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Abstract

Recent years we have witnessed rapid development in NeRF-
based image rendering due to its high quality. However, point
clouds rendering is somehow less explored. Compared to
NeRF-based rendering which suffers from dense spatial sam-
pling, point clouds rendering is naturally less computation
intensive, which enables its deployment in mobile comput-
ing device. In this work, we focus on boosting the image
quality of point clouds rendering with a compact model de-
sign. We first analyze the adaption of the volume render-
ing formulation on point clouds. Based on the analysis, we
simplify the NeRF representation to a spatial mapping func-
tion which only requires single evaluation per pixel. Fur-
ther, motivated by ray marching, we rectify the the noisy
raw point clouds to the estimated intersection between rays
and surfaces as queried coordinates, which could avoid spa-
tial frequency collapse and neighbor point disturbance. Com-
posed of rasterization, spatial mapping and the refinement
stages, our method achieves the state-of-the-art performance
on point clouds rendering, outperforming prior works by
notable margins, with a smaller model size. We obtain a
PSNR of 31.74 on NeRF-Synthetic, 25.88 on ScanNet and
30.81 on DTU. Code and data are publicly available in
https://github.com/seanywang0408/RadianceMapping.

Introduction
The rising trend of AR/VR application calls for better im-
age quality and higher computation efficiency in render-
ing technology. Recent works mainly focus on NeRF-based
(Mildenhall et al.) rendering due to its photo-realistic effect.
Nevertheless, NeRF-based rendering suffers from heavy
computation cost, since its representation assumes no ex-
plicit geometry is known, and requires burdensome spatial
sampling. This drawback severely hampers its application
in mobile computing devices, such as smart phones or AR
headsets. On the other hand, point clouds (Huang et al.),
which have explicit geometry, are easy to obtained as the
depth sensors become prevalent and MVS algorithms (Yao
et al.; Wang et al.) get powerful. It deserves more attention
to develop high-performance rendering methods based on
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point clouds, which is so far insufficiently explored. In this
work, we introduce a point clouds rendering method which
achieves comparable rendering performance to NeRF.

The main difference between NeRF-based rendering and
point clouds rendering is that the latter is designed upon the
noisy surface of objects. On the bright side, it is a beneficial
geometric prior which could greatly reduce the query times
in 3D space. On the bad side, this prior is noisy and sparse,
since the point clouds are generally reconstructed by MVS
algorithms or collected by depth sensors. It needs additional
approaches to alleviate the artifact brought by the noise and
sparsity. Therefore, most of the current point clouds render-
ing methods require two steps. One is the spatial feature
mapping, and the other is image-level refinement. The spa-
tial feature mapping step is similar to the NeRF represen-
tation, which maps a 3D coordinate to its color, density or
latent feature. The refinement step is usually implemented
as a convolutional neural network. In this work, we mainly
focus on the spatial feature mapping step. Previous works
use point clouds voxelization (Dai et al.), learnable param-
eters (Rückert, Franke, and Stamminger; Kopanas et al.) or
linear combination of sphere basis (Rakhimov et al.) as map-
ping functions. However, these methods suffer either from
high computation cost, large storage requirements, or unsat-
isfactory rendering performance. To this end, we introduce
a much simpler but surprisingly effective mapping function.
Motivated by the volume rendering formulation in NeRF, we
analyze its adaptation on point clouds rendering scenarios.
It is concluded that in a point cloud scene, the volumetric
rendering could be simplified to the modeling of the view-
dependent color of the first-time intersection between the
estimated surface and the ray. In other words, we augment
each 3D point (i.e., most probably a surface point) with a
learnable feature indicating first-hit color. Thereby the point
clouds rendering task could be re-cast within the high fi-
delity NeRF framework, without consuming redundant com-
putation on internal ray samples. We name it radiance map-
ping. Moreover, based on radiance mapping, we rectify the
raw point cloud coordinates that are fed into the mapping
function using the z-buffer in rasterization to obtain a query
point which lies exactly on the camera ray. This approach
allows us to obtain a more accurate geometry and avoid spa-
tial frequency collapse. The radiance mapping function con-
sisted of a 5-layer MLP is only 0.75M large, which is much
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Figure 1: (a) Spatial frequency collapse occurs when using neural descriptors or raw point clouds query. The point is optimized
to a green color, which is the mixing of yellow and blue. (b) Using raw point clouds query would additionally cause neighbor
point disturbance. The points lying close have a larger impact on the feature optimization of each other. (c) Our coordinate
rectification could alleviate the above issues. The idea is illustrated in 1D rendering.

smaller than the spatial feature mapping functions in previ-
ous works, but with notably better performance. Followed
by a 2D neural renderer which compensates the sparcity and
noise in point clouds as done in previous works, our com-
plete model is approximately 8M in total.

Our method reaches comparable rendering effect com-
pared to NeRF, but with much less computation cost since
it only needs single model inference per pixel. Compared to
prior point clouds rendering methods, we obtain notable im-
provement in terms of image quality, with a smaller model
size and simpler computation. We achieve a PSNR of 31.74
on NeRF-Synthetic (Mildenhall et al.), 25.88 on ScanNet
(Dai et al.) and 30.81 on DTU (Aanæs et al.). As far as we
know, It is the state-of-the-art result on this task.

Related Work
Implicit Rendering
NeRF-based Neural Radiance Fields (Mildenhall et al.)
advance the neural rendering quality to a higher level. NeRF
represents the scene using an MLP which predicts the color
and density of a point. It projects the points along the cam-
era ray to the pixel color with volume rendering. Follow-
ing NeRF, there are various innovations which address the
different challenges in NeRF representation. PixelNeRF (Yu
et al.), IBRNet (Wang et al.) and DietNeRF (Jain, Tancik,
and Abbeel) render novel views from only one or a few input
images. NeRF-W (Martin-Brualla et al.) tackles the variable
illumination and transient occluders in the wild instead of a
static scene. Mip-NeRF (Barron et al.) and Mip-NeRF 360
(Barron et al.) improves the image quality by rendering anti-
aliased conical frustums. NSVF (Liu et al.), PlenOctrees (Yu
et al.) and TensoRF (Chen et al.) aim at accelerating the in-
ference speed of NeRF by building a more efficient struc-
ture after scene fitting. Point-NeRF (Xu et al.) also assumes
a point cloud is given like ours. But it still follows the vol-
ume rendering formulation in NeRF, which also suffers from
dense spatial sampling.

Implicit Surface Rendering This line of works aim at re-
construction the implicit surfaces via neural rendering. DVR
(Niemeyer et al.) learns implicit 3D representation from im-
ages by analytically deriving depth gradients from implicit

differentiation. IDR (Yariv et al.) renders an implicit surface
by appromitaing the light reflected from the surface towards
the camera. UNISURF (Oechsle, Peng, and Geiger) com-
bines implicit surface models and radiance fields together to
enable surface reconstruction without object masks. NeuS
(Wang et al.) gives a theoretical proof that the classic vol-
ume rendering formulation causes error on the expectation
of the object surface, and presents a solution which yields an
unbiased SDF representation. Yariv et al. models the volume
density as the function of the SDF representation, leading to
a more accurate sampling of the camera ray.

Point Clouds Rendering
Inverse Rendering Early work (Zwicker et al.) proposes
a point cloud rendering method using an Elliptical Weighted
Average filter based on Gaussian Kernel. Yifan et al. enables
backward propagation of surface splatting to optimize the
position of point clouds to match to object geometry from
images. Insafutdinov and Dosovitskiy use a differentiable
point clouds projection module to unsupervisedly learn the
object shape and pose from two-view images. Lin, Kong,
and Lucey propose pseudo-rendering which upsamples the
target image to alleviate the collision effect in discretization.
Wiles et al. construct a point cloud from single-view im-
ages by using a depth regressor and spatial feature predictor,
and render the point cloud with α-composition followed by a
ResNet (He et al.) refinement network. The training is super-
vised by a photometric loss and a GAN loss (Wang et al.).
Zhou et al. and Godard, Mac Aodha, and Brostow adopt a
similar approach, but on a monocular depth estimation task
with street-view video sequences.

View Synthesis NPBG (Aliev et al.) proposes to render
novel views of a scene using point-based learnable neural
descriptors and a U-Net refinement network. It adopts multi-
scale rasterization to model image details in different level.
Johnson, Alahi, and Fei-Fei; Dosovitskiy and Brox use a
perceptual loss to optimize the network. Dai et al. propose
to project the point clonds to a layered volume by voxeliza-
tion. Then a 3D CNN (Maturana and Scherer; Yang et al.)
is used to transform the volume into a set of multi-plane im-
ages and their blending weights, which form the final im-
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Figure 2: The translucent and opaque surfaces rendered by NeRF and our method. In the Drums scene, both methods are
optimizing the color of the first-intersected surface instead of modeling the correct translucency. The second row shows the
membrane from another view. In the Materials scene, our method could even render more decorate specular effect on the
smooth metal balls, while NeRF generates somehow blurry artifacts. The visualization in the original NeRF paper (Mildenhall
et al.) reveals the same artifact. We owe this superiority to the explicit geometry provided by point clouds.

age by its the weighted sum. NPBG++ (Rakhimov et al.)
reduces the running time upon NPBG, using a feature ex-
tracter to lift the neural descriptor feature and making it
view-dependent. ADOP (Rückert, Franke, and Stamminger)
renders HDR and LDR images with a coarsely-initialized
point cloud and camera parameters. The point clouds, cam-
era poses and the 2D refinement network are jointly opti-
mized. Kopanas et al. perform scene optimization for each
view based on bi-directional Elliptical Weighted Average
splatting. Ost et al. promote point clouds to implicit light
fields to allow fast inference in view synthesis. READ (Li
et al.) adopt a similar approach to NPBG++ to synthesize
photo-realistic street views for autonomous driving. We an-
alyze the most relevant works to ours in the next section.

Method
Spatial Mapping
We first analyze the spatial mapping functions in previous
point clouds rendering methods. Then we introduce our ra-
diance mapping, a simpler but more effective mapping.

Previous Mapping Functions Revisited NPBG (Aliev
et al.) attachs learnable parameters to each point as neural
descriptors. The advantage of this approach is that each point
feature is optimized independently, and would not be influ-
enced by nearby point feature. This is beneficial to those
scenes where surface color changes drastically. However, it
also leads to a drawback that the density of point clouds
impose restrictions on the representation capacity of point
feature. When the point clouds are sparse, the same neural
descriptor would be rasterized to multiple pixels and opti-
mized to fit the average of multiple pixels, which harms the
rendering quality. We illustrate this issue in 1D rendering in
Figure 1 (a). The point is optimized to a green color, which
is the mixing of yellow and blue. Since the cause of the
phenomenon is analogous to the dissatisfaction of Nyquist
Rate in signal processing, we call it spatial frequency col-
lapse. On the other hand, when point clouds get compara-
tively dense due to higher quality of reconstruction or depth
sensor, the size of point feature would grows proportionally,

which consumes more memory for storage and training. Be-
sides, some of the point features which are only visible in a
few views might not be sufficiently optimized.

Dai et al. propose to use a 3D CNN to extract spatial fea-
ture. It first voxelizes the point clouds into a layered volume,
and then adopts a 3D CNN to extract spacial feature. Due to
the high computation complexity of 3D CNN, this model is
much more heavier, and not easy to deploy.

NPBG++ (Rakhimov et al.) develops a spatial mapping
function motivated by sphere harmonics basis. It first uses a
shared 2D CNN to extract image feature from multi-view
images, and then aggregate the feature of each view into
the point clouds by a linear combination of learnable basis
functions over the unit sphere. This approach considers view
direction as input, which would potentially generate better
rendered images. However, it still suffers from proportion-
ally increasing memory as the point clouds get more dense,
similar to NPBG . Besides, it requires an additional U-Net as
a image feature extractor which further increase model size.

Radiance Mapping Comparing to the above spatial map-
ping functions, our method is much more light-weight.
Our compact representation store the view-dependent ra-
diance of the object surface. The idea is motivated from
the volumetric rendering formulation in NeRF represen-
tations (Mildenhall et al.), which take the 3D coordinate
x = (x, y, z) and view direction d = (θ, ϕ) as inputs and
output the color c and density σ using a multi-layer percep-
tron (MLP) FΘ, parameterized by Θ:

c, σ = FΘ(x,d) (1)

Since NeRF representations assume no explicit geometry
exists, each point lying on the camera ray r = o + td are
queried and aggregated to obtain the final pixel color C(r):

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt (2)

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
(3)
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Figure 3: Our end-to-end point clouds rendering pipeline. We use the z-buffer obtained from the rasterization stage to perform
coordinate rectification. The rectified coordinates are fed into the radiance mapping MLP. The output feature map is sent to
the refinement stage, which is implemented as a U-Net. We train the MLP and U-Net with a weighted sum of L2-loss and
perceptual loss.

T (t) denotes the accumulated transmittance along the ray.
Suppose the camera ray first intersects with an object sur-
face at point po = o + tod. For those points that lie in
front of po, which satisfy {p = o + td|t < to}, would
correspond to σo = 0. Substituting it into Eqn. 3 yields
{T (t) = 0|t < to}. Then we consider the points that lie
behind po, which satisfy {p = o+ td|t > to}. One case is
that the density of po equals to a comparatively large value,
meaning that the object surface is opaque. In this case we
have {T (t) ≈ 0|t > to} according to Eqn. 3. Another case
is that the density of po equals to a small value, in which
the object surface is translucent. We demonstrate that the
latter case could be discarded in point clouds rendering. (i)
No matter the point clouds are reconstructed by MVS al-
gorithms or collected by depth sensors, only the first inter-
sected surface would be revealed in the point clouds. It is im-
practical and not necessary to evaluate the surfaces behind
the first one. (ii) Even if only the first-intersected surface
is evaluated, the correct pixel color could still be modeled
in practice, since the point color c(r(to),d) would be fitted
to the pixel color C(r) during optimization. Figure 2 (left)
shows the Drums scene in NeRF-Synthetic dataset, where
the drum membrane is a translucent surface. We could see
that the drum shelf behind the membrane is a thin column.
If the translucency is modeled correctly, we should at least
see the outline of the shelf. But in NeRF results we could see
no outline but blurry artifact. It means that the density of the
membrane predicted by NeRF is comparatively large such
that the shelf behind is invisible. With no regard to the points
that lie behind the intersection po, our method could still ob-
tain similar results, or even better. Please refer to experiment
section for more analysis. Given that {T (t) = 0|t < to} and
{T (t) ≈ 0|t > to} , the pixel color C(r) becomes a sin-
gle evaluation on po according to Eqn. 2. Thus we simply
remove the density prediction in NeRF representation (Eqn.
1). Moreover, we output the latent feature L that encodes the
color to a higher dimension instead of RGB as prior works
do. Then Eqn. 1 is reformulated as

L = FΘ(x,d) (4)

Since we do not need to predict the density, we reduce the
number of MLP layers from 13 in NeRF to 5, yielding a

model size as small as 0.75M . This compact architecture
enables fast inference and small storage requirement. As
compared in Table 4, our spatial mapping model is notably
smaller than its counterparts in prior works. Since our model
is light-weight with respect to model size and computation
and needs only single time inference for each pixel, it is
possible to deploy it in mobile computing device like smart
phones or AR/VR headsets.

Based on our radiance mapping, we further improve the
performance by rectifying the raw coordinates of point
clouds. One critical characteristics of point clouds is that
it is generally noisy and sparse, due to unsatisfactory re-
construction or measurement quality. Specifically, the points
ppcd in a point cloud actually lie around the object surface
pobj with a spatial noise ϵ. We denote its coordinate with
xpcd = xobj+ϵ. If we feed the raw point clouds into Eqn. 4,
we obtain Lpcd = FΘ(xobj+ϵ,d), meaning that the queried
latent code is actually from a nearby coordinate around the
surface. The noise is mainly handled by adopting a coordi-
nate rectification step before we feed them into the MLP.
As shown in Figure 1 (b), after rasterization, we obtain the
closest point to the camera position and its z-buffer for each
pixel via depth test. We conduct ray marching to find the
estimated intersection between the ray and the approximate
surface. Specifically, we calculate the point which share the
same z-buffer with the closest point and also lies on the ray:

xquery = o+
zpcd
cos θ

× d (5)

where o and d are the camera position and the normalized
direction, and θ is the angle between the ray and the z axis
pointing to the center of the scene. This simple approach has
obvious benefits over prior art. This is because that using the
raw point clouds would lead to spatial frequency collapse as
conventional neural descriptors do. Namely, when the point
clouds are sparse, the same point would be rasterized to mul-
tiple pixels. In other words, nearby pixels are highly proba-
ble to be queried to the same latent feature from the MLP
mapper, leading to blurred results. Also, the point density of
the raw point clouds has a non-uniform distribution on dif-
ferent parts. Thus the color of the closer points would have
a larger impact on each other, as shown in Figure 1 (b). In
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NeRF-Synthetic ScanNet DTU
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NPBG 30.47 0.957 0.046 25.08 0.737 0.459 30.24 0.895 0.130
NPBG++ 30.52 0.960 0.042 25.24 0.755 0.444 30.25 0.894 0.131
Ours 31.74 0.968 0.029 25.88 0.794 0.414 30.81 0.904 0.128
NeRF 33.07 0.989 0.064 25.63 0.765 0.436 31.03 0.909 0.127

Table 1: Results on three datasets. For NeRF-Synthetic, the results are averaged on Ficus, HotDog and Mic, following NPBG++.

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

NPBG 28.81 23.57 28.23 32.03 27.72 27.24 31.16 26.04 28.10
NPBG++ 28.72 23.60 28.11 32.22 27.84 27.12 31.23 26.11 28.12
Ours 31.13 24.51 29.09 33.20 26.62 28.03 32.94 26.14 28.96
NeRF 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.01

Table 2: Per-scene PSNR in NeRF-Synthetic.

contrast, our proposed rectification offers a more uniformly-
distributed points density. Thus it results in more accurate
geometry recovery. Empirical results also prove the effec-
tiveness of this approach.

The End-to-End Point Clouds Rendering Pipeline
Our pipeline could be divided into three stages: rasterization,
radiance mapping and refinement. In rasterization stage, we
first transform the point clouds from world space to camera
space. For each pixel, we search the points that lie within
a radius threshold τ to the ray omitted from the camera to
the pixel. The obtained points with their properties are so-
called fragments. Since this searching process is not required
to be differentiable, it could be implemented by hardware-
accelerated framework such as OpenGL (Shreiner, Group
et al.) and ran in real time. In our experiments, we find the
OpenGL-based implementation are 8-10 times faster than a
pure software implementation, such as PyTorch3D (Johnson
et al.). Based on the fragments obtained from the per-pixel
search, we keep the closest point to the camera for the oc-
cupied pixels and abandon the rest, since we only evaluate
the first intersected surface. Note that there are some un-
occupied pixels that no points are found within the thresh-
old τ . These pixels leads to the artifact caused by the spar-
sity of point clouds and would be processed in the refine-
ment stage. We transform the raw coordinates of the occu-
pied pixels to the queried coordinates using the rectifica-
tion in Eqn. 5. Then we transform the queried coordinates
xquery = Nocc × 3 with position encoding introduced in
NeRF (Mildenhall et al.) and feed them into our spatial map-
ping function FΘ using Eqn. 4, and obtain the latent feature
L = Nocc×C. Then we re-organize these features back to a
H×W ×C feature map, while we assign zero to the feature
of those unoccupied pixels. The feature map output by MLP
goes into the refinement stage. Unlike NeRF representation
which uses a pure MLP design, the refinement stage is in-
dispensable for point clouds rendering. The spatial mapping
stage guarantees multi-view consistency, but outputs noisy

3D feature, while the refinement network is agnostic to the
3D geometry, but learn the texture of the images relying on
the capability of convolution layers. The refinement stage
is implemented as a 2D U-Net (Ronneberger, Fischer, and
Brox). After the feature map is processed by the U-Net, we
obtain the rendered image in shape of H ×W × 3. We su-
pervised the training by using the weighted sum of L2-loss
and perceptual loss (Johnson, Alahi, and Fei-Fei; Dosovit-
skiy and Brox) as done in (Dai et al.), whose weights are 1
and 0.01 respectively.

Experiments
Benchmark Evaluation
Settings We experiment on three datasets: NeRF-
Synthetic (Mildenhall et al.), ScanNet (Dai et al.) and DTU
(Aanæs et al.). To speed up the training process, we only
rasterize the point clouds once and save the fragments
for reusing, since the training and testing views are fixed.
We set the radius threshold τ as 5e-3 for NeRF-Synthetic,
1.5e-2 for ScanNet, and 3e-3 for DTU. The selection of τ
depends on the density of point clouds. If τ is set too large,
the rasterized points would be inaccurate. If τ is set too
small, then more pixels would become unoccupied, causing
a so-called bleeding issue. We employ the same positional
encoding to the input queried coordinates and ray directions
as done in NeRF. The output feature dimensions of each
MLP layer are 256, 256, 256, 128 and 8 respectively.
The input ray directions are concatenated with the output
of second fully-connected layer. We use the same U-Net
architecture as NPBG, where gated blocks are employed,
consisting of gated convolution, ReLU and instance nor-
malization layers. The U-Net down-samples the feature
map for four times. The feature dimensions of each layer
are 16, 32, 64, 128, 256. We use the Adam optimizer for
training, with a batch size of 1. The initial learning rates of
MLP and U-Net are 5e-4 and 1.5e-4 respectively, which are
multiplied by 0.9999 in each step. We compare our methods
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Figure 4: We compare the rendered novel views between our method and prior works. From the Drums scenes, we could see that
the reflection rendered by our method is more photo-realistic than NPBG and NPBG++. Similar phenomenon is also observed
in DTU-110. Besides, our method is able to produce elaborate details, such as the fine holes in the Mic scene, and the toes in
DTU-118. We urge readers to zoom in the images for better observations.

with NPBG, NPBG++ and NeRF, using PSNR, SSIM and
LPIPS as evaluation metrics.

Results We show the quantitative results in Table 1. For
NeRF-Synthetic, we report the results on Ficus, HotDog
and Mic in Table 1, as done in NPBG++ (Rakhimov et al.).
Besides, we additionally conduct experiments on all eight
scenes and show their PSNR in Table 2. Our method out-
performs prior arts with notable margins on each dataset in
terms of PSNR, SSIM and LPIPS. Compared to NeRF, our
method achieves comparable results on NeRF-Synthetic and
DTU, and even better results on ScanNet. It demonstrates
the effectiveness of our methods under various scenes. Ta-
ble 2 shows per-scene PSNR in NeRF-Synthetic. From Ta-
ble 2, we could see our methods achieve better results than
NPBG and NPBG++ on 6 scenes out of 8, except for Lego
and Ship. In Figure 4, we illustrate the zoom-in views of
four scenes. From the Drums scenes, we could see that the
reflection rendered by our method is more photo-realistic
than NPBG and NPBG++. Similar results are observed in
DTU-110. Besides, our method is able to produce elaborate
details, such as the fine holes in the Mic scene, and the toes
in DTU-118. We argue the reason that NPBG and NPBG++
lose fine details is the spatial frequency collapse and neigh-
bor point disturbance issues caused by the discrete neural
descriptors. Figure 2 compare our method against NeRF.
As analyzed before, our method and NeRF both model the
translucency by optimizing the color of first-intersected sur-
face. Our method avoids blurry artifact by leveraging the ex-
plicit geometry provided by point clouds. Besides, from the
Materials scene, we observe that our method produces better
specular reflection effect.

Complexity Analysis

(a) Model Size Our model includes a 5-layer MLP for ra-
diance mapping and a U-Net for refinement. Their sizes are
0.75M and 7.3M respectively. The NeRF MLP has a size of
4.8M. NPBG (Aliev et al.) uses the same U-Net architecture
as ours (7.3M), but its neural descriptors are proportional to
the number of points. Demonstrated with ScanNet, whose
point clouds are about in the size of 2 millions points, the
model size of the neural descriptors would be 61M. Hence
the total size of NPBG is 68.3M. NPBG++ (Rakhimov et al.)
uses a convolution neural network in the size of 17.5M as the
image feature extractor to obtain the neural descriptor. Be-
sides, NPBG++ uses a smaller U-Net in refinement stage,
whose size is 1.2M. It results in a totol model size of 18.7M.
PlenOctree has a much larger model size as 440M. (b) Time
Complexity In Table 4, we show the Frame Per Second
(FPS) of each method. All results are measured on a Ti-
TAN Xp with an image size of 800× 800. The point clouds-
based methods (ours, NPBG and NPBG++) require raster-
ization for pre-processing (All implemented in OpenGL).
NPBG and NPBG++ need to rasterize the point clouds five
times into five different resolution to feed into the refine-
ment U-Net, while ours only need one. Therefore their FPS
are slightly lower than ours. Our method outperforms these
two methods with a FPS of 20. NeRF needs burdersome
pre-processing, which severely slower the speed, yielding a
0.015 FPS. Point-NeRF follows the volume rendering for-
mulation like NeRF with point clouds as input. Hence it
also suffers from heavy sampling and high computation cost,
with an FPS of 0.125.
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Method Chair ↑ / ↑ / ↓ Drums ↑ / ↑ / ↓ Lego ↑ / ↑ / ↓ Mic ↑ / ↑ / ↓
NPBG++, 1× 29.33 / 0.950 / 0.045 24.68 / 0.919 / 0.067 27.27 / 0.905 / 0.080 32.72 / 0.971 / 0.026
Ours, 1×, w/o Rect. 32.56 / 0.969 / 0.024 24.57 / 0.923 / 0.056 26.48 / 0.898 / 0.069 32.36 / 0.979 / 0.017
Ours, 1× 33.63 / 0.977 / 0.021 25.05 / 0.931 / 0.051 27.16 / 0.910 / 0.066 33.44 / 0.983 / 0.014

NPBG++, 10× 29.20 / 0.949 / 0.047 23.90 / 0.903 / 0.085 27.41 / 0.908 / 0.091 32.00 / 0.965 / 0.033
Ours, 10×, w/o Rect. 31.24 / 0.958 / 0.030 23.77 / 0.910 / 0.069 25.88 / 0.887 / 0.083 31.42 / 0.975 / 0.022
Ours, 10× 32.46 / 0.967 / 0.028 24.26 / 0.919 / 0.065 26.46 / 0.900 / 0.077 32.91 / 0.981 / 0.016

NPBG++, 50× 27.82 / 0.929 / 0.058 22.72 / 0.876 / 0.104 25.72 / 0.871 / 0.119 31.21 / 0.959 / 0.039
Ours, 50×, w/o Rect. 29.89 / 0.945 / 0.038 22.43 / 0.888 / 0.088 24.67 / 0.867 / 0.101 29.99 / 0.968 / 0.026
Ours, 50× 31.34 / 0.959 / 0.034 22.99 / 0.900 / 0.082 25.51 / 0.888 / 0.088 31.64 / 0.975 / 0.021

Ours, 1×, Qurd dim 34.13 / 0.980 / 0.019 25.53 / 0.937 / 0.044 27.46 / 0.918 / 0.055 34.44 / 0.987 / 0.009

Table 3: (a) We verify our method under various density of point clouds. 1×, 10× and 50× denote down-sampling the point
clouds by 1, 10 and 50 times. w/o Rect. denotes our method without coordinate rectification. The sparser the point cloud is,
the more improvement brought by our method. (b) We analyze the influence of the refinement network capacity. Quad dim
denotes increasing the feature dimension by a factor of 4. Results are obtained using 400×400 resolution due to GPU memory
limitations. The three metrics are PSNR↑, SSIM↑ and LPIPS↓ respectively.

Method Model Size ↓ FPS ↑
NPBG (61+7.3)M 17
NPBG++ (17.5+1.2)M 18
Ours (0.75+7.3)M 20
NeRF 4.8M 0.015
Point-NeRF 18.5M 0.125
PlenOctrees 440M 110

Table 4: Comparisons of model size and Frame Per Second
(FPS). For point clouds rendering methods, the model size
is seperated into spatial mapping and refinement stages. All
results are measured on a TiTAN Xp.

Ablation Study

Point clouds Density We evaluate our methods under dif-
ferent point clouds density. We select four scenes from
NeRF-Synthetic dataset (Chair, Drums, Lego and Mic) for
evaluation. We conduct these experiments with a 400× 400
resolution, without affecting the conclusion. Specifically, we
uniformly down-sample the original point clouds by a fac-
tor of 10 and 50 respectively, to explore how much im-
provement the proposed method brings under different point
cloud density. We compare our method against NPBG++
and our baseline without coordinate rectification. We show
the PSNR, SSIM, and LPIPS in Table 3. It’s seen that our
method achieves best performance in almost all cases. More-
over, the sparser the point cloud is, the greater improvement
is brought by our method over NPBG++ and the baseline.
The reason is that in NPBG++ and the baseline, the same
neural feature would be rasterized into multiple pixels and
optimized to fit the average of these pixels, which would
harms the rendering quality. When the point cloud becomes
sparser, this issue becomes more serious. Our method with
coordinate rectification could notably alleviate this issue. In
Figure 5, we illustrate the rasterized feature of our method

w/o Rect. w. Rect. w. Rect.w/o Rect.

Vi
ew

 #
1

Vi
ew

 #
2

Figure 5: Rasterized feature of our method and baseline (w/o
Rect.). Without coordinate rectification, the same neural fea-
ture would be rasterized into multiple pixels and optimized
to fit the average of these pixels, which would harms the ren-
dering quality. Our method could notably allivete the issue.

and the baseline, regarding three channels as RGB. NPBG
and NPBG++ has similar effect as baseline (w/o Rect.) does.

Capacity of Refinement Network Since the refinement
network is actually playing the role of denoising or inpaint-
ing, it would be important to know how the capacity of the
network influence the image quality. We increase the chan-
nel dimension in each layer of the refinement network by a
factor of four, yielding a model size of 127M. As shown in
the bottom row in Table 3, increasing the capacity further
improve our performance.

Conclusion
In this work, we propose a point clouds rendering method
that achieve photo-realistic rendering quality. We begin with
revisiting the spatial mapping functions in prior art and then
propose our radiance mapping based on the adaptation of
volumetric rendering formulation on point clouds. Further,
we propose coordinate rectification which alleviate the spa-
tial frequency collapse and neighbor point disturbance is-
sues. Composed of rasterization, spatial mapping and the
refinement stages, Our method achieves the state-of-the-art
performance on point clouds rendering task.
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