
AudioEar: Single-View Ear Reconstruction for Personalized Spatial Audio

Xiaoyang Huang1, Yanjun Wang1, Yang Liu2, Bingbing Ni1*,
Wenjun Zhang1, Jinxian Liu1, Teng Li3∗

1Shanghai Jiao Tong University, Shanghai 200240, China,
2FocusMedia,

3Anhui University
{huangxiaoyang, nibingbing}@sjtu.edu.cn

Abstract

Spatial audio, which focuses on immersive 3D sound ren-
dering, is widely applied in the acoustic industry. One of
the key problems of current spatial audio rendering methods
is the lack of personalization based on different anatomies
of individuals, which is essential to produce accurate sound
source positions. In this work, we address this problem
from an interdisciplinary perspective. The rendering of spa-
tial audio is strongly correlated with the 3D shape of hu-
man bodies, particularly ears. To this end, we propose to
achieve personalized spatial audio by reconstructing 3D hu-
man ears with single-view images. First, to benchmark the
ear reconstruction task, we introduce AudioEar3D, a high-
quality 3D ear dataset consisting of 112 point cloud ear scans
with RGB images. To self-supervisedly train a reconstruc-
tion model, we further collect a 2D ear dataset composed
of 2,000 images, each one with manual annotation of occlu-
sion and 55 landmarks, named AudioEar2D. To our knowl-
edge, both datasets have the largest scale and best qual-
ity of their kinds for public use. Further, we propose Au-
dioEarM, a reconstruction method guided by a depth esti-
mation network that is trained on synthetic data, with two
loss functions tailored for ear data. Lastly, to fill the gap
between the vision and acoustics community, we develop a
pipeline to integrate the reconstructed ear mesh with an off-
the-shelf 3D human body and simulate a personalized Head-
Related Transfer Function (HRTF), which is the core of spa-
tial audio rendering. Code and data are publicly available in
https://github.com/seanywang0408/AudioEar.

Introduction
Spatial audio is widely applied in virtual reality, gaming,
and movie production (Begault and Trejo), for distinguish-
ing sound source positions and generating immersive 3D
sound. Without it, people would lose the spatial sense of
sound. The rendering of spatial audio depends on the Head-
Related Transfer Function (HRTF) (Elliott, Jung, and Cheer;
Blauert, Allen, and Press). HRTF is adopted in mid-to-high-
end audio equipment, such as stereos, headphones, Hi-Fi,
and so on. HRTF varies from one person to another since
it depends on the 3D structure of human bodies including
ears, head, and torso. While a personalized HRTF could be
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approximated by acoustic simulation (Pierce) given a com-
plete 3D human body structure, it is laborious to model hu-
man bodies using 3D scanners. Single-view reconstruction
is an alternative solution. It is well studied to reconstruct
personalized human heads and torsos within single-view im-
ages. However, without the modeling of ear structure, which
is the central organ in the human hearing system, the simu-
lated HRTF is still biased. In this work, we propose to obtain
personalized HRTF by reconstructing the 3D mesh (Huang
et al.) of human ears within a single-view image. 1

To benchmark the task of ear reconstruction, we collect
a high-quality 3D ear dataset with an advanced structured-
light 3D scanner, named AudioEar3D. Compared to prior
evaluation protocol that uses 2D ear landmark re-projection
error as the metric, a 3D benchmark is more precise. Au-
dioEar3D includes 112 ear point cloud scans with RGB
images from 56 individuals, each scan with 100, 000 to
250, 000 points, which capture high-resolution shape char-
acteristics of ears. To the best of our knowledge, this is
the largest and most accurate 3D ear dataset that is pub-
licly available, as analyzed in Section . We believe that ex-
cept for spatial audio, this dataset could also contribute to
other applications, including digital humans (Kappel et al.),
morphology (Krishan, Kanchan, and Thakur) and medical
surgery research (Varman et al.).

Prior reconstruction methods for other parts of human
body train on large-scale 2D datasets self-supervisedly
(Zhang et al.; Chen et al.). However, existing 2D ear datasets
either lack semantic annotations or suffer from a small scale.
This situation greatly limits the extension of CV studies on
human ears. To this end, we build a large-scale 2D ear im-
ages dataset, including 2, 000 high-resolution ear images.
They are selected from the FFHQ human face dataset, each
of which accompanies manual annotations of occlusion and
55 ear landmarks. The landmarks annotations greatly enrich
the semantics of the ear images, enabling their usage in ex-
tensive applications.

Based on the self-supervised reconstruction pipeline,
we proposed AudioEarM, a depth-guided reconstruction
method tailored for ears. Due to the lack of public ear tex-

1Strictly speaking, the ear structure include outer ear, middle
ear, and inner ear. Our work only focuses on the visible structure
(pinna) in the outer ear. Yet we still use the more understandable
name ear in the paper, following prior works (Jin et al.).
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ture, which hinders self-supervised training, we first build
an ear texture space from DECA (Feng et al.) for the UHM
Ear (Ploumpis et al.), the ear shape model we use in our
work. We excavate UV coordinate correspondence between
UHM Ear vertices and the texture of DECA via K-Nearest-
Neighbors searching and distance-based weighting. Besides,
motivated by the characteristics of ear data, we design two
loss functions: (i) contour loss which better accommodates
the annotation error than landmark loss; (ii) similarity loss
which encourages the network to predict distinct shapes for
different samples. Moreover, we introduce synthetic data to
improve reconstruction quality. Instead of directly combin-
ing synthetic data with real data and using 3D supervision to
train the model, we use the synthetic data to train a monoc-
ular depth model to extract depth feature from ear images.
Then we inject the depth information into the main network
to guide the whole reconstruction process.

Lastly, to fill the gap between ear reconstruction and
acoustic applications, we develop a pipeline to integrate the
reconstructed ear into a 3D mesh human torso for acous-
tic simulation. We propose approximated Delaunay trian-
gulation on the 3D vertices to ensure the simulation valid-
ity of the integrated body mesh. We obtain the personalized
HRTF with the reconstructed ear via simulation, and further
demonstrate the effectiveness of the reconstruction model
over the baseline by comparison on HRTF.

Related Work
Spatial Audio
Spatial audio, or spatial hearing, is a long-standing subject
in acoustics (Culling and Akeroyd; Vorländer). It focuses on
how humans localize the position of acoustic sources and
how to reproduce the spatial sense with a sound system.
Humans locate the sound sources by biaural and monaural
cues. Biaural cues include interaural time difference (ITD)
and interaural level difference (ILD), which means that the
arriving sound signals are filtered by the diffraction and re-
flection of the human body, including ear (pinna), head, and
torso, leading to a difference of time, and intensity of ar-
rival. Monaural cue is the spectral distortion of sounds. Fur-
ther, the 3D shape of the human body varies between in-
dividuals, resulting in different binaural and monaural cues
between different people. To model different spatial hearing
characteristics between people, the Head-Related Transfer
Function (HRTF) (Li and Peissig; Xie, Zhong, and He) is
proposed and widely used in spatial sound rendering. HRTF
describes the Sound Pressure Level (SPL, dB) of a sound
source in each direction for a specific individual. It is used
to convert an arbitrary sound to a specific position as if the
sound is originated from there. However, obtaining an accu-
rate personalized HRTF is laborious since the measurement
requires expensive equipment and special acoustic labora-
tories. Current implementations tend to deploy an average
HRTF or choose one from an HRTF database (Guo et al.).
Besides physical measurement, HRTF could also be numer-
ically simulated (Conrad; Jensen) based on Boundary Ele-
ment Method (BEM). Meshram et al. proposed to simulate
a personalized HRTF by reconstructing the 3D human body

3D Ear Dataset Scale with Image Quality Accessibility

UND-J2 1, 800 ✓ ⋆ ✓
York3DEar 500 ✗ ⋆ ✓
SYMARE-1 20 ✗ ⋆ ⋆ ⋆ ✓
SYMARE-2 102 ✗ ⋆ ⋆ ⋆ ✗
Ploumpis et al. 234 ✗ ⋆ ⋆ ⋆ ✗
AudioEar3D 112 ✓ ⋆ ⋆ ⋆ ⋆ ✓

Table 1: AudioEar3D and its counterparts. Quality is as-
sessed based on the precision of acquisition equipments.

2D Ear Dataset Scale Source Annotations
Lmks. Occ.

UND-E 464 Limited ✗ ✗
AMI 700 Limited ✗ ✗
IIT Delhi Ear 754 Limited ✗ ✗
WPUTEDB 3, 348 Limited ✗ ✗
UBEAR 4, 410 Limited ✗ ✗
IBug-B 2, 058 In-the-wild ✗ ✗
AWE 9, 500 In-the-wild ✗ ✗
EarVN 28, 412 In-the-wild ✗ ✗
IBug-A 605 In-the-wild ✓ ✗
AudioEar2D 2, 000 In-the-wild ✓ ✓

Table 2: Comparisons of AudioEar2D and its counterparts.
Lmks. denotes landmark annotation. Occ. means annotations
of whether the ear is partially occluded by hair or earrings.

using multi-view stereo (MVS). However, the reconstructed
body is heavily blurred due to the imperfection of the recon-
struction method, yielding large HRTF error.

Ear Datasets in 3D and 2D
Previous CV studies on human ears are mostly confined to
biometric application (O’Sullivan and Zafeiriou), and do not
prevail as other parts of human body, such as faces, hands
and skeletons. This leads to the lack of a rich ear dataset in
3D and 2D, as stated in Table 1, 2.

Existing 3D ear datasets suffer from either non-
accessibility, small scale, or low quality. Yan and Bowyer
collect 1, 800 ear depth maps in a resolution of 640 × 480
using a depth sensor. Since the depth maps are single-view,
they do not represent complete ear shapes. Dai, Pears, and
Smith publish York3DEar, which is composed of 500 de-
formed 3D ear meshes. These meshes are not collected
with instruments, but are estimated by a data-augmenting
technique based on a 2D ear dataset, which introduces
unforeseeable error. Jin et al. propose the SYMARE ear
database consisting of the measured HRIR and the upper
torso, head and ear mesh model collected by magnetic res-
onance imaging (MRI) from 61 individuals. However, only
10 (SYMARE-1) individuals’ data are accessible, while the
rest (SYMARE-2) are kept private. Ploumpis et al. collect
121 ear models from 64 adults and 133 ears models from
children via CT scans. However, these data are not publicly
available. Besides, most of the above 3D ear datasets lack
the corresponding ear images (except for UND-J2), mak-
ing it unfeasible to perform single-view reconstruction tasks
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upon them. Moreover, most of these data are collected by
MRI, whose measurement error is generally about 1 mil-
limeter (Nowogrodzki). This measurement error is not neg-
ligible for such an elaborately-structured organ, thereby in-
troducing additional error in the simulation of HRTF.

Existing 2D ear datasets include UND-E (Chang et al.),
AMI (Gonzalez, Alvarez, and Mazorra), IIT Delhi Ear (Ku-
mar and Wu), WPUTEDB (Frejlichowski and Tyszkiewicz),
UBEAR (Raposo et al.), IBug(-A/B) (Zhou and Zaferiou),
AWE (Emeršič et al.) and EarVN (Hoang), most of which
are for human identity recognition. The summarization of
these datasets is shown in Table 2.

3D Morphable Models Reconstruction
A 3D Morphable Model (3DMM) is a parametric model that
encodes the shape and texture of 3D meshes into a latent
space. The most studied structure in 3DMM reconstruction
are human faces (Ploumpis et al.; Ploumpis et al.), hands
(Chen et al.; Wang et al.; Zhang et al.) and bodies (Choi,
Moon, and Lee; Corona et al.). To achieve plausible perfor-
mance, the 3DMM reconstruction algorithms require a large
set of 2D images for self-supervised training, usually accom-
panied by semantic annotations, such as landmarks or poses.
They use a feature extractor and a multi-layer perceptron
(MLP) to regress the latent code of shape and texture. The
latent codes are fed into the differentiable 3DMM models to
obtain colored 3D meshes. Then the meshes are projected
to images with a differentiable renderer (Kato, Ushiku, and
Harada; Huang et al.). The photometric loss on images and
the landmark re-projection loss are minimized to train the
network. The popular face reconstruction algorithm DECA
(Feng et al.) proposes to conduct robust detail reconstruction
by regressing a UV displacement map. Sun, Pears, and Dai
propose to reconstruct 3D ear meshes with the YEM model
(Dai, Pears, and Smith). They derived a color model from
images and minimized the photometric and landmark error
to regress shape latent codes.

Method
Data Collection
We collect two ear datasets for personalized spatial audio.
One is AudioEar3D, a 3D ear scan dataset, for benchmark-
ing the ear reconstruction task. The other is AudioEar2D, for
the training of ear reconstruction models.

AudioEar3D Among various 3D scanning equipments,
we choose a structured-light 3D scanner to collect our 3D
ear data, for the following reasons: (i) Compared to pre-
vious 3D ear scanning methods, such as MRI and CT, a
structured-light scanner is much more convenient and ac-
cessible (it can be integrated into a small portable device),
which makes it easy to cover a larger population; (ii) The op-
eration and post-processing are simpler; (iii) The resolution
of structured-light scanners is higher compared to others,
under the same price. Specifically, we use MantisVision®
F6-SR 2, a portable high-resolution 3d scanner, which is de-

2Product introduction: https://mantis-vision.com/handheld-3d-
scanners/

signed to be able to scan detailed organ models in medical
applications. Its plane resolution and depth resolution are 0.1
mm and 0.4 mm respectively (compared to a resolution of 1
mm in most MRI scanners), with a frame rate of 8 FPS.

To alleviate the self-occlusion issue brought by the com-
plex ear structure and obtain a clear and complete 3D ear
scan, we scan each individual with the above device for
about 90 seconds from different directions. We remove the
other parts of the body and only keep the ear part. This yields
approximately 100, 000 to 250, 000 points for each ear scan,
which captures high-resolution shape characteristics of ears.
Besides, we take frontal pictures of the ears from a dis-
tance similar to the scanner. At present we have obtained
data of 112 ears from 56 subjects. We plan to further ex-
tend the scale to cover a larger population. We show several
samples in Figure 1. The out-coming dataset is completely
anonymized for privacy issues.

AudioEar2D We obtain our 2D ear dataset from a high-
quality public human face dataset, Flickr-Faces-HQ Dataset
(FFHQ) (Karras, Laine, and Aila), which consists of 70, 000
face images in the resolution of 1, 024 × 1, 024 that are
various in terms of pose, age, and ethnicity. To find im-
ages that contain clear ears, we first train an ear detection
model on the IBug Collection-B dataset (Zhou and Zafe-
riou), which contains the bounding box of ears, from a pre-
trained Yolov4 (Bochkovskiy, Wang, and Liao). Then we
adopt the trained detection model on the FFHQ dataset to
roughly sift out high-quality ear images according to detec-
tion confidence and bounding box area. Besides, we lever-
age WHENet (Zhou and Gregson), a pre-trained head pose
estimation model, to further remove those images that have
bad view angles. We cut the remaining images into squares
based on the bounding box. We preserve the original resolu-
tion of the cut ear image to avoid information loss induced
by interpolation resizing. Thanks to the bounding box area
filtering, the image resolution is mostly above 300× 300, as
illustrated in Figure 1 bottom (a). Next, we manually filter
the remaining images and annotate the 55 landmarks, fol-
lowing a landmark protocol in IBug Ear (Zhou and Zafe-
riou). Moreover, we annotate whether the ear is clean or is
occluded by hair or by earrings, which could act as noise
in some applications. The distribution of occlusion is shown
in Figure 1 bottom (b). We obtain 2, 000 high-resolution ear
images, each with 55 annotated landmarks in the end.

AudioEarM: Depth-Guided Ear Reconstruction
We develop our method upon a common pipeline of para-
metric shape reconstruction, which regresses the latent code
of the 3D shape, texture, camera, and lighting via self-
supervised training. We first adapt this pipeline to ears with
several effective modifications, which are motivated by the
specific characteristic of ears. Besides, to further boost the
performance, we propose to leverage synthetic ear images
to train a depth estimation model and fuse the depth infor-
mation into the reconstruction model via multi-scale feature
alignment. We name our method AudioEarM.

Texture Acquisition We use the UHM Ear (Ploumpis
et al.), the best-quality ear 3DMM to transform the shape
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Figure 1: Visualization of the two collected datasets. AudioEar3D (top): We show five samples with their three-view rendered
point clouds and RGB images. Compared to existing 3D ear dataset, AudioEar3D is high-quality, large-scale, and also publicly
available. AudioEar2D (bottom): We illustrated several samples with their occlusion annotations and the 55 landmarks. The
four colors of the landmarks indicate four main contours of the ears. We flip the left ears to the right for better visualization.

latent code into a 3D mesh. The UHM Ear reduces the N
vertices (2800) of an ear mesh to a lower dimension (236)
using PCA. Let S ∈ R3N denotes the mean shape, v⃗ ∈
R236 and U ∈ R3N×236 denote the eigenvalues and eigen-
vectors of the 3DMM. The shape variations are modeled
by eigenvalue-weighted linear blendshapes: BU (β⃗;U) =∑236

n=1 vnβnUn, where β⃗ ∈ R236 is the predicted shape la-
tent code. The final ear mesh is obtained by:

M(β⃗) =
236∑
n=1

vnβnUn + S (1)

The UHM Ear does not provide texture, which is indispens-
able to minimize the photometric loss in a self-supervised
reconstruction pipeline. We extract the ear texture space
from DECA (Feng et al.) to enable colored rendering. In
DECA, given a texture latent code θ⃗ ∈ R|θ⃗|, a texture map
T (θ) ∈ Rh×w×3 (h × w is the resolution) could be calcu-
lated. Each vertex in the DECA mesh corresponds to a UV
coordinate pdeca in the texture map. However, the vertices
of the UHM ear do not have correspondence with DECA.
To this end, we first visually align the mean UHM ear
with the ear in DECA as close as possible. For each vertex
vuhm ∈ R3 in UHM model, we then search its K-Nearest-
Neighbors videca ∈ R3, i = 1, 2 . . . , k in DECA vertices (k

is 3 in our implementation). We assign the KNN-distance-
weighted UV coordinates to the UHM vertices based on Eu-
clidean distance between vuhm and videca. Formally, the UV
coordinates of vuhm are computed by:

puhm =
k∑

i=1

D(vuhm, videca)∑k
j=1 D(vuhm, vjdeca)

pideca (2)

Contour Loss. Contour loss is concerned with the four
contours formed by the 2D landmarks. (The four contours
are indicated by four different landmark colors in Au-
dioEar2D in Figure 1.) As illustrated in Figure 1 bottom (c),
the landmark annotation have bias along the contour, while
the contour is well represented by the annotations. The rea-
son is that the contour is more visually salient for human
eyes. Hence measuring the error of contour prediction in
training is superior to landmark error. Practically, we con-
nect the landmarks one by one to form four polylines and
uniformly re-sample dense points on these polylines. We
measure the chamfer distance of the re-sampled points P
between the ground truth and prediction as contour loss:

Lcontour =
1

4

4∑
i=1

ChamferDistance(Pi
gt,Pi

pred) (3)

where the superscript i is the index of the four contours.
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Figure 2: The architecture of our depth-guided reconstruction model, AudioEarM. A depth estimation model, which is trained
on a synthetic dataset, guides the main reconstruction network with multi-scale feature alignment.

Similarity Loss. In our early experiments, we find that the
predicted shape latent codes are too similar across all in-
stances. This similarity is undesirable since the shape should
be distinct across different individuals. We encourage the
network to predict distinct shapes by measuring the mean
cosine similarity between the shape latent codes in a batch
and penalizing high similarity:

Lsim =
1

bs× (bs− 1)

bs−1∑
i,j=0,i ̸=j

βiβj

|βi||βj |
(4)

where bs denotes the batch size and βi, βj denote the ith, jth
sample in a batch.

Besides, we prevent extreme rotation angles and scale
parameters in camera with L1-penalization, since the an-
gle and scale of ears in images are generally within a cer-
tain scope. We combine these three loss functions with the
commonly used losses: landmark, photometric loss, mesh
smooth loss and latent code regularization. The overall loss
is the weighted sum of the losses above.

Depth-Guided Reconstruction Zhang et al. demonstrates
that introducing synthetic data with 3D supervision into
trainset could improve the quality of single-view hand re-
construction. Yet we empirically find that directly migrat-
ing this approach to our task brings negative effect (see ab-
lation study). Alternatively, we leverage the power of pre-
training (Yang et al.), that is to use synthetic data to pre-
train a monocular depth estimation (MDE) model. Then we
leverage the depth feature extracted by the MDE model to
facilitate the whole reconstruction process, as shown in Fig-
ure 2.

To generate a synthetic ear dataset with 3D supervision,
we randomly sample shape and texture latent codes from a
Gaussian distribution, and render corresponding RGB im-
ages and depth maps. We generate 10, 000 samples in this
way. Then we train an MDE model on this synthetic dataset,
using the depth map as direct supervision. The MDE model

(Laina et al.) consists of an encoder and a decoder (Figure 2).
The ResNet-34 (He et al.) encoder extracts high-level feature
from images, while the decoder predicts a depth map from
the feature. The extracted feature is upsampled by the de-
coder layer by layer until the original resolution is restored.
We aim to leverage the depth information obtained by de-
coder to guide the reconstruction process. To this end, we
concatenate the multi-scale upsampled feature with the fea-
ture before each layer in the main network. We insert an ad-
ditional convolution layer each time after concatenation to
transform the increased channel numbers into original ones,
so as to match the channel of the next layer. Since the last-
layer resolution of the MDE model is twice as big as the
first-layer resolution in the main network, we conduct max-
pooling on the last-layer MDE feature before concatenation.
In this way, we explicitly fuse the depth information into the
main network to guide the reconstruction process. Ablation
study shows that this method brings notable improvement.

Acoustic Simulation
Spatial audio rendering depends on the HRTF, which is de-
fined as the Sound Pressure Level (SPL) measured at the
eardrum (or the ear canal entrance in practice). We simu-
late a personalized HRTF with COMSOLTM, a Multiphysics
software that uses the Boundary Element Method (BEM) for
simulation. However, the simulation requires a complete hu-
man upper body, not just an ear. To this end, we develop a
pipeline to integrate our reconstructed ears into an off-the-
shelf human body 3D model (Braren and Fels; Braren and
Fels). The pipeline is illustrated in Figure 3.

We manually remove the original ears of the given 3D
body and place the reconstructed ear to the consequent hole.
To combine the ear and body mesh together, we propose a
method named approximated Delaunay triangulation. De-
launay triangulation is a triangulation method for 2D point
sets, which maximize the minimal angle of all the angles
of the triangles in the triangulation process, such that sliver
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Figure 3: The proposed integration and simulation pipeline. We conduct approximated Delaunay triangulation to combine the
reconstructed ear with the body and simulate the personalized HRTF in all azimuth angles (361 angles) on the horizontal plane.

triangles are avoided. Sliver triangles are inappropriate for
BEM simulation. Since both the edges of the ear and body
hole are not on a 2D plane (but close to a plane), we project
the edges to a plane which is found by the averaged normals
of the mesh faces around the edges. In this way, we can con-
duct approximated Delaunay triangulation on the vertices
of the two edges and fix the crack between ears and heads.
Since the geometry of the edges is not greatly changed by
the projections, the sliver triangles could still be avoided as
much as possible. We leverage the Detri2 program 3 for De-
launay triangulation. At last, we smooth the generated mesh
and use it for simulation. We simulate the HRTF in all az-
imuth angles (361 angles in total) on the horizontal plane
for three frequencies (f = 1033.6 Hz, 2067.5 Hz, and 3962.1
Hz), following a general protocol. Note that the simulation
pipeline involves manual efforts and is not part of the evalu-
ation protocol of ear reconstruction, but for application use.
We evaluate reconstruction performance on AudioEar3D.

Experiments
Ear Reconstruction Benchmark
Evaluation We leverage the full AudioEar3D dataset to
evaluate the performance of ear reconstruction models. We
compute the distance from each point in the ground-truth
ear scan to the predicted ear mesh. (The distance from a
point to a mesh is defined as the distance from the point
to the closest triangular face in the mesh.) We average the
distance across all points in the scan as the evaluation met-
ric, named scan2mesh (S2M). However, since the scale and
position are not aligned between the scans and the predicted
meshes, we first register the mesh with the scan in a gradient-
based method. We iteratively optimize scale and position pa-
rameters for registration. To reduce the evaluation time and
avoid convergence in a local minimum, we design a three-
stage registration scheme. First, we minimize four manually
chosen key points to obtain a coarse registration. Next, we
randomly sample points on the predicted mesh surfaces and
minimize the chamfer distance between the sampled points
and the scans. Last, we directly minimize the S2M distance
between the scan and mesh. Since the dense points clouds
in AudioEar3D would cause intense computation, we ran-
domly down-sample the scan to 1, 000 points for the S2M
and only compute the S2M distance on the whole scan in the

3http://www.wias-berlin.de/people/si/detri2.html
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Figure 4: We visualize the S2M error map of our method
and two baselines on testset (AudioEar3D). Our method has
lower error compared to baselines.

last iteration. We use Adam (Kingma and Ba) with an initial
learning rate of 0.45 for optimization. Each stage lasts for
166 iterations. The learning rate is multiplied by 0.1 when
entering the next stage. After numerous tests, we empirically
find that this setting can make most registrations converge to
a global minimum. We conduct the registration process on
all the 112 samples in AudioEar3D, which takes about half
an hour, and average the S2M across all samples as the final
evaluation metric. The left ear scans are transformed to the
right ones by reflection in the sagittal plane.

Setting To compare, we send the average ear of UHM into
the registration process, as a baseline without any personal-
ization. We also compare our method with a prior ear re-
construction method named HERA (Sun, Pears, and Dai).
Since HERA did not publish their code and ear model, we
implement it using our ear model. Besides, we would like to
compare AudioEarM with the SOTA face reconstruction al-
gorithm, DECA (Feng et al.). Since a detailed UV displace-
ment map in DECA is not available for ears, we only imple-
ment the coarse branch in DECA, denoted as DECA-coarse.

Results As listed in Table 3 #6-9, our method surpasses
the average ear baseline, HERA and DECA-coarse, with a
final S2M distance of 1.28 mm. The average ear yields an
S2M of 1.78 mm, while HERA and DECA-coarse yields an
S2M of 1.70 and 1.46 mm. We visualize the S2M error map
of our method and two baselines on testset (AudioEar3D).
Our method has lower error compared to baselines.
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# Model S2M ↓
1 Naive 1.73mm
2 #1 + texture 1.65mm
3 #2 + similarity loss 1.63mm
4 #2 + contour loss 1.52mm
5 #2 + contour & similarity 1.47mm
6 Ours (#5 + depth-guided) 1.28mm
7 Avg ear 1.78mm
8 HERA 1.70mm
9 DECA-coarse 1.46mm

Table 3: Comparisons of reconstruction methods. {#1 + tex-
ture} means texture is added on top of Method#1. Similar
meanings for other +,− notations.

Comparisons of Reconstruction Models
We examine the impact of each part in our method (Table
3 #1-6). All the models are trained with the same setting
described in Section . We first implement a baseline model
(Method#1) in which a common self-supervised reconstruc-
tion pipeline is adopted to our data without modifications.
A single skin color is assigned to the texture instead of our
texture space. Method#1 yields an S2M of 1.73 mm, which
has little improvement over the average ear. Then we replace
the single color with our texture space (Method#2), which
reduces the S2M error to 1.65 mm. On top of it, we add
the similarity loss and contour loss into the training process
(Method#3-5). Adding the two losses together yields a re-
sult of 1.47 mm. The effect of contour loss is more notable
than the similarity loss. Finally, we use the depth estimation
model to perform depth-guide reconstruction, and obtain an
S2M of 1.28 mm, which is our best result. The reason be-
hind the superiority is that predicting a regular depth map is
less ill-posed than predicting a shape latent code. Besides,
depth could inform the object’s geometry. Similar motiva-
tion is enlightening in pseudo-lidar approaches for 3D object
detection (Qian et al.).

HRTF Simulation
Evaluation. In this part, we conduct the HRTF simulation
using our predicted ears. We compare the HRTF of the pre-
dicted ears against the ground-truth ears. The HRTF of the
ground-truth ears are simulated using the ear meshes regis-
tered from the raw ear scans in AudioEar3D. Specifically,
we send the mean UHM Ear into the same registration pro-
cess described in Section , except that the optimized param-
eters in the second and third stages include the shape la-
tent code of UHM besides the original ones. The registration
yields an average S2M of 0.11 mm among all scans, which
is fairly low. The low S2M error indicates the optimized
meshes are rather close to the true ear shape. We measure
the mean SPL error in absolute value across all angles be-
tween ground-truth and predicted ones. As comparisons, we
replace the predicted ears with the mean UHM Ear (denoted
as Avg in Table 4). The SPL error of the mean UHM Ear
represents the spatial audio effect without personalization.

Sample S2M ↓ SPL Error ↓ (dB× 10)
(mm) f=1kHz f=2kHz f=4kHz

033-right 1.49 1.12±0.75 3.59±5.97 4.13±5.44
0.94 0.33±0.19 0.59±0.89 2.32±2.84

021-left 1.66 0.58±0.27 1.20±2.19 4.25±3.43
0.88 0.30±0.12 1.30±1.47 2.39±1.85

036-left 2.23 1.23±1.17 3.52±9.16 6.97±11.97
1.85 1.13±0.89 2.69±4.58 4.75±5.89

008-left 1.23 1.69±1.31 4.50±6.71 5.29±5.40
0.74 1.35±0.69 3.532±5.97 6.75±6.49

048-left 1.35 0.40±0.30 1.27±1.64 5.00±4.76
0.94 0.23±0.14 1.18±1.23 3.31±2.88

040-right 1.27 1.00±0.66 2.83±5.65 5.54±10.23
1.58 1.17±0.81 3.57±6.54 5.99±10.43

029-left 1.33 2.11±0.98 5.95±9.76 8.06±9.47
1.46 1.12±0.76 3.44±5.98 10.09±10.74

Table 4: Results of HRTF simulation measured in SPL error.
The first and second row in each sample denote Avg and Pred
results respectively. We see that better reconstruction results
bring more realistic HRTF. The predicted ears in the first
5 samples have lower S2M and also lower SPL error than
average, vice versa andfor the last 2 samples.

Larger errors indicate worse spatial audio. Since the simu-
lation experiment is labour-intense and time-consuming, we
only show the results of several samples for demonstration.

Results. Table 4 compares the results between Avg and
Pred of each sample. The first and second row in each sam-
ple denote Avg and Pred results respectively. We see that
better reconstruction results (lower S2M) bring more real-
istic HRTF (lower SPL error). For those samples whose re-
constructed S2M distances are lower than the mean UHM
Ear (the first 5 samples), both the mean value and varia-
tion of SPL error are also lower, meaning that they obtain
a closer HRTF to the ground truth than the mean UHM Ear.
For the last two samples, the S2M of predicted ears is higher
and the SPL error is somewhat larger, indicating that the ob-
tained HRTF is highly related to the reconstruction results.
It is necessary to develop advanced ear reconstruction algo-
rithms for more realistic spatial sound effects.

Conclusion

This work considers 3D ear reconstruction from single-view
images for personalized spatial audio. For this purpose, we
collect a 3D ear dataset for benchmarking and a 2D dataset
for the training of ear reconstruction models. Besides, we
propose a reconstruction method guided by a depth estima-
tion network that is trained on synthetic data, with two loss
functions tailored for ear data. Lastly, we develop a pipeline
to integrate the reconstructed ear mesh with a human body
for acoustic simulation to obtain personalized spatial audio.
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