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Abstract
Mirror detection aims to identify the mirror regions in the
given input image. Existing works mainly focus on integrat-
ing the semantic features and structural features to mine spe-
cific relations between mirror and non-mirror regions, or in-
troducing mirror properties like depth or chirality to help
analyze the existence of mirrors. In this work, we observe
that a real object typically forms a loose symmetry relation-
ship with its corresponding reflection in the mirror, which
is beneficial in distinguishing mirrors from real objects.
Based on this observation, we propose a dual-path Symmetry-
Aware Transformer-based mirror detection Network (SAT-
Net), which includes two novel modules: Symmetry-Aware
Attention Module (SAAM) and Contrast and Fusion Decoder
Module (CFDM). Specifically, we first adopt a transformer
backbone to model global information aggregation in images,
extracting multi-scale features in two paths. We then feed the
high-level dual-path features to SAAMs to capture the sym-
metry relations. Finally, we fuse the dual-path features and re-
fine our prediction maps progressively with CFDMs to obtain
the final mirror mask. Experimental results show that SATNet
outperforms both RGB and RGB-D mirror detection methods
on all available mirror detection datasets.

Introduction
Mirrors are common objects in the human world, and their
presence can affect the performance of a range of vision
tasks. For example, Zendel et al. propose a list of potential
hazards within the CV domain, and the existence of mirrors
is one of them. However, mirror detection can be challeng-
ing by using some general detection methods from related
tasks, such as salient object detection and semantic segmen-
tation. As such, it is necessary to treat mirror detection as an
independent vision task, and previous works have managed
to tackle this issue from either relation-based frameworks or
property-based paradigms.

Relations between mirror and non-mirror regions are
counted in most mirror detection methods. Yang et al. pro-
pose to extract contextual discontinuities among regions, but
it can only be effective when mirror boundaries are clear
against backgrounds. Lin, Wang, and Lau propose to per-
ceive similarity relationships for contents inside and outside
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Figure 1: Comparison of mirror detection among state-of-
the-art methods. MirrorNet (Yang et al. 2019) cannot han-
dle scenes with vague mirror boundaries. Although PMD-
Net (Lin, Wang, and Lau 2020) considers similarity seman-
tics, it can hardly detect the symmetry pair (1st row), and
can easily count part of the similar non-mirror regions into
mirrors (2nd row). SANet (Guan, Lin, and Lau 2022) only
detects the mirror region above the sink (1st row), and it
has worse predictions when semantic associations are lack-
ing (2nd row). By modeling a loose symmetry relationship,
SATNet succeeds in both cases.

mirrors, which may easily fail when similarities come from
non-mirror regions. Guan, Lin, and Lau propose to learn
semantic associations in mirror scenes, while such relation
quite relies on the environments nearby mirrors. It can only
adapt to a few mirror cases, e.g., a mirror above a sink.
Considering mirror properties, Mei et al. and Tan et al. re-
gard depth and chirality as additional information for the de-
tection, respectively. However, these property aggregations
only focus on mirror regions, dismissing the environmental
semantics related to mirrors.

For a general solution, we need to fully leverage the
relationship between mirror and non-mirror regions based
on mirror properties. Considering mirror reflection, sym-
metry relationships between mirror and non-mirror regions
are supposed to be an essential cue for mirror detection. In
Fig. 1(1st row), the right half of the mirror would not be
missed if the mirror detection model could detect the mirror
symmetry relationship of the two paintings. In Fig. 1(2nd
row), if the model recognizes the left power bank as the
mirror region, it can then classify the corresponding real
power bank on the right as a non-mirror region. However,
this symmetry relationship is not a strict mirror symmetry
and is highly dependent on the camera viewpoint. The paint-
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ings inside and outside mirrors form a nearly perfect re-
flection symmetry pair in Fig. 1(1st row), while the power
banks inside and outside mirrors are from different views in
Fig. 1(2nd row). We cannot adopt reflection symmetry de-
tection methods directly. Instead, we observe that real-world
object and their reflection in mirrors always maintain seman-
tic or luminance consistency with each other, even though
they may not be strictly symmetric regarding the position or
orientation. That is, an object in a mirror should be a mir-
ror reflection of an object in the real world from a certain
view. We regard this kind of relationship as loose symmetry
and aim to explore a new solution to model and leverage this
loose symmetry relationship for mirror detection.

Taking loose symmetry into account, we present our
Symmetry-Aware Transformer-based mirror detection Net-
work (SATNet). In particular, we introduce the first trans-
former baseline in mirror detection, considering the long-
range dependencies that loose symmetry requires. We con-
struct a dual-path network to extract and enhance symmetric
features, taking an input image as well as its corresponding
horizontally flipped image as inputs. For modeling symme-
try semantics, we propose a novel Symmetry-Aware Atten-
tion Module (SAAM) in high-level dual-path features. For
mirror region segmentation, we propose a novel Contrast
and Fusion Decoder Module (CFDM), which constructs a
pyramidal decoder to progressively fuse and refine dual-path
features.

To sum up, our main contributions include:
• We observe that there are typically loose symmetry

relationships between mirror and non-mirror regions.
Based on this observation, we propose a novel dual-
path Symmetry-Aware Transformer-based mirror detec-
tion network (SATNet) to learn symmetry relations for
mirror detection. This is the first transformer pipeline in
mirror detection.

• We present a novel Symmetry-Aware Attention Module
(SAAM) to extract high-level symmetry semantics and a
novel Contrast and Fusion Decoder Module (CFDM) to
refine multi-scale mirror features.

• Our network SATNet achieves state-of-the-art results on
various mirror detection datasets. Experimental results
clearly demonstrate the benefit of loose symmetry rela-
tionships for mirror detection.

Related Work
Mirror Detection
The mirror detection task aims to identify the mirror regions
of the given input image. To tackle this problem, several
methods attempt to model specific relations between mirror
and non-mirror regions. Yang et al. proposed the first mir-
ror detection network called MirrorNet, which focuses on
perceiving the contrasting features between the contexts in-
side and outside mirrors. Lin, Wang, and Lau suggested a
progressive mirror detection network PMDNet, designing a
relational contextual contrasted local module to extract simi-
larity features. Guan, Lin, and Lau proposed to learn seman-
tic association in mirror scenes, which may imply the exis-
tence of mirrors. However, those methods can hardly adapt

to general mirror detection cases as the relations they match
are either too simple or too strict. Recent methods take mir-
ror properties into account. Mei et al. introduced depth in-
formation to mirror detection as the depth value in mirror
regions is irregular. In contrast, the depth input is unreliable,
and the method can be easily misled by depth. Tan et al.
proposed a dense visual chirality discriminator to judge the
possible mirror existence, while the improvement is limited
since chirality information tends to be subtle when mirror
contents are clean. The leverage of mirror properties in these
methods mainly depends on the semantics of mirror regions,
dismissing the interaction with non-mirror regions. Unlike
existing works, we aim to utilize loose symmetry relation-
ships between real-world objects and corresponding mirror
regions to enhance the overall detection ability.

Reflection Symmetry Detection
Reflection symmetry detection aims to detect symmetry axes
in given images. Early works in this task can be divided
into two categories: keypoint matching detection and dense
heatmap detection. Loy and Eklundh adopted SIFT (Lowe
2004) to compute matched keypoints, and generated poten-
tial symmetry axes accordingly. Cornelius and Loy took a
single matching pair for hypothesizing with the local affine
frame. For dense heatmap, Tsogkas and Kokkinos utilized
pixel-level features to predict the symmetry area densely.
Funk and Liu employed CNNs to extract the symmetric
features directly. Recently, Seo, Shim, and Cho proposed
a novel polar matching convolution to encode the similari-
ties among pixels. Contrary to the strict reflection symmetry,
symmetry relationships in mirror cases are loosely defined.
Therefore, reflection symmetry detection methods cannot be
directly employed in mirror detection. To tackle this, we pro-
pose a dual-path Transformer-based structure with attention
mechanisms in high-level features to model the loose sym-
metry relationships.

Salient Object Detection
Salient object detection (SOD) aims to detect and segment
the most distinct object in an input image. Existing methods
in RGB SOD are mainly based on the UNet structure (Ron-
neberger, Fischer, and Brox 2015), like (Wang et al. 2017;
Pang et al. 2020b). Deng et al. adopt a recurrent network
to refine the salient map progressively. Liu, Han, and Yang
adopt attention mechanisms to learn more dependencies
among features. Recently, RGB-D SOD has received con-
siderable attention. Several methods (Song et al. 2017) treat
depth as an additional dimension of the input features, while
the others (Fan et al. 2020a) separately extract RGB and
depth features and fuse them in the decoding process. Liu,
Zhang, and Han proposed to fuse depth information with at-
tention mechanisms. Pang et al. integrated RGB and depth
through densely connected structures. Liu et al. proposed
a vision transformer network, rethinking this field from an
aspect of sequence-to-sequence architectures. Albeit similar
to mirror detection, SOD methods can hardly have a good
performance on the mirror detection task as mirrors are not
salient enough to detect in most cases. SOD methods may
wrongly detect some conspicuous objects inside mirrors.
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Figure 2: (a) Pipeline of our SATNet. (b) Symmetry-Aware Attention Module. (c) Contrast and Fusion Decoder Module.

Method

Based on the idea of loose symmetry relationships, we pro-
pose a dual-path Symmetry-Aware Transformer-based net-
work for mirror detection. Loose symmetry relationships
can assist the detecting process in two aspects: presences of
loose symmetry relationships imply the possible existence of
mirrors; differences between symmetric pairs indicate which
part belongs to mirror regions. The dual-path structure and
our novel Symmetry-Aware Attention Module are designed
for the first aspect. Additionally, to better encode the sym-
metry features as well as recognize the corresponding mirror
semantics, a transformer backbone and our Contrast and Fu-
sion Decoder Module are proposed for the second aspect.

Overview

Fig. 2(a) illustrates the pipeline of our SATNet. Given an in-
put image I as well as its flipped image If , we feed them
into a shared-weights transformer backbone to obtain multi-
scale features {F0, ...,F3} and corresponding flipped fea-
tures {Ff

0 , ...,F
f
3}, respectively. For modeling symmetry re-

lations, we select features from the highest two levels of both
paths, and feed features in the same level into our Symmetry-
Aware Attention Module (SAAM), fetching joint features
F̂ and F̂f . Then, the multi-scale features {Fi/F̂i} as well
as the flipped features {Ff

i /F̂
f
i } are fed into corresponding

Contrast and Fusion Decoder Module (CFDM), generating
coarse output features Fout

i with different scales progres-
sively. For each Fout

i (except Fout
0 ), we upsample it into the

next decoder as the reference features Di−1 for further pre-
diction refinement. Meanwhile, we get the prediction map
Pi in each decoder through a segmentation head and super-
vise it via the ground-truth mask M. Finally, our prediction
result M̃ is generated by the last decoder module.

Dual-Path Structure
In most cases, loose symmetry relationships are implicit un-
der complex semantics. Such a relationship is too hidden
to be perceived by existing baselines, which has been veri-
fied in our ablation study. To better perceive the relationship,
dual enhancements are suggested. As a common method of
data augmentation, horizontal flipping can modify the global
semantics of natural images, while symmetry relationships
still exist (they just display in the opposite direction). Thus,
we introduce a dual-path network to extract symmetric fea-
tures: Given F and Ff from both paths, we expect they differ
from each other but have features of the same loose sym-
metry relationship. When we concatenate them together as
Fc, symmetry semantics in the symmetric region can be en-
hanced. To extract the same symmetric features, input im-
ages I and If must be fed into the same backbone. Our fu-
sion function is defined as follows:

φ(a1, ..., an) = σ(BN(ψ3×3(ψ1×1([a1, ..., an])))), (1)

Fc = φ(F, f lip(Ff )), (2)

where [·, ..., ·] denotes the concatenation operation on the
channel dimension. ψw×w is a w × w convolution, BN de-
notes the Batch Normalization, σ is the ReLU activation
function, and flip is the horizontal flipping. To align features
in the spatial level during concatenation, we flip Ff back
before SAAM or CFDM.

Symmetry-Aware Attention Module
Fig. 2(b) shows the architecture of our symmetry-aware at-
tention module. With SAAM, we aim to perceive loose sym-
metry relationships in an image that indicates the possible
existence of mirrors. To this end, we use the attention mech-
anisms (i) to enhance the feature F of the input image as
well as (ii) to obtain the symmetry-aware feature by model-
ing the dependency between the input and its flipped images.
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In general, the attention mechanism can model the depen-
dencies among each position in a global manner (Vaswani
et al. 2017), which can be formulated as,

Attention(Q,K,V) = Softmax(
QKT

√
dk

)V, (3)

where Q, K and V denote Query, Key, and Value, respec-
tively.

Our SAAM takes both Fc as well as F and Ff as the
input. Among them, Fc aggregates the features from F
and Ff from both paths and is spatially consistent with F,
and thus can be treated as an augmented representation of
F. To exploit the attention to enhance the feature F, we
treat F as query and Fc as key and value, and further ap-
ply channel transformation with Efficient Channel Attention
(ECA) (Wang et al. 2020) module right after the attention
module to obtain the enhanced feature F̂,

F̂ = ECA(Attention(F,Fc,Fc)), (4)

where ECA(·) denotes the Efficient Channel Attention
module. To obtain the symmetry-aware feature, we treat Ff

as query and Fc as key and value. Note that Ff is extracted
from the flipped image, and Fc is spatially consistent with
the input image. Their similarity score can thus be treated as
an indicator of loose mirror symmetry between parts from
the input and its flipped images. And the output of the at-
tention module can then be regarded to be symmetry-aware.
Analogous to F̂, the symmetry-aware feature is obtained by,

F̂f = ECA(Attention(Ff ,Fc,Fc)). (5)

Contrast and Fusion Decoder Module
Since MirrorNet (Yang et al. 2019), Context Contrasted
Local (CCL) decoder (Ding et al. 2018) has been widely
adopted in mirror detection networks. To better refine the
prediction, edge extractors are joint as an extra supervision
to previous methods (Lin, Wang, and Lau 2020; Tan et al.
2022) as well. In this subsection, we further extend the CCL
module to present our CFDM for handling multiple features.
With no edge information, our CFDM can outline precise
mirror boundaries efficiently by refining multi-level features
progressively in a top-down structure.

As shown in Fig. 2(c), our CFDM takes Fi and Ff
i as

the input when i = 0, 1, and F̂i and F̂f
i when i = 2, 3.

Without loss of generality, we use Fi and Ff
i as an example

to explain the CFDM module. To begin with, we use Eq. (2)
to obtain the fused feature Fc

i . Denote by Fout
i+1 the (i + 1)-

scale CFDM output. We then upsample Fout
i+1 to obtain the

higher-level feature map,

Di = U2(σ(BN(ψ3×3(F
out
i+1))), (6)

where U2 denotes the bilinear upsampling operation. Subse-
quently, the reference features for (Fc

i ,Fi,F
f
i ) can be given

by,

(F̃c
i , F̃i, F̃

f
i ) =

{
(Fc

i ,Fi,F
f
i )⊕ (Di,Di,Di), i < 3

(Fc
i ,Fi,F

f
i ), i = 3

(7)

where ⊕ denotes the element-wise summation operator.
The three feature maps F̃c

i , F̃i, F̃
f
i are separately fed into

the CCL module to extract contrastive semantics. Here we
use F̃i as an example,

CCL(F̃i) = σ(BN(fl(F̃i)− fct(F̃i))), (8)

where fl is the local feature extractor which contains a 3×3
convolution with a dilation rate of 1, BN, and ReLU in turn.
Considering the changes in the receptive field, we set dila-
tion rates to {8, 6, 4, 2} for layer {0, 1, 2, 3}, respectively.
Finally, we concatenate those three CCL outputs together to
get the output features Fout

i and the corresponding predic-
tion map Pi, which is given as follows,

Fout
i = φ(CCL(F̃c

i ), CCL(F̃i), CCL(F̃
f
i )), (9)

Pi = fseg(F
out
i ), (10)

where fseg is a segmentation head whose output has two
channels. And the output of the last decoder layer P0 is
adopted as the final prediction result M̃ of our network.

Transformer for Mirror Detection
As for the feature extraction, loose symmetry is typically
a long-range relationship, which means our network needs
a large receptive field to perceive it. CNN-based methods
utilize a couple of convolution kernels to fulfill local fea-
ture aggregation. However, the convolution with a small ker-
nel size cannot construct global feature aggregation directly,
which restricts the feature representation ability of those
methods in complex scenarios. In contrast, the self-attention
module in transformers can model the long-range interac-
tion explicitly, making vision transformers very competitive
in several complex scene understanding tasks (Zheng et al.
2021). Swin Transformer (Liu et al. 2021b) proposes regular
and shifted window self-attention modules to construct lo-
cal and global feature aggregation with limited computation
complexity while achieving state-of-the-art performance in
scene parsing. Thus, we adopt a transformer pipeline in mir-
ror detection based on Swin Transformer.

Loss Function
Our learning objective is defined by considering all scales.
For each prediction map Pi, we calculate the binary cross-
entropy (BCE) loss (De Boer et al. 2005) between Pi and the
ground-truth M. The overall loss function L is then given as
the summation of BCE loss for each prediction map,

L =

3∑
i=0

wiLbce(Pi,M), (11)

where wi is the corresponding weight for the i-th layer. We
empirically set the weightwi as [1.25, 1.25, 1.0, 1.5] accord-
ing to the experimental results.

Experiments
Datasets and Evaluation Metrics
Following previous works (Yang et al. 2019; Lin, Wang, and
Lau 2020), we use Mirror Segmentation Dataset (MSD) and

938



Method MSD PMD
IoU ↑ Fβ ↑ MAE ↓ IoU ↑ Fβ ↑ MAE ↓

CPDNet 57.58 0.743 0.115 60.04 0.733 0.041
MINet 66.39 0.823 0.087 60.83 0.798 0.037
LDF 72.88 0.843 0.068 63.31 0.796 0.037
VST 79.09 0.867 0.052 59.06 0.769 0.035
MirrorNet 78.88 0.856 0.066 58.51 0.741 0.043
PMDNet 81.54 0.892 0.047 66.05 0.792 0.032
SANet 79.85 0.879 0.054 66.84 0.837 0.032
VCNet 80.08 0.898 0.044 64.02 0.815 0.028
Ours 85.41 0.922 0.033 69.38 0.847 0.025

Table 1: Quantitative results of the state-of-the-art methods
on MSD dataset and PMD dataset. Our method achieves the
best performance in terms of all the evaluation metrics.

Progressive Mirror Dataset (PMD) to evaluate our method.
Besides, we adopt an RGB-D dataset RGBD-Mirror to make
a comparison with the state-of-the-art RGB-D mirror detec-
tion method PDNet (Mei et al. 2021). To assess mirror de-
tection performance, we adopt three commonly used dense
prediction evaluation metrics: intersection over union (IoU),
F-measure Fβ , and mean absolute error (MAE).

Implementation Details
We implement our network on PyTorch (Paszke et al. 2019)
and use the small version of Swin Transformer (namely
Swin-S) pre-trained on ImageNet-1k (Deng et al. 2009) as
the backbone of our network. Note that dual-path features
are fed into the same backbone and share weights. Follow-
ing data augmentation methods adopted by previous works,
we adopt random resize and crop as well as random horizon-
tal flipping to augment training images. And for testing, we
simply resize input images to 512× 512 to evaluate our net-
work. Our network is trained on 8 Tesla V100 GPUs with
2 images per GPU for 20K iterations. During training, we
use ADAM weight decay optimizer and set β1, β2, and the
weight decay to 0.9, 0.999, and 0.01, respectively. The learn-
ing rate is initialized to 6 × 10−4 and decayed by the poly
strategy with the power of 1.0. It takes 6 hours to train our
network, and testing on a single GPU needs 0.08s per image.

Comparison with State-of-the-Arts
To evaluate SATNet, we extensively compare it with sev-
eral state-of-the-art methods. As shown in Table 1, we se-
lect 8 state-of-the-art methods for the comparison on MSD
dataset and PMD dataset, including 4 RGB salient object
detection methods CPDNet (Wu, Su, and Huang 2019),
MINet (Pang et al. 2020c), LDF (Wei et al. 2020), and
VST (Liu et al. 2021a), and 4 mirror detection methods Mir-
rorNet (Yang et al. 2019), PMDNet (Lin, Wang, and Lau
2020), SANet (Guan, Lin, and Lau 2022), and VCNet (Tan
et al. 2022). Our network outperforms other methods in
terms of all the evaluation metrics. Fig. 3 provides the vi-
sualized comparison with those methods. The first two rows
are examples of loose symmetry relationships. Our network
can precisely distinguish real-world objects from their mir-
ror reflections. In the first row, the cartoon toy and its re-

Method w/ Depth RGBD-Mirror
IoU ↑ Fβ ↑ MAE ↓

JL-DCF ✓ 69.65 0.844 0.056
DANet ✓ 67.81 0.835 0.060
BBSNet ✓ 74.33 0.868 0.046
VST ✓ 70.20 0.851 0.052
PDNet 73.57 - 0.053
PDNet ✓ 77.77 0.878 0.041
SANet 74.99 0.873 0.048
VCNet 73.01 0.849 0.052
Ours 78.42 0.906 0.031

Table 2: Quantitative results of the state-of-the-art methods
on RGBD-Mirror dataset. w/ Depth denotes the usage of
depth information in a corresponding method. Our method
outperforms all the competing methods, even though we do
not use depth information.

flection in mirrors cannot construct an apparent reflection
symmetry, but our network can still perceive which part is
in the mirrors. Albeit PMDNet (Lin, Wang, and Lau 2020)
has a specific module for modeling similarity relationships,
it fails in handling an easy case in the second row, in which a
chalk eraser is reflected in the mirror. The last row has scenes
where mirrors are similar to their surroundings. Our method
can well exclude the non-mirror region, while the competing
methods tend to classify a similar area as the mirror region,
especially four mirror detection methods. The results show
that symmetry awareness is beneficial for mirror detection,
and our method can utilize symmetry information well.

Our method is also compared with 4 RGB-D salient object
detection methods JL-DCF (Fu et al. 2020), DANet (Zhao
et al. 2020), BBSNet (Fan et al. 2020b) and VST (Liu et al.
2021a), and 3 mirror detection methods PDNet (Mei et al.
2021), SANet (Guan, Lin, and Lau 2022) and VCNet (Tan
et al. 2022) on the RGBD-Mirror dataset. As shown in Ta-
ble 2, our method does not leverage depth information, and
can still achieve the best performance in terms of all the eval-
uation metrics. Visualization results are shown in Fig. 4. In
all the four examples, RGB-D methods are likely misled by
depth information. Especially in the first row, they wrongly
judge the depth changes as the existence of mirrors. In the
second row, our method correctly detects the mirror region
by exploiting the loose symmetry relationship between the
television and its reflection, while some competing methods
even fail to detect the correct side of the mirror. In the third
row, there is a mirror that can be easily missed. All the com-
peting methods ignore the left mirror, although the depth
map has an obvious change in that area. Our method can
still discover the mirror as the scene has a kind of symme-
try relation with the nearby cabinet. In the last row, we note
that our method does not mis-detect the glasses as a mirror
region, while the competing methods can hardly tell sub-
tle differences between mirrors and glasses. Different from
mirrors, glasses can transmit most of the light, which weak-
ens reflection effects. It shows that our method can identify
corresponding reflection features from mirrors. All the cases
show that symmetry information can greatly benefit the per-
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Figure 3: Visualization results on MSD and PMD datasets. The first two rows are examples of loose symmetry relationships.
The last row has scenes where mirrors are similar to their surroundings.

Method IoU ↑ Fβ ↑ MAE ↓
Baseline 80.46 0.901 0.045
Dual-Path 79.59 0.903 0.044
Dual-Path + SAAM 80.01 0.918 0.042
Dual-Path + SAAMs 80.03 0.903 0.043
Dual-Path + CFDM 81.98 0.918 0.039
Dual-Path + SAAM + CFDM 82.96 0.911 0.039
SATNet(Ours) 85.41 0.922 0.033

Table 3: Ablation study results on MSD. Swin-S denotes our
baseline method, which is decoded by UperNet. Dual-Path
denotes the dual-path Swin Transformer. SAAM denotes our
Symmetry-Aware Attention Module on a scale of 3. SAAMs
denotes SAAM on both scale 2 and scale 3. CFDM denotes
our Contrast and Fusion Decoder Module.

formance of mirror detection, especially in complex scenes.

Ablation Study
Benefits of Dual-Path Structure. To better analyze the
benefits of our dual-path structure, we conduct two exper-
iments: One is a pure Swin Transformer decoded by Uper-
Net (Xiao et al. 2018) (1st row); the other is a dual-path Swin
Transformer, where features are trained and supervised sep-
arately in two paths (2nd row). Results in the first two rows
show that, with extra features and supervision, the second
method has no clear advantage when compared against the
first one. That is to say, we cannot simply attribute the im-
provement of our method to the extra features we extract. Al-
beit we introduce the dual-path structure to enhance the sym-
metry semantics, the extra features are more like a repeated
computation of the original ones if there are no appropriate
fusing and matching mechanisms for the two paths.
Effect of SAAM. To evaluate the effect of our attention
module, we conduct another two experiments: One is a dual-
path Swin-S with a SAAM in the highest level (3-rd row),
and the other is the same structure, but with SAAMs in the
highest two levels (4-th row). Comparing the third row with
the second row, we discover that “Dual-Path + SAAM” gets

better results in all the three metrics, which is reasonable
as our SAAM models symmetry relationships in high-level
features. However, Fβ in the fourth row drops back to 0.903,
indicating that directly applying SAAM to features in lower
levels may not work well. We further visualize the attention
map in SAAM. In Fig. 5(c), the mirror region (green con-
tour in (b)) of the attention map focuses on the mirror itself.
While in Fig. 5(d), the highest attention signal of the power
bank region inside the mirror (red contour in (b)) is located
on the real power bank in the image. This observation sup-
ports that SAAM is able to model loose symmetry relations.
Effect of CFDM. In the fifth row, we conduct an experiment
based on the second row, replacing the UperNet decoder
with our CFDM. Comparing results of the two rows, ”Dual-
Path + CFDM” have a gain of 2.39%, 1.50%, and 0.5% in
IoU , Fβ , and MAE, respectively. The improvement proves
that our decoder module can properly fuse features in the
two paths, and is more suitable for the mirror detection task.
Combination of SAAM and CFDM. To explore the best
way to combine our SAAM and CFDM, we conduct two
experiments: one is a dual-path Swin Transformer with a
SAAM in the highest level and CFDMs as the decoder (6th
row), and the other is our final network SATNet, which has
SAAMs in the highest two levels (last row). Analyzing the
last three rows, we conclude that applying SAAM before
CFDM is effective as the three evaluation metrics have pro-
gressively improved to 85.41%. 0.922 and 0.033. On the
other hand, comparing the network in the fourth row with
SATNet, the improvement from “Dual-Path + SAAMs” to
SATNet is even larger, which means our CFDM contributes
to the fusion of dual-path features, especially for symmetry
semantics in high levels.
Visualization results for the ablation study. To further
analyze the effectiveness of each component, we visualize
the prediction results of Swin-S, Dual-Path + SAAM, Dual-
Path + CFDM, and SATNet in Fig. 6. Swin-S can provide
the approximate location of the mirror but is not sensitive
to symmetry relationships, which demonstrates that current
baselines can hardly model loose symmetry relationships.
Equipped with our attention module SAAM, the network
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Figure 4: Visualization results on RGB-D dataset. In the first row, changes in depth can easily affect the judgement of RGB-D
methods. The second row contains a pair of symmetric objects inside and outside mirrors. The third row represents mirrors that
can hardly be recognized. And the last row is a scene including both glasses and mirrors.

(a) (b) (c) (d)

Figure 5: Visualization of attention maps in SAAM. (a)-(d)
denote image, region of interest, attention of mirrors, and
attention of objects in mirrors. While attention of the mirror
region focuses on the mirror itself, attention of the power
bank in mirrors lies in the corresponding real object.

Image Baseline +SAAM +CFDM SATNet GT

Figure 6: Visualization results for the ablation study. In this
example, our baseline Swin-S cannot perceive the symmetry
relationship. The network embedded with SAAM does not
outline a precise boundary. And when adding CFDM, the
network is still confused about the symmetry relationship.
Only SATNet can correctly detect the mirror region.

can exclude the real-world object which shades the mirror
from the mirror region, showing the ability of perceiving
symmetry relationships. However, its prediction map is not
precise enough, especially near the boundary of mirrors. In
comparison to our SAAM, our decoder module CFDM re-
fines mirror boundaries well, but it wrongly excludes the
symmetry area in the mirror region. Analogous to Swin-S, it
cannot handle symmetry relationships well. Only with both
two modules, SATNet marks the mirror region correctly. The
visualization result is basically consistent with the corre-
sponding effects of the components we expect.
Input Size. Following Swin Transformer (Liu et al. 2021b),
we train SATNet with an input image of 512×512. Nonethe-

less, previous networks usually adopt smaller input sizes,
e.g., 384× 384. To show that the superiority of our SATNet
cannot be simply ascribed to larger input image size, we fur-
ther train another two SATNet models respectively for input
images with the sizes of 384×384 on MSD. Table 4 lists the
quantitative results of our SATNet and the competing meth-
ods. From the table, one can see that: (i) increasing input
image size is beneficial to the performance of our SATNet;
(ii) with the same input image size, our SATNet consistently
outperforms the competing methods.

Method MACs(G) Para.(M) IoU ↑ Fβ ↑ MAE ↓
MirrorNet 77.7 121.77 78.88 0.856 0.066
PMDNet 101.5 147.66 81.54 0.892 0.047
Ours-384 84.1 111.34 82.56 0.911 0.041
Ours-512 147.26 111.34 85.41 0.922 0.033

Table 4: Comparison of different mirror detection networks
on MSD dataset. We report the results of our SATNet with
the input image sizes of 384× 384 and 512× 512.

Conclusion
In this paper, we proposed a dual-path Symmetry-Aware
Transformer-based mirror detection network (SATNet) for
better mirror detection. We presented a new perspective on
detecting mirrors by leveraging loose symmetry relation-
ships. Then, we suggested a novel dual-path network, in-
troducing a transformer pipeline to enhance the ability of
long-range dependencies understanding for mirror detec-
tion. Furthermore, we proposed the Symmetry-Aware Atten-
tion Module (SAAM) to aggregate better feature representa-
tion of symmetry relations, while exploiting Contrast and
Fusion Decoder Module (CFDM) to generate refined pre-
diction maps progressively. Experimental results on multiple
datasets demonstrate the benefit of loose symmetry relation-
ships in mirror detection. Our network can effectively model
such relationships and greatly improve the performance of
mirror detection in comparison to state-of-the-arts.
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