the classes of the activ-
ity recognition task can be directly mapped to the classes
of the activity-group recognition task. However, if there is
no direct mapping of classes between the tasks, then using
the auxiliary task’s representation to fuse representations for
target tasks can degrade the overall tasks’ performance.

PATRON: Perspective-aware Multitask Model
In PATRON, we have designed two tasks: an auxiliary task
(perspective grounding) and a target task (relations and ob-
jects grounding). We combine relation and object grounding
task in a single task (relation-object grounding), where the
models identify the referred object if the verbal and nonver-
bal cues refer to the same object; otherwise, it will report a
failed condition. In PATRON, the auxiliary task learns dis-
entangled representations, auxiliary task-specific and task-
guidance, where task-guidance representations are used to
guide the target task to extract complementary representa-
tions. PATRON also learns disentangled representations for
target tasks, task-guided and target task-specific, where task-
guided representations are learned using task-guidance rep-
resentations from the auxiliary task. In the following subsec-
tions, we present different modules of PATRON.

Unimodal Feature Encoders
PATRON uses modality-specific encoders to encode data
from visual and verbal modalities. Visual modalities capture
nonverbal gestures in three image views (Xego, Xexo, and
Xtop). Verbal utterances (Xverbal) refer to an object from a
perspective (ego, exo, and neutral). As different modalities
have different feature characteristics, PATRON uses sepa-
rate encoders to encode visual and verbal modalities. This
architecture design enables PATRON to utilize state-of-the-
art models (Fm) to extract salient unimodal representations
(Em). In our implementation of PATRON, we use ResNet
and DistilBERT to extract unimodal representations:

Em = Fm(Xm) , m ∈ (ego, exo, top, verbal) (1)

Figure 2: PATRON: Perspective-aware Multitask Learning
Model. PATRON learns disentangled representations (i.e.,
auxiliary task-specific and task-guidance representations)
for the auxiliary task (perspective grounding) and disen-
tangled representations (i.e., task-guided and target task-
specific) for the target task (relation and object grounding).
Here, the proposed guided fusion approach extracts the task-
guided representations using the task-guidance representa-
tions as prior information from the auxiliary task.

Here, Em ∈ R(B×Dm), B is the batch size, and Dm is the
representation dimension of modality m.

Auxiliary Task Module
In PATRON, the auxiliary task module extracts task-specific
and task-guidance disentangled representations from uni-
modal representations Eu = (Eego, Eexo, Etop, Everbal) (u
indicates for unimodal). These disentangled representations
are used together to learn perspective grounding, whereas
task-guidance representations are also used to guide the tar-
get task module to extract perspective-aware complementary
representations for relations and objects grounding.

Auxiliary Task-Specific Representation Learning: In
PATRON, we have designed a guided fusion approach to
fuse unimodal representations. In the auxiliary task module,
PATRON uses verbal representation (Everbal) as queries
to fuse visual modalities (Evisual = (Eego, Eexo, Etop))
and produce task-specific representations. At first, PATRON
projects (Everbal) to produce queries (Q = EverbalW

Q)
and projects Evisual to produce key (K = EvisualW

K) and
value (V = EvisualW

V ) representations. Here, WQ, WK ,
and WV are learnable parameters. Finally, queries are used
to extract multimodal representations from keys and values
in the following way:

E
′

= σ

(
QKT

√
Du

)
V (2)

Eaux
task specific = W oE

′
(3)

Du is the unimodal representation dimension and W o is a
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learnable parameter. As we also use guided fusion approach
in the target task module, we can summarize this as,

Eaux
task specific = Guided Fusion(Query,Eu) (4)

Task-Guidance Representation Learning: PATRON
uses self-attention approaches to fuse unimodal rep-
resentations and extract task-guidance representations
(Eaux

task guidance), which is disentangled from Eaux
task specific:

Eaux
task guidance = Self Attn(Eu) =

∑
m∈M

αmEm (5)

αm =
exp(βm)∑

m∈M

exp(βm)
, m ∈ M (6)

βm = (W aux)TEm , m ∈ M (7)

Here, M is the modality list (ego, exo, top, verbal), W aux is
a learnable parameter, and αm is the attention weights.

Perspective Grounding Task: PATRON fuses disentan-
gled representations ([Eaux

task specific;E
aux
task guidance]) using

a self-attention approach (Self Attn: Eq. 5) to learn per-
spective. PATRON uses Eaux

task guidance to learn perspective
for ensuring that it contains perspective-aware information,
which PATRON uses in the target task module:

Eaux
fused = Self Attn([Eaux

task specific;E
aux
task guidance]) (8)

yP = FPerspective(E
aux
fused) (9)

Here, Fperspective is a multi-layer perceptron (MLP).

Target Task Module
In PATRON, the auxiliary task module (perspective ground-
ing) guides the target task module to extract salient multi-
modal representations for grounding relations and objects.
PATRON uses Guided and Self Fusion modules to extract
representations for target task learning.

Task-Guided Representation Learning: PATRON uses
our Guided Fusion approach (Section: Task-Specific Rep-
resentation Learning and Eq.4), to fuse unimodal repre-
sentations (Eu). In the target task module, the guided fu-
sion approach aims to extract perspective-aware multimodal
representations that can be used for grounding relations
and objects. PATRON utilizes the guidance representations
(Eaux

task guidance) from the auxiliary task module as prior
information to extract salient multimodal representations:
Etarget

guided = Guided Fusion(Eaux
task guidance, Eu)

Target Task-Specific Representation Learning: Al-
though a guided fusion approach helps PATRON to ex-
tract perspective-aware representations (Etarget

guided), verbal
and visual modalities can provide additional information
to Etarget

guided. PATRON uses Self Attn (described in Sec-
tion Task-Guidance Representation Learning and Eq. 5)
to extract supplementary representations for relation-object
grounding: Etarget

task specific = Self Attn(Eu).

Relation-Object Grounding Task: PATRON grounds re-
lations and objects together. PATRON identifies the target
object that is referred to by multimodal cues - verbal ut-
terances and nonverbal gestures (gazes and pointing ges-
tures). If the verbal utterance and nonverbal gestures re-
fer to two different objects, then the model should iden-
tify these inconsistencies (invalid embodied referring rela-
tions) and should not ground any objects. To accomplish
this, PATRON fuses guided representations (Etarget

guided) and
target task-specific representations (Etarget

task specific) through
a self-attention approach (Self Attn: Eq. 5):

Etarget
fused = Self Attn([Etarget

task guided;E
target
task specific]) (10)

yOR = FOR(E
target
fused ) (11)

Here, FOR is a MLP to learn target task.

Multitask Learning
We use a multitask learning loss to train PATRON
for jointly learning auxiliary (perspective grounding) and
target tasks (relations and objects grounding). We use
cross-entropy to calculate the loss for auxiliary task
(LP (yP , ŷP ) = 1

B

∑B
i=1 y(P,i) log ŷ(P,i)) and target task

(LRO(yRO, ŷRO) = 1
B

∑B
i=1 y(RO,i) log ŷ(RO,i)). These

losses are used to calculate the multitask loss (Lmultitask =
γpLP +γROLRO), where, γp and γOR are task loss weights.
LP helps to learn perspective-aware representations for
grounding the perspective. LP is also used to learn disentan-
gled representation (Eaux

task guidance) for guiding the target
task to learn perspective-aware multimodal representations.

CAESAR-PRO Dataset
We have used an embodied simulator, CAESAR (Islam,
Gladstone, and Iqbal 2022) to develop a dataset of embodied
referral expression. CAESAR allows to automatically gener-
ate datasets and synthesizing human gaze and gestures from
multiple perspectives (ego, exo, and top). Moreover, CAE-
SAR can generate contrastive situations where the person
verbally and nonverbally referring two different objects.

We have developed an additional embodied environment
in CAESAR, called a shelf environment, where various ob-
jects are located on a shelf (Fig. 1-right), whereas the orig-
inal CAESAR simulator contains only a table-top environ-
ment (Fig. 1-left). These two environments allow us to gen-
erate diverse data samples with more spatial relations, such
as above and below, enabling the model to understand spatial
relations in three dimensions. Moreover, due to the locations
of cameras in the shelf environment, the observer’s point of
view differs from the table-top environment (Fig. 1), where
the observer is always placed in front of the speaker.

Dataset Generation
To accomplish a realistic and sufficiently variable synthe-
sis of human gaze and pointing gestures, we have used
the CAESAR simulator, which uses a gesture synthesis al-
gorithm on real-world data collected using a motion cap-
ture system. CAESAR uses inverse kinematics applied to
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Figure 3: A visualization of referred object locations from
different views in the table-top environment is presented
here. These locations indicate that the CAESAR-PRO
dataset has little to no bias toward object locations in visual
scenes and is evenly distributed for a given left and right
spatial relations in verbal utterances.

both the chest and head of the human to generate ges-
tures. To construct verbal referring expressions, we used
several templates from CAESAR. We have also included
additional spatial relations, such as the above and below
relation, which allows for generating more diverse data
samples and training models to learn 3D spatial relations.
The general structure of these templates: <referred object
location><referred object properties><spatial relation><
reference object location><reference object properties>.
We have varied this template structure and created eight
unique sub-templates. Additionally, we have varied the ob-
ject names, colors, sizes, locations, and spatial relations to
generate diverse verbal expressions to identify one of up to
ten objects in a scene from multiple perspectives. These tem-
plates are further described in the supplementary document.

Dataset Analyses

The CAESAR-PRO dataset consists of 128, 100 samples,
with a train (79, 431), validation (24, 597), and test split
(24, 072). The CAESAR-PRO dataset is composed of
229, 036 images, which are mixed with different verbal ex-
pressions from multiple perspectives. Images are rendered at
a resolution of (480×320) pixels, and an object library of 61
objects is used. We randomly sampled 10 objects which are
used as referred objects. Each data sample consists of RGB
images, skeletal images, depth map images, and object seg-
mentation mask images for three camera views and a verbal
utterance. We also generated task labels for perspective, re-
lation, and object grounding tasks.

We aim to generate a dataset that is not biased to object
locations and spatial relations. For example, the term “on
the left” always refers to objects on the left side of the scene
from the observer’s perspective would cause trained mod-
els to bias towards only using verbal cues, resulting in a
model not being aware of the perspective-taking necessary
to ground real-world referring expressions with verbal and
nonverbal signals. In Fig. 3, it is evident that the object loca-
tions in CAESAR-PRO (table-top environment) are not tied
to the spatial relations in the verbal utterances. These di-
verse data ensure that models use nonverbal cues to ground
objects rather than solely relying on verbal cues. We present
additional dataset analysis in the supplementary document.

Experimental Setup
We have compared the performance of PATRON by com-
paring its performance against the following models for the
perspective and relation-object grounding tasks: MuMu (Is-
lam and Iqbal 2022), VisualBERT (Li et al. 2019), CLIP
(Radford et al. 2021), Dual-Encoder (similar to Zhai et al.
(2022)), and Late-Fusion (similar to Islam and Iqbal (2020)).
The evaluated models produce visual-language (VL) rep-
resentations from a single visual image and verbal utter-
ance. We extend these models to process multiple visual
views (ego, exo, and top) and a verbal utterance. For Visu-
alBERT, we extract visual representations of multiple views
using ResNet-101 and pass these representations with a ver-
bal utterance to learn VL representations. For the CLIP and
Dual-Encoder models, we pair the verbal utterance to each
visual view and pass each visual-verbal pair through the
model to extract VL representations, which are later con-
catenated. For the Late-Fusion and MuMu models, we ex-
tract visual and verbal representations using ResNet-101
and DistillBERT (Sanh et al. 2019), respectively. Late Fu-
sion model fuses these representations using the Multi-Head
Self-Attention approach (Vaswani et al. 2017), whereas
MuMu uses a guided fusion approach.

We have evaluated these models’ performances by ap-
plying on the CAESAR-PRO dataset. As some classes con-
tain more data samples than others, we used macro-accuracy
metrics to evaluate perspective, object, and relation ground-
ing tasks. We trained each model for eight epochs with a
learning rate set to 1e−5 in a distributed cluster environment
with eight A100 GPUs in each cluster node. We train all
the models using Pytorch-lightning environment with a fixed
seed to ensure reproducibility. For more implementation de-
tails, please check the supplementary materials.

Results and Discussion
Comparison of Multitask Learning Approaches
We evaluated the performance of PATRON and other mod-
els by applying on the CAESAR-PRO dataset in single and
multitask learning settings. In these experiments, a model
takes multiple visual views (ego, exo, and top) and a ver-
bal utterance from multiple perspectives (speaker, observer,
and neutral) to learn two tasks: (i) perspective grounding
task and (ii) relation-object grounding task. In the multi-
task model, we chose either perspective or relation-object
grounding task as the auxiliary task (the first task in the
model architecture) and another task as the target task (the
second task in the model architecture). For example, in Task
Order I, we chose perspective grounding as the auxiliary
task and relation-object grounding as the target task. In Task
Order II, we chose relation-object grounding as the auxil-
iary task and perspective grounding as the target task. We
have also evaluated state-of-the-art visual-language models
in single-task learning settings, where we trained perspective
and relation-object grounding tasks using two separate mod-
els. We did not evaluate MuMu and PATRON in single-task
learning settings, as these models are designed for multitask
learning. We present the results of single task and multitask
models in Table 1 (a) & (b), respectively.
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(a) Single task models trained separately
Models Perspective (Pers.) Relation-Object (RO)
Late Fusion 74.90 65.50
Dual Encoder 77.87 54.47
CLIP 71.23 65.26
VisualBERT 77.20 66.53

(b) Multitask models with different task order in model

Models Task Order I Task Order II
Pers → RO RO → Pers

Late Fusion 72.30 61.80 65.40 75.12
Dual Encoder 75.67 64.99 43.66 75.77
CLIP 74.52 68.14 56.82 73.02
VisualBERT 74.52 65.90 62.15 69.44
MuMu 73.65 67.48 63.22 75.27
PATRON 79.85 74.13 67.63 81.15

Table 1: Top-1 macro accuracy of various models of per-
spective and relation-object grounding tasks.

Results: The results in Table 1 suggest that PATRON out-
performs all the single and multitask models for grounding
perspective and relation-object tasks by achieving 81.15%
and 74.13% in macro-accuracy, respectively. Among the
other visual-language multitask models, CLIP and Dual En-
coder achieve the next highest accuracy for relation-object
and perspective grounding tasks by achieving 68.14% and
75.77%, respectively. However, among the single task mod-
els, VisualBERT and Dual Encoder achieve the next highest
accuracy for relation-object and perspective grounding tasks
by achieving 66.53% and 77.87%, respectively.

Discussion: The results in Table 1 indicate that for both
Task Orders (I & II), the performance of PATRON improves
compared to the single and multitask models. Although
MuMu uses a guided fusion approach and outperforms sin-
gle task models for relation-object grounding, it fails to out-
perform PATRON. However, when considering the task or-
der, some multitask models show improved results com-
pared to their single task models. For example, when Task
Order I was considered, the CLIP model showed better ac-
curacy than its single task counterpart for both grounding
tasks. Similarly, for Task Order II, the CLIP model showed
improved performance for the perspective grounding task;
however, the performance degrades for the relation-object
grounding task compared to the single task model. One can
also observe performance degradation of several models in
some multitask settings compared to single task settings.
For example, the accuracy of the perspective grounding task
degrades for the Dual Encoder and VisualBERT models,
whereas the accuracy of the relation-object grounding task
degrades for the Late Fusion and the VisualBERT models.

The reasoning behind the performance degradation of the
multitask models compared to their single-task counterparts
is that the baseline models try to learn a shared representa-
tion for all tasks in the multitask setting. As multiple tasks
compete to maximize their task-specific representations, a
shared representation can discard salient representations of

Models Non-Embodied Embodied
V V+NH V+G V+P V+G+P

BERT 26.44 - - - -
Late Fusion - 56.33 54.91 55.30 61.80
Dual Encoder - 51.53 53.51 56.93 64.99
CLIP - 52.63 57.38 60.67 68.14
VisualBERT - 54.45 58.87 57.05 65.90
PATRON - 54.24 65.24 66.65 74.13

Table 2: Impact of nonverbal signals (gaze and pointing ges-
ture) on the performance (Top-1 macro accuracy) of the mul-
titask models in the relation and object grounding task. The
results suggest that nonverbal signals improve the perfor-
mance of the models. (V: Verbal, NH: Visual without Hu-
man, G: Gaze, P: Pointing Gesture).

individual tasks. On the other hand, PATRON extracts task-
specific and task-guidance disentangled representations. In
this process, PATRON uses the task-guidance representa-
tions to guide other tasks using our proposed guided fusion
approach to extract salient multimodal representations. In
the same way, PATRON also learns to extract disentangle
representations for the target task and trains these tasks co-
operatively, whereas most of the other models train these
tasks independently. These findings indicate that a multi-
task model can improve the tasks’ performance if the model
can disentangle visual-language representations while train-
ing the model in a cooperative learning setting, where one
task can guide the learning of other tasks.

Impact of Nonverbal Gestures
We aim to investigate how nonverbal cues impact the per-
formance of the models in the relation-object grounding
task. We have conducted this analysis in different settings
by varying nonverbal gestures: two non-embodied settings
(only verbal (no visual), verbal + visual (scenes without hu-
man)), and three embodied settings (verbal + gaze, verbal
+ pointing gesture, and verbal + gaze + pointing gesture).
We trained the models in a multitask learning setting (auxil-
iary task: prospective grounding, target task: relation-object
grounding). We used visual scenes captured from multiple
views (ego, exo, and top) and multiple verbal perspectives
(speaker, observer, and neutral) to train the models. Table 2
shows the top-1 macro accuracy of the target task.

Results and Discussion: The results in Table 2 suggest
that PATRON outperforms all the baseline models in all the
evaluated settings for the target task (achieving the high-
est accuracy of 74.13%). The results also indicate that PA-
TRON achieves the highest accuracy when both gaze and
pointing gestures were used, compared to when only gaze
or only pointing gestures were used in the embodied setting,
and only verbal + visual (scenes without humans) were used
in the non-embodied setting. Similarly, other baseline mod-
els’ performances were also improved when nonverbal cues
were used compared to the same model trained with a partial
set of nonverbal cues or without any nonverbal cues. Ad-
ditionally, when only verbal utterances were used, without
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Models Training Perspectives
Speaker Observer Neutral All

Late Fusion 60.42 53.71 60.53 61.80
Dual Encoder 59.43 45.23 57.95 64.99
CLIP 62.36 58.04 60.99 68.14
VisualBERT 55.71 43.46 49.68 65.90
PATRON 60.36 47.23 57.85 74.13

Table 3: Top-1 macro accuracy of the multitask learning
models when trained on data samples from single and mul-
tiple verbal perspectives and tested on data samples from
multiple visual and verbal perspectives.

visual scene (i.e., BERT model), the model achieved only
26.44% accuracy. As the dataset contains verbal expressions
that can be interpreted differently from different perspec-
tives, nonverbal gestures can help the models disambiguate
and accurately perform the relation-object grounding task.
These findings suggest that using nonverbal gestures can im-
prove a model’s performance in comprehending E-REF.

Importance of Multi-Perspectives
Here, we investigate how varying verbal perspectives
(speaker, observer, and neutral) can impact the performance
of the models. We trained PATRON and baseline models
on the CAESAR-PRO dataset by varying the verbal per-
spectives while utilizing all the visual views (ego, exo, and
top). During testing, we used all the verbal perspectives and
visual views. These models are trained in a multiple-task
learning setting (auxiliary task: prospective grounding, tar-
get task: relation-object grounding). We have reported the
top-1 macro accuracy of the target task in Table 3.

Results and Discussion: The results in Table 3 suggest
that all the models demonstrated the highest performance
in comprehending E-REF when the models were trained
utilizing the data with all the perspectives. For example,
training PATRON on multiple perspectives improves the
performance of relation-object grounding tasks (achieved
74.13% accuracy) compared to training the same model only
on a single perspective. Baseline models also gain similar
performance improvement when training the models with
data from multiple perspectives. These findings indicate that
training models on data samples from multi-perspective can
help the models to comprehend E-REF more accurately.

Ablation Study and Significance Analysis
We have conducted ablation studies to evaluate whether
our proposed disentangle representation-based guided fu-
sion approach can significantly improve the performance of
the relation-object grounding task. We evaluated PATRON
and the baseline models on our CAESAR-PRO dataset in the
multitask setting (auxiliary task: prospective grounding, tar-
get task: relation-object grounding). These models disentan-
gle representations for auxiliary task (task-specific and task-
guidance) and target task (task-guided and task-specific). We
have conducted a significance analysis (α = 0.05) by eval-
uating these models five times with different parameters ini-

Models Auxiliary
Task

Target
Task

Guided
Fusion Acc. Std.

Dev.
Significant

Over §

M1 ✗ ✗ ✗ 61.38 0.97 None
M2: MuMu ✗ ✗ ✓ 64.21 2.27 M1
M3 ✗ ✓ ✓ 64.25 1.07 M1
M4 ✓ ✗ ✓ 70.38 0.72 M1-3
PATRON ✓ ✓ ✓ 74.09 0.56 M1-4

Table 4: The results (Top-1 macro accuracy) of the ablation
study, where various components of the model are evaluated
on the relation-object grounding task. The results of five runs
with different initial parameters are presented. ✓and ✗ de-
note whether a task learns disentangled representations or
not, respectively. § Significance analysis at level α = 0.05.

tialization (Following Dror, Shlomov, and Reichart (2019)).
The results are presented in Table 4.

Results and Discussion: The results in Table 4 suggest
that the models with guided fusion can improve the per-
formance of relation-object grounding tasks compared to
the model that does not use guided fusion. For example,
MuMu (M2) can improve the performance of relation-object
grounding by 2.83% compared to a model which does not
use guide fusion (M1). Additionally, the models can sig-
nificantly improve performance if they can disentangle the
representation for auxiliary and target tasks (e.g., M3, M4,
and PATRON) compared to the models that cannot (e.g.,
M1). For example, PATRON improves the performance of
relation-object grounding tasks by 12.71% by disentangling
multiple task representations and using these representations
in the guided fusion approach compared to M1. The reason-
ing behind this significant performance improvement is that
learning disentangled representations allows these models to
learn task-specific and task-guidance salient representations,
which can be used to guide other tasks. On the other hand,
models learning non-disentangle representations need to use
the same representations for task learning and guiding other
tasks. Consequently, the shared representations neglect task-
specific salient representation for learning generalized rep-
resentations for all tasks and degrade the task performance.

Conclusion
We developed a perspective-aware multitask learning model,
PATRON, for comprehending referring expressions in em-
bodied settings. We also curated a dataset of embodied re-
ferring expressions, CAESAR-PRO, to develop and evaluate
learning models. Our extensive experimental results suggest
that our perspective-aware guided fusion approach can ex-
tract salient multimodal representations for relation and ob-
ject grounding. Additionally, the results provide valuable in-
sights into developing robust learning models, such as the
effects of the order of the tasks, non-verbal cues, verbal
perspective, and disentanglement of representations. Finally,
we believe the proposed perspective-aware learning model
and dataset will be useful in other embodied tasks, such
as embodied question answering, embodied navigation, and
conversational human-AI interactions.
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